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Abstract
The Transport Layer Security (TLS) protocol supports 
various authentication modes, key exchange methods, 
and protocol extensions. Confusingly, each combination 
may prescribe a different message sequence between the 
client and the server, and thus a key challenge for TLS 
implementations is to define a composite state machine 
that correctly handles these combinations. If the state 
machine is too restrictive, the implementation may fail 
to interoperate with others; if it is too liberal, it may allow 
unexpected message sequences that break the security of 
the protocol. We systematically test popular TLS imple-
mentations and find unexpected transitions in many of 
their state machines that have stayed hidden for years. We 
show how some of these flaws lead to critical security vul-
nerabilities, such as FREAK. While testing can help find 
such bugs, formal verification can prevent them entirely. 
To this end, we implement and formally verify a new com-
posite state machine for OpenSSL, a popular TLS library.

1. TRANSPORT LAYER SECURITY
Transport Layer Security (TLS),13 previously known as Secure 
Sockets Layer (SSL), is a standard cryptographic protocol 
widely used to secure communications for the web (HTTPS), 
email, and wireless networks. Figure 1 depicts the common 
usage of TLS and its threat model. Following the protocol, a 
client and a server exchange messages to establish a secure 
channel across an insecure network. Meanwhile, a network 
attacker can intercept these messages, tamper with them, 
and inject new messages to confuse the two. Additionally, 
the attacker may control some malicious clients and servers 
that are free to deviate from the protocol. The goal of TLS is 
to ensure the integrity and confidentiality of data exchanged 
between honest clients and servers, despite the best efforts 
of attackers.

TLS offers a large choice of cryptographic algorithms and 
protocol features to accommodate the needs of diverse appli-
cations. Each TLS connection consists of a channel establish-
ment protocol, called the handshake, followed by a transport 
protocol, the record. During the handshake, the client and 
server negotiate which algorithms and features they wish to 
use. For example, the client and server may be authenticated 
with certificates, or with pre-shared keys, or may remain 
anonymous; the key exchange may use Ephemeral Diffie–
Hellman or RSA Encryption; the record protocol may encrypt 
sensitive application data using AES-GCM or RC4.

If a connection uses a secure key exchange and a strong 
record encryption scheme, security against network attack-
ers can be reduced to the security of these building blocks. 
Indeed, recent works provide cryptographic proofs for 
some of the key exchange methods7, 16, 19, 22 and encryption 
schemes27 used in TLS. However, not all of choices offered 
by TLS have been proved secure; in fact, many of them are 
obsolete and some are even known to be broken. Still, TLS 
client and servers continue to support old protocol versions, 
extensions, and ciphersuites for interoperability reasons. 
For example, TLS 1.0 offered several deliberately weakened 
ciphersuites to comply with US export regulations at the 
time. These ciphersuites were explicitly deprecated in TLS 
1.1 but are still supported by mainstream implementations.

Even if the client and server support weak protocol 
modes, the TLS handshake is designed to negotiate and exe-
cute the strongest protocol that they both support. Hence, 
if one party is configured to accept only strong parameters, 
then its connections are expected to be secure, even if its 
peer supports other weaker modes. However, this guarantee 
depends on the implementation correctly composing differ-
ent protocol modes, a task that is surprisingly tricky.

1.1. Composing protocol state machines
Each TLS client and server implements a state machine 
that keeps track of the protocol being run: which messages 
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Figure 1. TLS threat model: network attacker aims to subvert client–
server exchange.
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have been sent and received, what cryptographic materials 
have been computed, which messages are expected next, 
etc. The state machine for each individual ciphersuite is 
specified in the standard, but the task of writing a compos-
ite state machine for multiple ciphersuites is left to each 
implementation.

