
Weaknesses in the Key Sheduling Algorithm of

RC4

Sott Fluhrer

1

, Itsik Mantin

2

, and Adi Shamir

2

1

Ciso Systems, In., 170 West Tasman Drive, San Jose, CA 95134

sfluhrer�iso.om

2

Computer Siene department, The Weizmann Institute, Rehovot 76100, Israel.

fitsik,shamirg�wisdom.weizmann.a.il

Abstrat. In this paper we present several weaknesses in the key shedul-

ing algorithm of RC4, and desribe their ryptanalyti signi�ane. We

identify a large number of weak keys, in whih knowledge of a small

number of key bits suÆes to determine many state and output bits

with non-negligible probability. We use these weak keys to onstrut

new distinguishers for RC4, and to mount related key attaks with pra-

tial omplexities. Finally, we show that RC4 is ompletely inseure in a

ommon mode of operation whih is used in the widely deployed Wired

Equivalent Privay protool (WEP, whih is part of the 802.11 standard),

in whih a �xed seret key is onatenated with known IV modi�ers in

order to enrypt di�erent messages. Our new passive iphertext-only at-

tak on this mode an reover an arbitrarily long key in a negligible

amount of time whih grows only linearly with its size, both for 24 and

128 bit IV modi�ers.

1 Introdution

RC4 is the most widely used stream ipher in software appliations. It was

designed by Ron Rivest in 1987 and kept as a trade seret until it leaked out in

1994. RC4 has a seret internal state whih is a permutation of all the N = 2

n

possible n bits words, along with two indies in it. In pratial appliations n = 8,

and thus RC4 has a huge state of log

2

(2

8

!� (2

8

)

2

) � 1700 bits.

In this paper we analyze the Key Sheduling Algorithm (KSA) whih derives

the initial state from a variable size key, and desribe two signi�ant weaknesses

of this proess. The �rst weakness is the existene of large lasses of weak keys,

in whih a small part of the seret key determines a large number of bits of

the initial permutation (KSA output). In addition, the Pseudo Random Gen-

eration Algorithm (PRGA) translates these patterns in the initial permutation

into patterns in the pre�x of the output stream, and thus RC4 has the undesir-

able property that for these weak keys its initial outputs are disproportionally

a�eted by a small number of key bits. These weak keys have length whih is

divisible by some non-trivial power of two, i.e., ` = 2

q

m for some q > 0

1

. When

1

Here and in the rest of the paper ` is the number of words of K, where eah word

ontains n bits.



RC4

n

uses suh a weak key of ` words, �xing n + q(` � 1) + 1 bits of K (as a

partiular pattern) determines �(qN) bits of the initial permutation with prob-

ability of one half and determines various pre�xes of the output stream with

various probabilities (depending on their length).

The seond weakness is a related key vulnerability, whih applies when part

of the key presented to the KSA is exposed to the attaker. It onsists of the

observation that when the same seret part of the key is used with numerous

di�erent exposed values, an attaker an rederive the seret part by analyzing

the initial word of the keystreams with relatively little work. This onatena-

tion of a long term seret part with an attaker visible part is a ommonly used

mode of RC4, and in partiular it is used in the WEP (Wired Equivalent Pri-

vay) protool, whih protets many wireless networks. Our new attak on this

mode is pratial for any key size and for any modi�er size, inluding the 24 bit

reommended in the original WEP and the 128 bit reommended in the revised

version WEP2.

The paper is organized in the following way: In Setion 2 we desribe RC4

and previous results about its seurity. In Setion 3 we onsider a slightly mod-

i�ed variant of the Key Sheduling Algorithm, alled KSA

�

, and prove that a

partiular pattern of a small number of key bits suÆes to ompletely determine

a large number of state bits. Afterwards, we show that this weakness of KSA

�

,

whih we denote as the invariane weakness, exists (in a weaker form) also in

the original KSA. In Setion 4 we show that with high probability, the patterns

of initial states assoiated with these weak keys also propagate into the �rst

few outputs, and thus a small number of weak key bits determine a large num-

ber of bits in the output stream. In Setion 5 we desribe several ryptanalyti

appliations of the invariane weakness, inluding a new type of distinguisher.

In Setions 6 and 7 we desribe the seond weakness, whih we denote as the

IV weakness, and show that a ommon method of using RC4 is vulnerable to

a pratial attak due to this weakness. In Setion 8, we show how both these

weaknesses an separately be used in a related key attak. In the appendies, we

examine how the IV weakness an be used to attak a real system (appendix A),

how the invariane weakness an be used to onstrut a iphertext-only distin-

guisher and to prove that RC4 has low sampling resistane (appendies B and

C), and how to derive the seret key from an early permutation state (appendix

D).

2 RC4 and Its Seurity

2.1 Desription of RC4

RC4 onsists of two parts (desribed in Figure 1): A key sheduling algorithm

KSA whih turns a random key (whose typial size is 40-256 bits) into an initial

permutation S of f0; : : : ; N � 1g, and an output generation part PRGA whih

uses this permutation to generate a pseudo-random output sequene.

The PRGA initializes two indies i and j to 0, and then loops over four

simple operations whih inrement i as a ounter, inrement j pseudo randomly,



exhange the two values of S pointed to by i and j, and output the value of S

pointed to by S[i℄ + S[j℄

2

. Note that every entry of S is swapped at least one

(possibly with itself) within anyN onseutive rounds, and thus the permutation

S evolves fairly rapidly during the output generation proess.

The KSA onsists of N loops that are similar to the PRGA round operation.

It initializes S to be the identity permutation and i and j to 0, and applies the

PRGA round operation N times, stepping i aross S, and updating j by adding

S[i℄ and the next word of the key (in yli order). We will all eah round of

KSA a step.

KSA(K)

Initialization:

For i = 0 : : : N � 1

S[i℄ = i

j = 0

Srambling:

For i = 0 : : : N � 1

j = j + S[i℄ +K[i mod `℄

Swap(S[i℄; S[j℄)

PRGA(K)

Initialization:

i = 0

j = 0

Generation loop:

i = i+ 1

j = j + S[i℄

Swap(S[i℄; S[j℄)

Output z = S[S[i℄ + S[j℄℄

Fig. 1. The Key Sheduling Algorithm and the Pseudo-Random Generation Algorithm

2.2 Previous Attaks on RC4

Due to the huge e�etive key of RC4, attaking the PRGA seems to be infea-

sible (the best known attak on this part requires time that exeeds 2

700

). The

only pratial results related to the PRGA deal with the onstrution of dis-

tinguishers. Fluhrer and MGrew desribed in [FM00℄ how to distinguish RC4

outputs from random strings with 2

30

data. A better distinguisher whih re-

quires 2

8

data was desribed by Mantin and Shamir in [MS01℄. However, this

distinguisher ould only be used to mount a partial attak on RC4 in broadast

appliations.

