From 4a0bce3608d475f3b86137fd94eb65bdcd131fa1f65b2b07c3c6fad2af0e945a Mon Sep 17 00:00:00 2001 From: Nadim Kobeissi Date: Fri, 27 Jun 2025 12:41:28 +0200 Subject: [PATCH] Remove unicode characters --- slides/1-2.tex | 8 ++++---- slides/1-5.tex | 2 +- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/slides/1-2.tex b/slides/1-2.tex index 42fbf1f..5fef3a0 100644 --- a/slides/1-2.tex +++ b/slides/1-2.tex @@ -31,12 +31,12 @@ \item Keep the whole design secret? \item \textbf{``Advantages''}: \begin{itemize}[<+->] - \item Attacker doesn’t know how our cipher (or system, more generally,) works. + \item Attacker doesn't know how our cipher (or system, more generally,) works. \end{itemize} \item \textbf{Disadvantages}: \begin{itemize}[<+->] \item Figuring out how the thing works might mean a break. - \item Can’t expose cipher to scrutiny. + \item Can't expose cipher to scrutiny. \item Everyone needs to invent a cipher. \end{itemize} \end{itemize} @@ -156,7 +156,7 @@ \begin{itemize}[<+->] \item How to derive $K$? \item $K$ is ideally random. - \item True randomness isn’t practical, so $K$ is in practice pseudo-random. + \item True randomness isn't practical, so $K$ is in practice pseudo-random. \item We need a pseudo-random uniform distribution: \item If $\mathcal{S}$ is a set of $m$ items, then the uniform distribution over $\mathcal{S}$ assigns probability $\frac{1}{m}$ to each item $x \in \mathcal{S}$ \item In practice, this just means we need the bits to be random, unpredictable, uniformly distributed in terms of probability @@ -220,7 +220,7 @@ \begin{columns}[c] \begin{column}{0.5\textwidth} \begin{itemize} - \item When we prove security, we prove what is or isn’t possible by the attacker calling \textsc{Attack}$(M)$. + \item When we prove security, we prove what is or isn't possible by the attacker calling \textsc{Attack}$(M)$. \end{itemize} \end{column} \begin{column}{0.5\textwidth} diff --git a/slides/1-5.tex b/slides/1-5.tex index 5292e34..2e2aee5 100644 --- a/slides/1-5.tex +++ b/slides/1-5.tex @@ -581,7 +581,7 @@ \end{itemize} \item For a 16-byte message: \begin{itemize} - \item Null-oracle attack: ~4,080 queries (16 × 255) + \item Null-oracle attack: ~4,080 queries (16 \times 255) \item True brute-force: ~$10^{38}$ queries ($255^{16}$) \end{itemize} \item This attack is exponentially more efficient than traditional brute-force.