Figure 2 depicts a simplified TLS handshake for some 
(fictional) ciphersuite, as seen from the viewpoint of the 
client. On the left, the client first sends a Hello message 
containing a list of supported ciphersuites to the server. 
The server chooses a ciphersuite and responds with two 
protocol messages, A and B, to establish a session key for 
this ciphersuite. The client completes the handshake by 
sending a Finished message to confirm knowledge of 
the session key. At the end of the handshake, both the cli-
ent and server can be sure that they have the same key and 
that they agree on the ciphersuite. Now suppose we wish 
to support a new ciphersuite, such that the client receives 
a different pair of messages, C and D, between Hello and 
Finished. To reuse our well-tested code for processing 
Hello and Finished, it is tempting to extend the client 
state machine to receive either A or C, followed by either 
B or D. This naive composition implements both cipher-
suites, but it also enables unintended sequences, such 
as Hello; A; D; Finished. In TLS, clients and servers 
authenticate the full message sequence at the end of the 
protocol (in the Finished messages) and, since no hon-
est server would send D after A, allowing extra sequences 
at the client may seem harmless.

However, a client that accepts this message sequence is 
actually running an unknown handshake protocol, with a 
priori no security guarantees. In our example, the code for 
processing D expects to run after C has been received. If C 
contains the server’s signature, then accepting D without 
C may allow a crucial authentication step to be bypassed. 
Furthermore, the code for processing D may accidentally 
use memory that should have been initialized while pro-
cessing C. Such memory safety bugs can lead to dangerous 
attacks such as HeartBleed,a which exposed the server’s 
internal state and private keys to remote attackers.

1.2. Testing for state machine flaws
In Section 2, we describe a methodology for systematically 

testing whether a TLS client or server correctly implements 
the protocol state machine. We find that many popular 
TLS implementations exhibit composition flaws like those 
described above, and consequently accept unexpected mes-
sage sequences. While some flaws are benign, others lead 
to critical vulnerabilities that a network attacker can exploit 
to bypass TLS security. In Section 3, we show how a network 
attacker can impersonate a TLS server to a buggy client, 
either by simply skipping messages (SKIP) or by factoring 
the server’s export-grade RSA key (FREAK). These attacks 
were responsibly disclosed and have led to security updates 
in major web browsers, servers, and TLS libraries.

1.3. Formally verifying state machine code
We have seen that the security of a TLS implementation 
depends crucially on its correct implementation of the protocol 
state machine. Testing can help find some bugs, but once these 
have been fixed, how can we be sure that the code does not have 
other hidden flaws? We advocate the use of formal verification 
to prove the absence of any state machine flaws. In Section 4, 
we present a new state machine implementation for OpenSSL 
that supports all commonly enabled ciphersuites, versions, and 
extensions. Using Frama-C,11 we verify that our code conforms 
with a logical specification of the TLS protocol state machine.

1.4. Online materials
We refer to https://mitls.org/pages/attacks/SMACK for addi-
tional details, including security testing tools, a summary 
of vulnerability disclosures and security updates, our state 
machine code for OpenSSL, and related verification work on 
TLS.

2. TESTING THE TLS STATE MACHINE
The TLS standard14 does not define a state machine. Instead, 
it specifies a collection of message sequences, one for each 
handshake protocol mode. Other specifications add new 
ciphersuites, authentication methods, or protocol exten-
sions; they typically define their own message sequences, 
reusing the message formats and mechanisms of TLS, and it 
is left to the implementation to design a state machine that 
can account for all these sequences.

2.1. A TLS state machine
We propose a reference state machine for TLS by adopting 
and extending the one used in the miTLS verified implemen-
tation,6 based on a careful reading of the standard. Figure 3 
depicts a simplified version of this state machine, which can 
be read from the viewpoint of the client or the server. Each 
state refers to the last message sent or received; messages 
prefixed by Client are sent by the client; those prefixed by 
Server are sent by the server. Transitions, shown as black 
arrows, indicate the order in which these messages are 
expected. When two transitions are possible, each is labeled 
by the condition under which it is allowed. (Dotted arrows 
are flawed transitions; they will be explained in Section 3.) 
The state machine depicted here covers the common usages 
of TLS on the web, a small but important subset of the full 
protocol. The figure only shows message sequences; it does 
not detail message contents, local states, or cryptographic 