The fat that the initialization of RC4 is very simple stimulated onsiderable

researh on this mehanism of RC4. In partiular, Roos disovered in [Roo95℄ a

lass of weak keys that redues their e�etive size by �ve bits, and Grosul and

Wallah showed in [GW00℄ that for large keys whose size is lose to N words,

RC4 is vulnerable to a related key attak.

More analysis of the seurity of RC4 an be found in [KMP

+

98℄, [Gol97℄ and

[MT98℄.

2

Here and in the rest of the paper all the additions are arried out modulo N



3 The Invariane Weakness

Due to spae limitations we prove here the invariane weakness only for a sim-

pli�ed variant of the KSA, whih we denote as KSA

�

and desribe in Figure 2.

The only di�erene between them is that KSA

�

updates i at the beginning of

the loop, whereas KSA updates i at the end of the loop. After formulating and

proving the existene of this weakness in KSA

�

, we desribe the modi�ations

required to apply this analysis to the real KSA.

KSA(K)

a

For i = 0 : : : N � 1

S[i℄ = i

i = 0

j = 0

Repeat N times

j = j + S[i℄ +K[i mod `℄

Swap(S[i℄; S[j℄)

i = i + 1

KSA

�

(K)

For i = 0 : : : N � 1

S[i℄ = i

i = 0

j = 0

Repeat N times

i = i + 1

j = j + S[i℄ +K[i mod `℄

Swap(S[i℄; S[j℄)

a

KSA is rewritten in a way whih lari�es the relation to KSA

�

Fig. 2. KSA vs. KSA

�

3.1 De�nitions

De�nition 1 Let S be a permutation of f0; : : : ; N � 1g, t be an index in S and

b be some integer. Then if S[t℄

mod b

� t, the permutation S is said to b-onserve

the index t. Otherwise, the permutation S is said to b-unonserve the index t.

Denote the permutation S and the indies i and j after round t of KSA

�

as S

t

, i

t

and j

t

respetively. Denote the number of indies that a permutation b-onserves

as I

b

(S). For the sake of simpliity, we often write I

t

instead of I

b

(S

t

).

De�nition 2 A permutation S of f0; : : : ; N � 1g is b-onserving if I

b

(S) = N ,

and is almost b-onserving if I

b

(S) � N � 2.

De�nition 3 Let b; ` be integers, and let K be an ` words key. Then K is alled

a b-exat key if for any index t K[t mod `℄ � (1� t) (mod b). In ase K[0℄ = 1

and msb(K[1℄) = 1, K is alled a speial b-exat key.

Notie that for this ondition to hold, it is neessary (but not suÆient) that

b j `.



3.2 The Weakness

Theorem 1 Let q � n and ` be integers and b

def

= 2

q

. Suppose that b j ` and

let K be a b-exat key of ` words. Then the permutation S = KSA

�

(K) is

b-onserving.

Before getting to the proof itself, we will prove an auxiliary lemma

Lemma 1 If i

t+1

� j

t+1

(mod b), then I

t+1

= I

t

.

Proof: The only operation that might a�et S (and maybe I) is the swapping op-

eration. However, when i

t+1

and j

t+1

are equivalent (mod b), S

t+1

b-onserves

i

t+1

(j

t+1

) if and only if S

t

b-onserved j

t

(i

t

). Thus the number of indies S

b-onserves remains the same. ut

Proof:(of Theorem 1) We will prove by indution on t that for any 1 � t � N ,

it turns out that I

b

(S

t

) = N and i

t

� j

t

(mod b). This in partiular implies that

I

N

= N , whih makes the output permutation b-onserving.

For t = 0 (before the �rst round), the laim is trivial beause i

0

= j

0

= 0

and S

0

is the identity permutation whih is b-onserving for every b. Suppose

that j

t

� i

t

and S

t

is b-onserving. Then i

t+1

= i

t

+ 1 and

j

t+1

= j

t

+ S

t

[i

t+1

℄ +K[i

t+1

mod `℄

mod b

� i

t

+ i

t+1

+ (1� i

t+1

) = i

t

+ 1 = i

t+1

Thus, i

t+1

� j

t+1

(mod b) and by applying Lemma 1 we get I

t+1

= I

t

= N and

therefore S

t+1

is b-onserving. ut

KSA

�

thus transforms speial patterns in the key into orresponding pat-

terns in the initial permutation. The fration of determined permutation bits is

proportional to the fration of �xed key bits. For example, applying this result

to RC4

n=8;`=6

and q = 1, 6 out of the 48 key bits ompletely determine 252 out

of the 1684 permutation bits.

3.3 Adjustments to KSA

The small di�erene between KSA

�

and KSA (see Figure 2) is essential in that

KSA, applied to a b-exat key, does not preserve the equivalene (mod b) of i

and j even after the �rst round. Analyzing its exeution on a b-exat key gives

j

1

= j

0

+ S

0

[i

1

℄ +K[i

1

℄ = 0 + S

0

[0℄ +K[0℄ = K[0℄

mod b

� 1

mod b

6� 0 = i

1

and thus the struture desribed in Setion 3.2 annot be preserved by the yli

use of the words of K. However, the invariane weakness an be adjusted to the

real KSA, and the proper modi�ations are formulated in the following theorem:

Theorem 2 Let q � n and ` be integers and b

def

= 2

q

. Suppose that b j ` and let

K be a speial b-exat key of ` words. Then

Pr[KSA(K) is almost b-onserving℄ � 2=5

when the probability is over the rest of the key bits.



Due to spae limitations, the formal proof of this theorem (whih is based

on a detailed ase analysis) will appear only in the full version of this paper.

However, we an explain the intuition behind this theorem by onentrating on

the di�erenes between Theorems 1 and 2, whih deal with KSA

�

and KSA

respetively. During the �rst round, two deviations from KSA

�

exeution o-

ur. The �rst one is the non-equivalene of i and j whih is expeted to ause

non-equivalent entries to be swapped during the next rounds, thus ruining the

deliate struture that was preserved so well during KSA

�

exeution. The se-

ond deviation is that S b-unonserves two of the indies, i

1

= 0 and j

1

= K[0℄.

However, we an anel the ij disrepany by foring K[0℄ (and j

1

) to 1. In this

ase, the disrepany in S[j

1

℄ (K[1℄) auses an improper value to be added to

j, thus repairing its non-equivalene to i during the seond round. At this point

there are still two unonserved indies, and this aberration is dragged aross

the whole exeution into the resulting permutation. Although these orrupted

entries might interfere with j updates, the pseudo-random j might reah them

before they are used to update j (i.e., before i reahes them), and send them into

a region in S where they annot a�et the next values of j

3

. The probability of

this luky event is ampli�ed by the fat that the orrupted entries are i

1

= 0

whih is not touhed until the termination of the KSA due to its distane from

the urrent loation of i, and j

2

= 1 +K[1℄ > N=2 (reall that msb(K[1℄) = 1),

that is far from i

1

= 2, whih gives j many opportunities to reah it before i

does. The probability of N=2 pseudo random j's to reah an arbitrary value an

be bounded from below by 2/5, and extensive experimentation indiates that

this probability is atually lose to one half.