Figure 2. Unsafe composition of two protocol state machines.
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computations.
Each TLS connection begins with either a full handshake 

or an abbreviated handshake (also called a resumption). Full 
handshakes consist of four message flights: the client first 
sends a ClientHello; the server responds with a series of 
messages from ServerHello to ServerHelloDone; the 

client then sends messages ending with ClientFinished; 
and the server completes the handshake by sending mes-
sages ending with ServerFinished. The ServerHello 
includes negotiated protocol parameters, such as the ver-
sion (v) and key exchange method (kx), that determine the 
rest of the handshake. The Finished messages include 
transcripts of all prior handshake messages, authenticated 
using the new keys established by the handshake. Before 
sending them, the client and the server send a change cipher 
spec (CCS) message to signal the use of the new keys. Once 
the handshake is complete, the client and the server may 
exchange streams of ApplicationData messages.

The server is identified by a certificate sent in the Server-
Certificate message. In ephemeral Diffie–Hellman  
handshakes, the server proves knowledge of the certificate’s  
private key by signing the ServerKeyExchange that 
carries its Diffie–Hellman public key. In the RSA hand-
shake, instead, it uses the private key to decrypt the 
ClientKeyExchange message. In both key exchanges, 
upon receiving a CertificateRequest from the server, 
the client may optionally send a ClientCertificate and 
use its private key to sign the message transcript so far in the 
ClientCertificateVerify. The state variables cask and 
coffer track whether client authentication was requested and 
accepted.

Abbreviated handshakes rely on shared secrets estab-
lished in a previous full handshake. The server may store 
secrets either in a server-side cache or in a client-side session 
ticket. The server sends a ServerHello indicating which 
kind of resumption will be used, and then goes straight to 
ServerCCS and ServerFinished. The client immedi-
ately completes the handshake by sending its ClientCCS 
and ClientFinished messages.

To what extent does our reference state machine corre-
spond to the one implemented in any given TLS library? For 
miTLS, we have a type-based proof that its code conforms to 
this state machine. Next, we investigate mainstream imple-
mentations, such as OpenSSL, by systematically testing for 
deviations from our state machine.

2.2. Generating deviant traces
We first describe the message sequences we use to search 
for state machine bugs. Let σ be a sequence of messages, m a 
message, and σ; m their concatenation. We write σ ≤ τ when 
σ is a prefix of τ. We write m ∼ m′ when m and m′ have the 
same message type, but different parameters; for instance 
when both are ServerHello messages selecting different  
ciphersuites. We also lift ∼ from messages to traces. Let V  
be the set of prefixes of valid traces allowed by the state 
machine outlined in Figure 3. A deviant trace is a minimal 
invalid trace: σ; m is deviant when σ ∈ V but σ; m ∉ V.

Deviant traces are useful for systematically detect-
ing bugs, because a compliant implementation should 
accept σ and then reject m. If it accepts m, it has a bug. 
This does not necessarily mean that it has an exploit-
able security vulnerability: an exploit may involve several 
carefully crafted messages after the deviant trace. Hence, 
once we identify an implementation accepting a deviant 
trace, we look into its source code to learn more about the 

Figure 3. State machine for commonly used TLS configurations. 
Paths in the graph represent valid message sequences. Each node 
indicates the last message sent or received. Black arrows indicate 
the order in which these messages are expected; labels specify 
conditions under which the transition is allowed. Dashed arrows on 
the left show example incorrect transitions found in mainstream TLS 
servers; dotted arrows on the right show incorrect transitions found 
in TLS clients. The executed message sequence depends on the 
negotiated protocol version v ∈ {TLSv1.0, TLSv1.1, TLSv1.2}; key 
exchange kx ∈ {RSA, DHE, ECDHE}, and optional features such as fast 
session resumption (rid, rtick), client authentication (cask, coffer), and 
session tickets (ntick).
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state-passing style, where each line of code typically corre-
sponds to a message being sent or received. Sending mes-
sages out-of-order is as simple as reordering lines in the 
script. FlexTLS handles most of the complexity internally, 
filling in reasonable defaults for any missing values. For 
example, if the script sends a Finished message imme-
diately after a ServerHello message, bypassing the full 
handshake, FlexTLS would still derive default well-formed 
connection keys based on empty key exchange values (see 
Ref.3 for more detailed examples of FlexTLS scripts).

For each deviant trace, we generate a FlexTLS client 
or server script that tests its peer by executing the mes-
sage sequence, which ends by sending a deviant message. 
According to the standard, the peer should then send an 
alert (usually unexpected_message) and close the con-
nection. If a non-alert message is received, or the peer does 
not respond, we assume it wrongly accepted the message, 
and we flag the trace for further investigation. Not all the 
TLS implementations we tested support all the scenarios 
and ciphersuites considered in our traces, and some had 
unusual error behavior, so we instrumented our scripts 
to automatically classify peer behavior as correct, unsup-
ported, or wrong. For flagged traces, we manually reviewed 
the code of the TLS peer, and wrote more detailed FlexTLS 
scripts by hand to expose and exploit the state machine flaw.

3. IMPLEMENTATION FLAWS AND ATTACKS
Using FlexTLS, we tested several mainstream open-
source TLS clients and servers for state machine flaws. 
To ensure maximal support across implementations, 
we restricted our tests to use TLS 1.0 with RSA and DHE 
ciphersuites. Table 1 summarizes our experimental 
results for OpenSSL, GnuTLS, NSS, SecureTransport, Java, 
Mono, and CyaSSL. Of these, OpenSSL is widely used on 
servers and on Android phones; NSS is used in many web 
browsers including Firefox and some versions of Chrome 
and Opera; SecureTransport is used on Apple devices. 
Mono and CyaSSL do not support DHE key exchanges, so 
they are tested on a smaller set of deviant traces. CyaSSL 
and SecureTransport sometimes tear down the TCP con-
nection when they reject a message, instead of sending a 
fatal alert as prescribed in the standard, so we filtered out 

cause of the state machine bug.
The set of deviant traces is large (and even infinite unless we 
bound the number of renegotiations allowed), so we auto-
matically generate a representative, finite subset using three 
heuristic rules:

Skip � If σ; m; n ∈ V and δ = σ; n ∉ V, test δ. Thus, for every 
prefix of a valid sequence, we skip a message if it is 
mandatory. For example, ClientHello; Server-
Hello(kx=DHE); ServerKeyExchange is a trace 
that skips the Certificate message. (Pragmatically, 
we also skip several messages within flights, but 
not their last messages, as otherwise the peer is 
deadlocked.)

Hop � Let σ; m ∈ V and σ′; n ∈ V. If σ ∼ σ ′, m ≠ n, and δ = σ; n ∉ 
V, test δ. Thus, if two valid traces have the same pre-
fix, up to their parameters, and they differ on their 
next messages, we create a deviant trace from the 
context of the first trace and the next message of the 
second trace. For example, ClientHello; Server-
Hello(kx=RSA); Certificate; ServerKey
Exchange is a trace that sends an unexpected 
ServerKeyExchange by hopping from RSA to 
Diffie–Hellmann key exchanges.

Repeat  If σ; m; σ′ ∈ V and δ = σ; m; σ′; m ∉ V, test δ. Thus, 
we resend any message that appears in a valid trace 
at any subsequent invalid position. For example, 
ClientHello; ServerHello; . . .; ServerHello-
Done; Client-Hello is a trace where the 
ClientHello message is repeated in the middle of 
a handshake, making it invalid.

An advantage of generating deviant traces from these rules  
is that, when a trace is accepted by an implementation, it is 
relatively simple to track the corresponding state machine 
bug by manual code review. We also experimented with 
randomly generated deviant traces, but their manual 
interpretation was more time-consuming and hence less 
effective.