4 Key-Output Correlation

In this setion we will analyze the propagation of the weak key patterns into the

generated outputs. First we prove Claim 1 whih deals with the highly biased

behavior of a weakened variant of the PRGA, applied to a b-onserving permu-

tation. Next, we will argue that the pre�x of the output of the original PRGA

is highly orrelated to the pre�x of the swapless variant (on the same initial

permutation), whih implies the existene of biases in the PRGA distribution

for these weak keys.

Claim 1 Let RC4

�

be a weakened variant of RC4 with no swap operations. Let

q � n, b

def

= 2

q

and S

0

be a b-onserving permutation. Let fX

t

g

1

t=1

be the output

sequene generated by applying RC4

�

to S

0

, and x

t

def

= X

t

mod b. Then the

sequene fx

t

g

1

t=1

is onstant.

Sine there are no swap operation, the permutation does not hange and re-

mains b-onserving throughout the generation proess. Notie that all the values

3

if a value is pointed to by j before the swap, it will not be used as S[i℄ (before the

swap) for at least N � 1 rounds, and in partiular it will not a�et the values of j

during these rounds.



of S are known (mod b), as well as the initial indies i = j = 0 � 0 (mod b), and

thus the round operation (and the output values) an be simulated (mod b),

independently of S. Consequently the output sequene (mod b) is onstant, and

deeper analysis implies that it is periodi with period 2b, as exempli�ed in Figure

3 for q = 1.

i j S[i℄ S[j℄ S[i℄ + S[j℄ Out

0 0 0 0 0 /

1 1 1 1 0 0

0 1 0 1 1 1

1 0 1 0 1 1

0 0 0 0 0 0

1 1 1 1 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 3. The rounds of RC4

�

, ap-

plied to a 2-onserving permutation

1

st

word 1 � � � 1 1 1

2

nd

word n � � � 3 2 1

3

th

word n � � � 3 2 1

.

.

.

`

th

word n � � � 3 2 1

Fig. 4. The stage in whih eah one

of the bits is exposed during the re-

lated key attak

Reall that at eah step of the PRGA, S hanges in at most two loations, and

thus we an expet the pre�x of the output stream generated by RC4 from some

permutation S

0

, to be highly orrelated with the stream generated from the same

S

0

(or a slightly modi�ed one) by RC4

�

. In partiular the stream generated by

RC4 from an almost b-onserving permutation is expeted to be highly orrelated

with the onstant substream fx

t

g from Claim 1. This orrelation is demonstrated

in Figure 8, where the funtion h �! Pr[1 � 8t � h Z

t

� x

t

mod 2

q

℄ (for speial

2

q

-exat keys) is empirially estimated for n = 8, ` = 16 and di�erent q's. For

example, a speial 2-exat key ompletely determines 20 output bits (the lsb's

of the �rst 20 outputs) with probability 2

�4:2

instead of 2

�20

, and a speial

16-exat key ompletely determines 40 output bits (4 lsb's from eah of the �rst

10 outputs) with probability 2

�2:3

, instead of 2

�40

.

We have thus demonstrated a strong probabilisti orrelation between some

bits of the seret key and some bits of the output stream for a large lass of weak

keys. In the next setion we desribe how to use this orrelation to ryptanalyze

RC4.

5 Cryptanalyti Appliations of the Invariane Weakness

5.1 Distinguishing RC4 Streams from Randomness

In [MS01℄ Mantin and Shamir desribed a signi�ant statistial bias in the se-

ond output word of RC4. They used this bias to onstrut an eÆient algorithm

whih distinguishes between RC4 outputs and truly random sequenes by ana-

lyzing only one word from O(N) di�erent outputs streams. This is an extremely



eÆient distinguisher, but it an be easily avoided by disarding the �rst two

words from eah output stream. If these two words are disarded, the best known

distinguisher requires about 2

30

output words (see [FM00℄). Our new observation

yields a signi�antly better distinguisher for most of the typial key sizes. The

new distinguisher is based on the fat that for a signi�ant fration of keys, a

signi�ant number of initial output words ontain an easily reognizable pattern.

This bias is attened when the keys are hosen from a uniform distribution, but

it does not ompletely disappear and an be used to onstrut an eÆient dis-

tinguisher even when the �rst two words of eah output sequene are disarded.

Notie that the probability of a speial 2

q

-exat key to be transformed into a

2

q

-onserving permutation, does not depend of the key length ` (see Theorem 2).

However, the number of predetermined bits is linear in `, and onsequently the

size of this bias (and thus the number of required outputs) also depends on `. In

Figure 5 we speify the quantity of data required for a reliable distinguisher, for

di�erent key sizes. In partiular, for 64 bit keys the new distinguisher requires

only 2

21

data instead of the previously best number of 2

30

output words.

It is important to notie that the spei�ed output patterns extend over several

dozen output words, and thus the quality of the distinguisher is almost una�eted

by disarding the �rst few words. For example, disarding the �rst two words

auses the data required for the distinguisher to grow by a fator of between 2

0:5

and 2

2

(depending on `). Another important observation is that the biases in the

lsb's distribution an be ombined in a natural way with the biased distribution

of the lsb's of English texts into an eÆient distinguisher of RC4 streams from

randomness in a iphertext-only attak in whih the attaker does not know the

atual English plaintext whih was enrypted by RC4. This type of distinguishers

is disussed in Appendix B.

5.2 RC4 has Low Sampling Resistane

Biryukov, Shamir and Wagner de�ned in [BSW00℄ a new seurity measure of

stream iphers, whih they denoted as their Sampling Resistane. The strong

orrelation between lasses of RC4 keys and orresponding output patterns an

be used to prove that RC4 has relatively low sampling resistane, whih improves

the eÆieny of time/memory/data tradeo� attaks. Further details an be found

in Appendix C.

6 RC4 Key Setup and the First Word Output

In this setion, we onsider related key attaks where the attaker has aess to

the values of all the bits of ertain words of the key. In partiular, we onsider the

ase where the key presented to the KSA is made up of a seret key onatenated

with an attaker visible value (whih we will refer to as an Initialization Vetor

or IV ). We will show that if the same seret key is used with numerous di�erent

initialization vetors, and the attaker an obtain the �rst word of RC4 output

orresponding to eah initialization vetor, he an reonstrut the seret key with



minimal e�ort. How often he an do this, the amount of e�ort and the number

of initialization vetors required depends on the order of the onatenation, the

size of the IV, and sometimes on the value of the seret key. This observation is

espeially interesting, as this mode of operation is used by several ommerially

deployed enryption systems ([Rei01℄, [LMSon℄) and the �rst word of plaintexts

is often an easily guessed onstant suh as the date, the sender's identity, et, and

thus the attak is pratial even in a iphertext-only mode of attak. However,

the weakness does not extend to the Seure Soket Layer protool that browsers

use.

In terms of keystream output, this attak is interested only in the �rst word

of output from any given seret key and IV. Hene, we an simplify our model

of the output. The �rst output word depends only on three spei� permutation

elements, as shown in the �gure below showing the state of the permutation

immediately after KSA. When those three words are as shown, the value labeled

Z will be output as the �rst word.

1 X X + Y

X Y Z

In addition, if the key setup reahes a stage where i is greater than or equal

to 1, X = S

i

[1℄ and X + Y = S

i

[1℄ + S

i

[S

i

[1℄℄, then (if we model the remaining

swaps in the key setup as random) with probability greater than e

�3

� 0:05,

none of the elements referened by these three values will partiipate in any

further swaps, and in that ase, the value S[S[1℄ +S[S[1℄℄℄ will be output as the

�rst word. With probability less than 1 � e

�3

� 0:95, at least one of the three

values will partiipate in a swap, and be set to an e�etively random value, whih

will make the output value e�etively random. We will refer to this situation as

the resolved ondition. Our attak involves examining messages with spei� IV

values suh that, at some point, the KSA is in a resolved ondition, and where

the value of S[S[1℄ + S[S[1℄℄℄ gives us information on the seret key. Then, we

observe suÆiently many IV values that the atual value of S[S[1℄ + S[S[1℄℄℄

ours detetably often.

7 Details of the Known IV Attak

7.1 IV Preedes the Seret Key

First onsider the ase where the IV is prepended to the seret key. In this irum-

stane, assuming we have an I word IV, and a seret key (K[0℄;K[1℄; : : :K[`�1℄),

we attempt to derive information on a partiular word B of the seret key (K[B℄)

by searhing for IV values suh that, after the �rst I steps, S

I

[1℄ < I and

S

I

[1℄ + S

I

[S

I

[1℄℄ = I +B. Then, with high likelihood (probability � e

�

2B

N

if we

model the intermediate swaps as random), we will be in a resolved ondition

after step I + B, and then the most probable output value will be

Out = S

I+B�1

[j

I+B

℄ = S

I+B�1

[j

I+B�1

+K[B℄ + S

I+B�1

[I +B℄℄



Or, in other words, if we know the value of j

I+B�1

and S

I+B�1

, then given the

�rst word output Out, we an predit the value

K[B℄ = S

�1

I+B�1

[Out℄� j

I+B�1

� S

I+B�1

[I + B℄

where S

�1

t

[X ℄ denotes the loation within the permutation S

t

where the value

X appears. This predition is aurate more than 5% of the time, and e�etively

random less than 95% of the time. By olleting suÆiently many values from

di�erent IVs, we an reonstrut K[B℄.

In the simplest senario (3 word hosen IVs), the attak works as follows

4

:

suppose that we know the �rst A words of the seret key (K[3℄; : : : ;K[A + 2℄,

with A = 0 initially), and we want to know the next word K[A+ 3℄. We exam-

ine a series of IVs of the form (A + 3; N � 1; X) for approximately 60 di�erent

values for X . At the �rst step, j is advaned by A + 3, and then S[i℄ and S[j℄

are swapped, resulting in the key setup state whih is shown shematily below,

where the top array is the ombined IV and seret key presented to the KSA,

and the bottom array is a portion of the permutation, and where the positions

of the i, j variables are indiated.

A+ 3 N � 1 X K[3℄ K[A+ 3℄

0 1 2 A+ 3

A+ 3 1 2 0

i

0

j

0

Then, on the next step, i is advaned, and then the advane on j is omputed,

whih happens to be 0. Then, S[i℄ and S[j℄ are swapped, resulting in the below

struture:

A+ 3 N � 1 X K[3℄ K[A+ 3℄

0 1 2 A+ 3

A+ 3 0 2 1

i

1

j

1

Then, on the next step, j is advaned by X + 2, whih implies that eah dis-

tint IV assigns a di�erent value to j, and thus beyond this point, eah IV ats

di�erently, approximating the randomness assumption made above. Sine the

attaker knows the value of X and K[3℄; : : :K[A+2℄, he an ompute the exat

behavior of the key setup until he reahes step A + 3. At this point, he knows

the value of j

A+2

and the exat values of the permutation S

A+2

. If the value at

S

A+2

[0℄ or S

A+2

[1℄ has been disturbed, the attaker disards this IV. Otherwise,

j is advaned by S

A+2

[i℄ +K[A+3℄, and then the swap is done, resulting in the

below struture:

A+ 3 N � 1 X K[3℄ K[A+ 3℄

0 1 2 A+ 3

A+ 3 0 S[2℄ S[j℄

i

A+3

4

This senario was �rst published by Wagner in [Wag95℄



The attaker knows the permutation S

A+2

and the value of j

A+2

. In addition, if

he knows the value of S

A+3

[A+ 3℄, he knows its loation in S

A+2

, whih is the

value of j

A+3

, and hene he would be able to ompute K[A+ 3℄. We also note

that i

A+3

has now swept past 1, S

A+3

[1℄ and S

A+3

[1℄+S

A+3

[S

A+3

[1℄℄, and thus

the resolved ondition exists, and hene with probability p > 0:05, by examining

the value of the �rst word of RC4 output with this IV, the attaker will obtain

the orret value of K[A+ 3℄. Hene, by examining approximately 60 IVs with

the above on�guration, the attaker an rederive K[A℄ with a probability of

suess greater than 0.5.

By iterating the above proess aross the seret key, the attaker an rederive

` words of seret key using 60` hosen 3 word IVs.

The next thing to note is that the attak works for IVs other than those in

the spei� (A + 3; N � 1; X) form. Any I word IV that, after I steps, leaves

S

I

[1℄ < I and S

I

[1℄ + S

I

[S

I

[1℄℄ = I + B will suÆe for the above attak. In

addition, sine the attaker is able to simulate the �rst I steps of the key setup,

he is able to determine whih IVs have this property. By examining all IVs that

have this property, we an extend this into a known IV attak, without using

an exessive number of IVs. The probabilities to �nd the next word, and the

expeted number of IVs needed to obtain 60 IVs of the proper form, are given

in Figure 6 at the end of this paper.

7.2 IV Follows the Seret Key

In the ase that the IV is appended to the seret key, we need to take a di�erent

approah. The previous analysis attaked individual key words. When the IV

follows the seret key, what we do instead is selet IVs that give us the state of

the permutation at an early phase of the key setup, suh as immediately after

the seret key has been used for the �rst time. Given that only a few swaps

have ourred up to that point, it is reasonably straight-forward to reonstrut

those swaps from the permutation state, and hene obtain the seret key (see

Appendix D for one suh method).