2.3. Running deviant traces with FlexTLS
As can be expected, generating arbitrary sequences of well-
formed messages is hard. By design, each message in a pro-
tocol depends on previously exchanged values, and must 
pass many basic checks before being accepted by the state 
machine—after all, TLS implementations are meant to com-
ply with the protocol. At the very least, we need to provide 
reasonable defaults for any missing values, for instance 
when keys are needed to format a message and yet the peer’s 
input to the key derivation is not available yet.

To this end, we develop FlexTLS, a tool for scripting and 
prototyping plausible TLS message sequences. To send 
and receive messages, FlexTLS relies on miTLS. Using this 
robust, verified TLS library helped us to significantly reduce 
false positives due, for instance, to malformed messages or 
incorrect cryptographic processing.

FlexTLS promotes a succinct and purely functional 

Table 1. Running deviant traces against mainstream TLS  
implementations

Library Key exchange Traces	 Bugs

OpenSSL 1.0.1j Client RSA, DHE 83 3
Server RSA, DHE 94 6

GnuTLS 3.3.9 Client RSA, DHE 83 0
Server RSA, DHE 94 2

SecureTransport Client RSA, DHE 83 3
  55471.14
NSS 3.17 Client RSA, DHE 83 9
Java 1.8.0_25 Client RSA, DHE 71 6

Server RSA, DHE 94 46
Mono 3.10.0 Client RSA 35 32

Server RSA 38 34
CyaSSL 3.2.0 Client RSA 41 19

Server RSA 47 20
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such results, and only counted the traces that expose real 
state machine bugs.

Each bug found by our method corresponds to an unex-
pected transition in the state machine. For example, Figure 3 
shows four bugs we found in various libraries. Extra transi-
tions allowed by clients are depicted as dotted arrows on the 
right, and those allowed by servers as dotted arrows on the left. 
Not all such transitions lead to attacks, but in the rest of this 
section we show how these four transitions can be exploited 
by an attacker to break the core security guarantees of TLS.

3.1. SKIP exchange (server impersonation)
Our first vulnerability enabled a network attacker to attack 
TLS clients that used the Java, CyaSSL, or Mono libraries. 
Our tests found that these client libraries were willing to 
accept handshakes where the server skips the Server-
CCS message, thereby disabling encryption for incoming 
application data. While this is clearly an implementation 
flaw, it cannot be exploited in isolation; it only becomes 
an attack when it is combined with a second bug. We also 
found that Java and CyaSSL clients allowed the server to 
skip the ServerKeyExchange message in Diffie–Hellman 
exchanges. Since this message normally contains a signa-
ture for server authentication, by skipping it, a network 
attacker can impersonate any server.

Suppose a Java client C wants to connect to some trusted 
server S (e.g., PayPal). A network attacker M can hijack the 
TCP connection and impersonate S, without any actual inter-
action with S, by sending S’s certificate, skipping all mes-
sages, notably ServerKeyExchange and ServerCCS, and 
directly sending ServerFinished. Hence, M bypasses the 
authenticated key exchange: it can now send unencrypted 
data to C, and C will interpret it as secure data from S.

Practically exploiting the attack required just a bit more 
attention to implementation details. The Java and CyaSSL 
client state machines are so liberal that they allow almost 
all server messages to be skipped. When they receive the 
ServerFinished message, they authenticate it using an 
uninitialized master secret (since the key exchange was 
never performed). The Java client uses an empty master 
secret, a bytestring of length 0, which M can easily compute. 
The CyaSSL client compares the received authenticator with 
an uninitialized block of memory, so M can simply send a 
bytestring of 12 zeroes, and this will work against any client 
executed with fresh memory.

In effect, a network attacker can impersonate an arbitrary 
TLS server S, such as PayPal, to any Java or CyaSSL client. 
Even if the client carefully inspects the received certificate, 
it will find it to be perfectly valid for S. Hence, the security 
guarantees of TLS are completely broken. Furthermore, 
all the (supposedly confidential and authenticated) traffic 
between C and M is sent in the clear without any protection.