To illustrate the attak in the simplest ase, suppose we have an A word

seret key, and a 2 word IV. Further suppose that the seret key was weak in

the sense that, immediately after A steps of KSA, S

A

[1℄ = X , X < A, and

X + S

A

[X ℄ = A. This is a low probability event (p � 0:00062 if A = 13),

but it depends only on the seret key. For suh a weak seret key, the attaker

an assume the value of j

A�1

+ S

A�1

[A℄, and then examine IVs with a �rst

word of W = Y � (j

A�1

+ S

A�1

[A℄). With suh IVs, the value of j

A

will be the

preseleted value Y . Then, S[A℄ and S[Y ℄ are swapped, and so S

A

[A℄ = A

A�1

[Y ℄.

Here, assuming Y was neither 1 nor S

A

[1℄, then the resolved ondition has been

established, and with probability > 0:05, S

A�1

[Y ℄ will be the �rst word output.

Then, by examining suh IVs with the seond word being at least 60 di�erent

values, we an observe the output a number of times and derive the value of

S

A

[Y ℄ with good probability. By seleting all possible values of Y, we an diretly

observe the state of the S

A

permutation, from whih we an rederive the seret

key. We will denote this result as key reovery.



If X+S

A

[X ℄ = A+1, a similar analysis would appear to apply. By assuming

S

A

[A℄, S

A

[A + 1℄ and j

A

, we an swap S

A+1

[Y ℄ into S

A+2

[A + 1℄ for N � 2

distint IVs for any partiular Y . However, the value of j

A+2

is always the same

for any partiular Y , and so the probabilities that a partiular IV outputs the

value S[Y ℄ is not independently distributed. This e�et auses the reading of the

permutation state to be 'noisy', that is, for some values of Y , we see S[Y ℄ as

the �rst word far more often than our analysis expeted, and for other values of

Y , we see it far less often. Beause of this, some of the entries S

A+1

[Y ℄ annot

be reliably reovered. Simulations assuming a 13 word seret key and n = 8

have shown that an average of 171 words of the S

A

permutation state an be

suessfully reonstruted, inluding an average of 8 words of (S

A

[0℄; : : : ; S

A

[12℄),

whih immediately give you e�etively 8 key words. With this information, the

key is redued enough that it an be brute fored. We will denote this result as

key redution.

If we have a 3 word IV, then there are more types of weak seret keys. For

example, onsider a seret key where S

A

[1℄ = 1 and S

A

[A℄ = A. Then, by as-

suming j

A

, we an examine IV where the �rst word has a value W so that the

new value of j

A+1

is 1, and so S

A

[1℄ and S

A

[A℄ are swapped, leaving the state

after A+ 1 steps to be:

K[0℄ K[1℄ K[A� 1℄ W X Z

0 1 A� 1 A A+ 1 A+ 2

S

A

[0℄ A S

A

[A� 1℄ 1 S

A

[A+ 1℄ S

A

[A+ 2℄

j

A+1

i

A+1

Then, by assuming S

A

[A + 1℄ (whih with high probability is A + 1, and

will always be at most A + 1), we an examine IVs with the seond word X =

Y � (1 + S

A

[A + 1℄), for an arbitrary Y , whih will swap the value of S

A

[Y ℄

into S

A+1

[A + 1℄. Assuming Y isn't either 1 or A, then the resolved ondition

have been set up, and using a number of values for the third IV word Z, we an

dedue the value of S

A+1

[Y ℄ for an arbitrary Y , giving us the permutation after

A steps.

There are a number of other types of weak keys that the attaker an take

advantage of, summarized in Figure 7 found at the end of this paper.

The last weak seret key listed in Figure 7 is espeially interesting, in that

the tehnique that exposes the weakness is rather di�erent than that of the other

weak seret keys listed. Immediately after A steps, the state is:

K[0℄ K[1℄ K[X ℄ W Z

0 1 X A A+ 1

S

A

[0℄ X S

A

[X ℄ Z S

A

[A+ 1℄

i

A

The initial IV word auses S

A

[X ℄ and S

A

[A℄ to be swapped, leaving the state

as:



K[0℄ K[1℄ K[X ℄ W Z

0 1 X A A+ 1

S

A

[0℄ X Z S

A

[X ℄ S

A

[A+ 1℄

i

A

Now, to inquire about the value of S

X+Z

[Y +Const℄, we examine numerous

IVs with seond and third words that all set the value of j

A+3

to be Y . The KSA

will ontinue for X + Z � (A + 3) more steps until i now points to the element

S

X+Z

[X + Z℄. At this point, sine we haven't gone through a great number of

steps sine we knew the value of j (sine X+Z�(A+3)� A�4), then with high

probability, j

X+Z+1

= Y +Const, where Const is a onstant term that depends

only on the state of the permutation S

A+1

. If this is true, then S

X+Z+1

[X+Z℄ =

S

X+Z

[Y + onst℄, and if the elements S[1℄ and S[X ℄ have not been disturbed

(again, this happens with high probability), the resolved ondition has been

ahieved, and the �rst output word will be biased towards S

X+Z

[Y + onst℄.

In addition, beause the value of onst will be the same independent of Y , its

value an easily be determined, thus allowing the attaker to observe many of

the values of S

X+Z

. This lass of weak keys requires far more known IVs to

exploit, but also ours relatively frequently.

If we have a 4 word

5

IV, then the same general approah as the previous

analysis an be used to reover virtually all seret keys, given suÆient IVs. First,

we assume j

A�1

, S

A�1

[A℄, S

A�1

[A+1℄, S

A�1

[A+2℄, S

A�1

[A+3℄

6

. Then, based

on this assumption, we searh for IVs that, after A+ 4 steps, sets S

A+4

[1℄ = X

and S

A+4

[X ℄ = Z for X;Z < A + 4; X + Z � A + 4, and we note the value of

j

A+4

= Y . Then, we save the value of X +Z, the value Y and the value output

as the �rst word for that partiular IV. With nontrivial probability, the value of

this word will be S

X+Z

[Y + onst

X+Z

℄, where onst

X+Z

is a onstant term that

depends on the seret key, and the value X+Z. Sine that value is independent

of the IV, we an ollet numerous possible values of S

X+Z

[Y + onst

X+Z

℄ for

various values of X + Z, and use that to �rst reonstrut onst

X+Z

, and then

reonstrut S

X+Z

.

8 Related-Key Attaks on RC4

In this setion, we disuss two related-key attaks based on weaknesses disussed

previously in this paper. They work within the following model: the attaker is

given a blak box that has a randomly hosen RC4 key K inside it, an output

button and an input tape of jKj words. In eah step the attaker an either press

the output button to get the next output word, or write � on the tape, whih

auses the blak-box to restart the output generation proess with a new key

de�ned as K

0

= K � �. The purpose of the attaker is to �nd the key K (or

some information about it).

5

This approah generalizes in the obvious way to longer IVs.

6

Note that S

A�1

[x℄ � x for x � A. This limits the size of the searh required.