3.2. SKIP verify (client impersonation)
Our tests showed that OpenSSL, CyaSSL, and Mono 
allow a malicious client to skip the optional Client
CertificateVerify message, even after sending a client 
certificate to authenticate itself. Since the skipped message 
normally carries the signature proving ownership of that 

certificate, this bug leads to a client impersonation attack, as 
follows.

Suppose a malicious client M connects to a Mono server S 
that requires client authentication. M can then impersonate 
any client C at S by running a regular handshake with S, except 
that, when asked for a certificate, it provides C’s client certificate 
instead, and then it skips the ClientCertificateVerify 
message. The server accepts the connection, incorrectly 
authenticating the client as C, allowing M to read and write 
sensitive application data belonging to C.

The attack works against Mono as described above, but 
requires more effort to succeed against other libraries: 
against OpenSSL, it works only for static Diffie–Hellman cer-
tificates, which are rarely used in practice; against CyaSSL, 
it  requires the client to also skip the ClientCCS message 
and then send zeroes in the ClientFinished message 
(like in Section 3.1).

As a result, any attacker can connect to (say) a banking 
website that uses TLS client certificates to authenticate 
users. If the website use Mono or CyaSSL, the attacker can 
login as any user on this website, as long as it knows the 
user’s public certificate. The attack also works if the website 
uses OpenSSL and allows static Diffie–Hellman certificates.

3.3. SKIP ephemeral (forward secrecy downgrade)
In some settings, a powerful adversary may be able to force 
a server to reveal its private key (see, e.g., Ref.27) and thus 
impersonate the server in future connections. Still, we would 
like to ensure that prior connections to the server (before the 
private key was revealed) remain secret. This property, com-
monly called forward secrecy, is achieved by the DHE and 
ECDHE ciphersuites in TLS, whereas RSA, DH, and ECDH 
ciphersuites do not offer this property.

Forward secrecy is particularly important for web brows-
ers that implement the TLS “False Start” feature.20 These 
browsers start sending encrypted application data to the 
server before the handshake is complete. Since the server’s 
chosen ciphersuite (and, in some cases, even the server’s 
identity) has not been authenticated yet, this early applica-
tion data need the additional protection of forward secrecy.

However, our tests found that NSS and OpenSSL clients 
allow the server to skip the ServerKeyExchange mes-
sage even in DHE and ECDHE handshakes, which require 
this message. In such cases, these clients try to use the static 
key provided in the server certificate as key exchange value, 
thereby falling back to the corresponding DH and ECDH 
ciphersuites, without forward secrecy.

Suppose a client based on NSS C (such as Firefox) connects 
to a website S authenticated by an ECDSA certificate (such as 
Google) using an ECDHE ciphersuite. A network attacker M 
can suppress the ServerKeyExchange message from S to C. 
The client then computes the session secrets using the static 
elliptic curve key of the server certificate, but still believes it 
is running ECDHE with forward secrecy, and immediately 
start sending sensitive application data (such as cookies or 
passwords) because of False Start. Although the connection 
never completes (as the client and server detect the message 
suppression at the end of the handshake), the attacker can 
capture this False Start encrypted data. As a result, assuming 
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connection, hence impersonating S at C.
FREAK: Factoring 512-bit RSA keys. The main challenge 

that remains for the attacker is to factor the 512-bit modulus 
to recover the ephemeral private key during the handshake. 
First, we observe that 512-bit factorization is now solvable 
in hours. Second, we note that since computing ephemeral 
RSA keys on-the-fly can be quite expensive, many implemen-
tations of RSA_EXPORT (including OpenSSL) allow servers 
to precompute, cache, and reuse these public keys for the 
lifetime of the server (typically measured in days). Hence, 
the attacker does not need to break the key during the hand-
shake; it can download the key, break it offline, then exploit 
the attack above for days.