8.1 Related-Key Attak Based on the Invariane Weakness

This attak works when the number of key words, is a power of two. It onsists of

n stages where in stage q the q

th

bit of every key word is exposed

7

. The prediate

ChekKey takes as input an RC4 blakbox and a parameter q (the stage number)

and deides whether the key in the box is speial 2

q

-exat. This purpose an be

ahieved by randomly sampling key bits that are irrelevant for the 2

q

-exatness of

the key and estimating the expeted length of q-patterned output. For a speial

2

q

-exat key the expeted length will be signi�antly longer than in a random

output (where it is less than 2) and thus ChekKey works in time O(1). The

proedure Expand takes as input an RC4 blakbox and a parameter q (the stage

number), assumes that the key in the box is speial 2

q�1

-exat, and makes it

speial 2

q

-exat. The method for doing so is by enumerating all the possibilities

for the q

th

bits (2

`�1

suh possibilities) and invoking ChekKey to deide when

the key in the box is speial 2

q

-exat. Expand works in a slightly di�erent way

for q = 1 and q = n. For q = 1, exept for the lsb's, it determines the omplete

K[0℄ (by foring it to 1) and msb(K[1℄). For q = n, there is only one 2

n

-exat

key and onsequently we an alulate the output produed from this key and

replae ChekKey by simple omparison. The time omplexity of this stage is

O(2

n+`

) for q = 1 and O(2

`�1

) for any other q.

The total time required for the attak is thus O(2

n+`

) + (n � 1)O(2

`

) =

O(2

n+`

). For typial RC4

n=8

key with 32 bytes, the omplexity of exhaustive

searh is ompletely impratial (2

256

), whereas the omplexity of the new attak

is only O(2

n+`

) = O(2

40

).

8.2 Related-Key Attak Based on Known IV Weakness

In this setion we use the known IV weaknesses to develop an eÆient related

key attak on RC4.

The attak onsists of 3 stages, where in the �rst two stages we gain informa-

tion on the �rst three words of the seret key, and in the third stage we iterate

down the key, and expose eah word of the key suessively. The stages of the

attak are as follows:

Step 1 This step attempts to �nd values of K[0℄, K[1℄ suh that S

1

[1℄ = 1,

and reveal the value of K[2℄. The proedure is to selet random values of

(X;Y ), and for eah suh random value, write onto the tape 240 vetors

with the initial four words (X;Y; Z;W ) for Z 2 f0; N=4; N=2; 3N=4g and

with 60 distint random values of W , and for eah suh vetor, press the

output button. If X and Y are suh that S

1

[1℄ = 1 (for the modi�ed key),

then the output of the �rst word will be biased towards 3+(K[2℄�Z), unless

that value happens to be 1. Hene, for at least 3 of the seleted values of

Z, the �rst word outputs will be biased towards one of onst, onst+N=4,

onst + N=2, onst + 3N=4. This is detetable, and also by examining the

value of onst, the attaker an reonstrut the value of K[2℄. We expet to

try N random values of (X;Y ) before �nding a pair that is appropriate.

7

In fat, K[1℄ is fully revealed during the �rst stage (see Figure 4)



Step 2 This step attempts to �nd the values of K[0℄, K[1℄. The proedure is to

write on the tape 60 vetors with the initial four words (X;Y; Z;W ), where

X , Y are the values reovered in the previous step, Z = (N � 3) � K[2℄,

and with 60 distint random values of W , and for eah suh vetor, press

the output button. This partiular initial sequene assures that S

2

[1℄ = 1

and S

2

[2℄ = S

1

[0℄ = K[0℄, and hene the output will be biased towards K[0℄.

One that has been reovered, K[1℄ an be omputed.

Step 3 This step iteratively reovers individual words of the key. It operates

by running a subproedure that assumes that we have already reovered

(K[0℄; : : : ;K[A� 1℄), and want to learn the value of K[A℄. The proedure is

to write 60 vetors that have the property that, given the known values of

(K[0℄; : : : ;K[A � 1℄), that S

A�1

[1℄ = X < A and X + S

A�1

[X ℄ = A. With

60 suh vetors, we an use the proedure shown in 7.1 to rederive K[A℄.

The total time required for the attak is thus (beause 2

n

� `):

Step1 + Step2 + (`� 3) � Step3 = O(2

n+8

) + 2

6

+ (`� 3)2

6

= O(2

n+8

)

For a RC4 key with n = 8 the time omplexity is O(2

16

) and is essentially

independent of the key length.

8.3 Comparing the Attaks

Both attaks are able to ompletely reonstrut the randomly hosen RC4 key

8

with a number of hosen keys and amount of work that is signi�antly below

that of brute fore (exept for extremely short RC4 keys). The �rst attak sales

upwards as the key grows longer, while the time omplexity of the seond attak

is independent of key length, with a ross-over point at ` = 8.

However, due to the seond word weakness, future implementations of RC4

are likely to disard some pre�x of the output stream, and in this ase the seond

attak beomes diÆult to apply { output word x depends on 2x+1 permutation

elements immediately after KSA, and all the 2x+1 elements must our before

t for the resolved ondition to hold. On the other hand, the �rst attak extends

well, in that the probability of the output words being patterned drops modestly

as the number of disarded words inreases.

9 Disussion

Setion 3 desribes an interesting weakness of RC4 whih results from the sim-

pliity of its key sheduling algorithm.We reommend to neutralize this weakness

by disarding the �rst N words of eah generated stream. After N rounds, every

element of S is swapped at least one and the permutation S and the index j

are expeted to be "independent" of the initialization proess.

Setion 6 desribes a weakness of RC4 in a ommon mode of operation in

whih attaker visible IV's are onatenated with a �xed seret key. It is easy

8

the �rst attak works only for some key lengths.



to extend the attak to other simple types of ombination operators (e.g., when

we XOR the IV and the �xed key) with essentially the same omplexity. We

reommend to neutralize this weakness by avoiding this mode of operation, or

by using a seure hash to form the key presented to the KSA from the IV and

seret key.

A Applying The Attak to WEP-like Cryptosystems

The Wired Equivalent Privay (WEP) protool is designed to provide privay

to paket based wireless networks based on the 802.11 standard (see [LMSon℄).

It enrypts by taking a seret key and a per-paket 3 byte IV, and using the

IV followed by the seret key as the RC4 key. Then, it transmits the IV, and

the RC4 enrypted payload. By using the results from Setion 7.1, we an show

how, by examining enough iphertext pakets, to reonstrut the seret key for

a WEP-like ryptosystem. Note that we have not attempted to attak an atual

WEP onnetion, and hene do not laim that WEP is atually vulnerable to

this attak.

We assume that the attaker is able to retrieve the �rst byte of the RC4

output from eah paket

9

. By the analysis done in setion 7.1, to reover key

byte B, the attaker needs to know the previous key bytes, and then searh for

IVs that sets up the permutation suh that

X = S

B+3

[1℄ < B + 3 (1)

X + S

B+3

[X ℄ = B + 3

With 60 suh IVs, the attaker an rederive the key byte with reasonable

probability of suess. The number of pakets required to obtain that number

of IVs depends on the exat IVs that the sender uses. Although the 802.11

standard does not speify how an implementation should generate these IVs,

ommon pratie is to use a ounter to generate them.

A.1 Analysis of IVs Generated by a Little Endian Counter

If the IVs are generated by a multibyte ounter in little endian order (and hene

the �rst byte of the IV inrements the fastest), then the attaker an searh for

IVs of the form (B; 255; N) for 3 � B < 8. If he an ollet these for 60 di�erent

values of N, then he an derive the seret key with little work. This requires

approximately 4,000,000 pakets.

9

Beause of the payload format used with 802.11, the attaker typially does know

the �rst byte of eah plaintext payload, and hene is able to derive the �rst byte of

RC4 output.



A.2 Analysis of IVs Generated by a Big Endian Counter

If the IVs are generated by a multibyte ounter in big endian order (and hene

the last byte of the IV inrements the fastest), then the attaker an, as above,

searh for IVs of the form (B; 255; N). This requires approximately 1,000,000

pakets to ollet the requisite IVs, assuming that the ounter starts from zero.

However, if the ounter doesn't start from zero, the attaker has an alter-

native strategy available to him. He an assume the �rst several bytes of seret

key, and then searh for IVs that set up the permutation as in Equation 1. If

the attaker assumes the �rst two bytes of seret key, then for eah initial IV

byte, there are approximately 4 settings of the remaining two bytes that set

up the permutation as required to rederive a partiular key byte. Hene, with

approximately 1,000,000 pakets, and an additional 2

16

work fator, he an still

rederive the key.

It is ommon pratie in the industry to extend the length of the WEP

seret key (whih is spei�ed as 40 bit). Beause the above attaks reover eah

key byte individually, the omplexity of the attak grows linearly rather than

exponentially with the key length, and thus even an extremely long key is not

immune to this attak.

B Ciphertext-Only Distinguishers based on the

Invariane Weakness

The distinguishers we presented in Setion 5.1, as well as most of the distin-

guishers mentioned in the literature (for RC4 and other stream iphers) assume

knowledge of the plaintext in order to isolate the XORed key stream.

However, in pratie the only information the attaker has is typially some

statistial knowledge about the plaintext, e.g., that it ontains English text.

Combining the non-random behaviors of the plaintext and the key-stream is not

always possible, and there are ases where XORing biased streams result with

a totally random stream, e.g. when one stream is biased in its even positions

and the other stream is biased in its odd positions. We prove here that if the

plaintexts are English texts, it is easy to onstrut a iphertext-only distinguisher

from our biases. The intuition of this onstrution is that the biases desribed

in Setion 5.1 are in the distribution of the lsb's, and onsequently they an be

ombined with the non-random distribution of the lsb's of English texts.

There are many major biases in the distribution of the lsb's of English texts,

and they an be ombined with biases of the key-stream words in various ways.

In Theorem 3, we show how to ombine the distribution of the �rst lsb of the

RC4 output stream, with the �rst order statistis of English texts

10

:

Theorem 3 Let C be the iphertext generated by RC4 from a random key and

the ASCII representation of plaintexts, distributed aording to the �rst order

10

Sine the purpose of the theorem is only to demonstrate this approah , we ignore

the fat that the distribution of the �rst haraters in an English sentene di�ers

from the distribution of mid-text haraters.



statistis of English texts. Let p be the probability of a random key to be speial

2-exat. Then C an be distinguished from a random stream by analyzing about

200

p

2

output words.

For example, for RC4

n=8

with 8 byte keys, p = 2

�16

, whih implies a reliable

iphertext-only distinguisher that works with less than 2

40

data. The proof of

Theorem 3 is based on the observation that the lsb of a random English text

harater is zero with probability of about 55%. The formal proof is omitted due

to spae limitations.

It is important to note that Theorem 3 does not use all the statistial infor-

mation whih is available in either the key-stream or the plaintext distributions,

and onsequently does not represent the best possible attak.

C The Sampling Resistane of RC4

Most of the Time/Memory/Data tradeo� attaks on stream iphers are based

on the following paradigm. The attaker keeps a database of [state,output℄ pairs

(sorted by output) and lookups every subsequene of the output stream in this

database. When a (suÆiently long) database sequene is loated in the output,

the attaker an onlude that the atual state is the one stored along with this

sequene and predit the rest of the stream.

A drawbak of this approah is that the large database must be stored in a

hard disk(s) whose random aess time is about a million times slower than a

omputational step. To improve that attak we an keep on disk only states that

are guaranteed to produe outputs with some rare but easy reognizable property

(e.g., starting with some pre�x �). In this ase only output sequenes that have

this property have to be searhed in the database, and thus the expeted time

and the expeted number of disk probes is signi�antly redued.

In general, produing a pair [state,output℄ with suh a rare property osts

muh more than produing a random pair. O(

1

p

) random states are required to

�nd a single pair, where p is the probability of a random output to have this prop-

erty. However, if we an eÆiently enumerate states that produe suh outputs,

the number of sampled states dereases dramatially, and this method an be

applied without signi�ant additional ost during the preproessing stage. The

sampling resistane of a stream ipher provides a lower bound on the eÆieny

of suh enumeration.

Suh an attak an be applied to RC4 in two ways, based on the KSA and

PRGA parts. An attak on the generation part onstruts a database of pairs

[RC4 state, output substring℄ and analyzes all the substrings along a single out-

put stream. The database onstrution is very simple sine it is easy to enumerate

states whih produe outputs that have some onstant pre�x. However, this enu-

meration seems to be useless due to the huge e�etive key of this part (1684 bits)

whih makes suh a tradeo� attak ompletely impratial. A more promising

approah is based on the KSA part whih uses a key of 40-256 bits and might be

vulnerable to tradeo� attaks. In this ase, the pairs in the database are [seret



key, pre�x of the output stream℄, and the attak requires pre�xes from a large

number of streams (instead of a single long stream).

The orrelation desribed in Setion 4 provides an eÆient sampling of keys

that are more likely to produe output pre�xes of the patterned type spei�ed

above (onstant (mod b)).

For example, onsider the problem of sampling M keys whih are trans-

formed by the KSA into streams whose �rst �ve words are �xed (mod 16). This

property of random streams has probability of 2

�20

, and the expeted number

of disk probes during the atual attak is redued by this fator. For stream

iphers with high sampling resistane, suh a �lter would inrease the prepro-

essing time by a fator of one million, as one would have to sample a million

random keys in order to �nd a single \good" key. For RC4 (due to the invariane

weakness), the preproessing time inreases by a fator of less than four, as more

than one quarter of the exat speial keys produe suh streams. Consequently,

the preproessing stage is aelerated by a fator of 2

18

.

To summarize this setion, we proved that RC4 has relatively low Sampling

Resistane, whih greatly improves the eÆieny of tradeo� attaks based on its

KSA.

D Deriving the Seret Key from an Early Permutation

State

Given the values S

A

[0℄; : : : ; S

A

[A�1℄, one method to �nd all values ofK[0℄; : : : ;K[A�

1℄ that result in suh a permutation is:

i = 0

S = f0; : : : ; N � 1g

For i = 0 : : : A� 1

X = S

�1

[S

A

[i℄℄

If i < X < A

Branh over all values of 0 � X < A s.t. X � I or

S[X ℄ 6= S

A

[X ℄, running the remaining part of this

algorithm for all suh values.

K[i℄ = X � j � S[i℄

j = X

Swap(S[i℄, S[j℄)

Verify that fS[0℄; : : : ; S[A� 1℄g = fS

A

[0℄; : : : ; S

A

[A� 1℄g

The number of times this algorithm will perform an iteration is bounded by

A

�+1

, where � if the number of values 0 � x < A where S

A

[x℄ < A. Beause �

is typially quite small, this algorithm is typially eÆient.

An algorithm with a better lower bound on run time ould be given by using

the values of S

A

[A℄; : : : ; S

A

[N � 1℄.



Referenes

[BSW00℄ A. Biryukov, A. Shamir, and D. Wagner. Real time ryptanalysis of a5/1

on a p. In FSE: Fast Software Enryption, 2000.

[FM00℄ Fluhrer and MGrew. Statistial analysis of the alleged RC4 keystream

generator. In FSE: Fast Software Enryption, 2000.

[Gol97℄ Goli�. Linear statistial weakness of alleged RC4 keystream generator.

In EUROCRYPT: Advanes in Cryptology: Proeedings of EUROCRYPT,

1997.

[GW00℄ A. L. Grosul and D. S. Wallah. a related-key ryptanalysis of RC4. June

2000.

[KMP

+

98℄ Knudsen, Meier, Preneel, Rijmen, and Verdoolaege. Analysis methods for

(alleged) RC4. In ASIACRYPT: Advanes in Cryptology { ASIACRYPT:

International Conferene on the Theory and Appliation of Cryptology.

LNCS, Springer-Verlag, 1998.

[MT98℄ Mister and Tavares. Cryptanalysis of RC4-like iphers. In SAC: Annual

International Workshop on Seleted Areas in Cryptography. LNCS, 1998.

[Roo95℄ A. Roos. A lass of weak keys in the RC4 stream ipher. September 1995.



` q b k

1

a

k

2

b

p



P

RND

d

P

RC4

e

Data

4 1 2 12 15 2

�3

2

�15

2 � 2

�15

2

15

6 1 2 14 18 2

�4

2

�18

2 � 2

�18

2

18

8 1 2 16 21 2

�5

2

�21

2 � 2

�21

2

21

10 1 2 18 24 2

�6

2

�24

2 � 2

�24

2

24

12 1 2 20 27 2

�7

2

�27

2 � 2

�27

2

27

14 1 2 22 30 2

�8

2

�30

2 � 2

�30

2

30

16 1 2 24 34 2

�10

2

�34

2 � 2

�34

2

34

Fig. 5. Data required for a reliable distinguisher, for di�erent key sizes

a

number of predetermined bits (q(`� 1) + n + 1)

b

number of determined output bits



probability of these k

1

key bits to determine these k

2

output bits (taken from Figure 8)

d

= 2

�k

2

e

� P

RND

+ 2

�k

1

p

IV Length Probability Expeted IVs required

3 4:57 � 10

�5

1310000

4 4:50 � 10

�5

1330000

5 1:65 � 10

�4

364000

6 1:64 � 10

�4

366000

7 2:81 � 10

�4

213000

8 2:80 � 10

�4

214000

9 3:96 � 10

�4

152000

10 3:94 � 10

�4

152000

11 5:08 � 10

�4

118000

12 5:04 � 10

�4

119000

13 6:16 � 10

�4

97500

14 6:12 � 10

�4

98100

15 7:21 � 10

�4

83200

16 7:18 � 10

�4

83600

Fig. 6. For various prepended IV and known seret key pre�x lengths, the probability

that a random IV will give us information on the next seret key word, and the expeted

number of IVs required to derive the next seret key word.



IV Settings

Condition First Seond Third Probability Result

S

A

[1℄ = 1 Swap with 1 Swap with Y Cyle 0.0037 Key reovery

S

A

[A℄ = A

S

A

[1℄ = 2 Swap with 1 Cyle Swap with Y 0.0070 Key redution

S

A

[A+ 1℄ = A+ 1

S

A

[1℄ = X < A Swap with Y Cyle Cyle 0.0007 Key reovery

S

A

[X℄ +X = A

S

A

[1℄ = X < A Cyle Swap with Y Cyle 0.0009 Key reovery

S

A

[X℄ +X = A+ 1

S

A

[1℄ = X < A Cyle Cyle Swap with Y 0.0007 Key redution

S

A

[X℄ +X = A+ 2

S

A

[1℄ = A Swap with Swap with Y Cyle 0.0037 Key reovery

S

�1

A

[1℄

S

A

[1℄ = A+ 1 Swap with Y Swap with Cyle 0.0036 Key reovery

S

�1

A

[N � 1℄

S

A

[1℄ = A+ 2 Cyle Swap with Y Swap with 0.0038 Key redution

S

�1

A

[N � 1℄

S

A

[1℄ = N � 2 Swap with Y Cyle Swap with 1 0.0034 Key redution

S

A

[A+ 2℄ = A+ 2

S

A

[1℄ = N � 1 Swap with Y Swap with 1 Cyle 0.0036 Key reovery

S

A

[A+ 1℄ = A+ 1

S

A

[1℄ = X < A Swap with X Cyle Cyle 0.1007 Key redution

S

A

[A℄ = Z

X + Z > A+ 2

Fig. 7. Weak seret keys with 3 word post�x IVs. Listed are the onditions on the S

A

permutation that distinguish them, the IV properties that the attaker searhes for to

reveal S[Y ℄, the probability that this lass of weak key will our with n = 8 and a 16

word seret key, and the result of the attak on the weak key.



0 10 20 30 40 50 60
−30

−25

−20

−15

−10

−5

0

L
o
g
 o

f 
th

e
 p

ro
b
a
b
ili

ty
 o

f 
p
a
tt
e
rn

e
d
 p

re
fi
x
 o

f 
s
iz

e
 h

h − size of the patterned prefix

q=1
q=2
q=3
q=4

Fig. 8. This graph demonstrates the probabilities of speial keys (2

q

-exat with K[0℄ =

1, msb(K[1℄ = 1)) of RC4

n=8;`=16

to produe streams with long patterned pre�xes