After the disclosure of the vulnerability described above, 
we collaborated with other researchers to explore its real-
world impact. The ZMap team15 used internet-wide scans 
to estimate that more than 25% of HTTPS servers still sup-
ported RSA_EXPORT, a surprisingly high number. We 
downloaded the 512-bit ephemeral keys offered by many 
prominent sites and Nadia Heninger used CADO-NFSb on 
Amazon EC2 cloud instances to factor these keys within 
hours. We then built a proof-of-concept attack demo that 
showed how a man-in-the-middle could impersonate any 
vulnerable website to a client that exhibited the RSA_
EXPORT downgrade vulnerability. The attack was dubbed 
FREAK—factoring RSA_EXPORT keys.

We independently tested other TLS implementations for 
their vulnerability to FREAK. Microsoft SChannel and IBM 
JSSE also allowed RSA_EXPORT downgrades. Earlier ver-
sions of BoringSSL and LibreSSL had inherited the vulner-
ability from OpenSSL, but they had been recently patched 
independently of our discovery. In summary, at the time of its 
disclosure, our server impersonation attack was effective on 
any client that used OpenSSL, SChannel, SecureTransport, 
IBM JSSE, or older versions of BoringSSL and LibreSSL. The 
resulting list of vulnerable clients included most mobile web 
browsers (Safari, Android Browser, Chrome, BlackBerry, 
Opera) and a majority of desktop browsers (Chrome, 
Internet Explorer, Safari, Opera).

3.5. Summary and responsible disclosure
We systematically tested eight TLS libraries including miTLS, 
found serious state machine flaws in six of them, and were 
able to mount ten practical attacks, including eight imperson-
ation attacks that break the core security guarantees of TLS.

Almost all implementations allowed some handshake 
messages to be skipped even if they were required for 
the current key exchange. We believe that this misbehav-
ior results from a naive composition of handshake state 
machines. Notably, several implementations allowed CCS 
messages to be skipped. Considering our attacks as well as 
the recent Early CCS attack on OpenSSL,c we note that the 
handling of CCS messages in TLS state machines is particu-
larly error-prone and deserves close attention. Many imple-
mentations (OpenSSL, Java, Mono) also allowed messages 
to be repeated.

it eventually obtains the server’s private key, the attacker will 
be able to decrypt this data, thereby breaking forward secrecy.

3.4. HOP to RSA_EXPORT (server impersonation)
In compliance with US export regulations before 2000, SSL 
and TLS 1.0 include several ciphersuites that deliberately 
use weak keys and are marked as eligible for export. For 
example, several RSA_EXPORT ciphersuites require that 
servers send a ServerKeyExchange message with an 
ephemeral RSA public key (modulus and exponent) whose 
modulus does not exceed 512 bits. RSA keys of this size were 
first factorized in 19999 and with advancements in hardware 
are now considered broken. In 2000, export regulations 
were relaxed, and in TLS 1.1 these ciphersuites were explic-
itly deprecated. Consequently, mainstream web browsers 
no longer offer or accept export ciphersuites. However, TLS 
libraries still include legacy code to handle these cipher-
suites, and some servers continue to support them. We show 
that this legacy code causes a downgrade attack from RSA to 
RSA_EXPORT.

Our tests showed that OpenSSL, SecureTransport, and 
Mono accepted ServerKeyExchange messages even dur-
ing regular RSA handshakes, in which such messages should 
never be sent. Upon receiving this message, the client would 
fallback to RSA_EXPORT by accepting the (signed) 512-bit 
RSA key in the message and using it instead of the full-size 
public key in the server certificate. This flaw leads to a man-
in-the-middle attack, called FREAK, depicted in Figure 4.

Suppose a client C wants to connect to a server S using RSA, 
but the server S still supports some RSA_EXPORT cipher-
suites. M intercepts C’s RSA handshake to S and responds 
to C with S’s certificate. In parallel, M connects to S using 
RSA_EXPORT and ensures that the client and server nonces 
on the two connections are the same. Now, M forwards S’s 
ServerKeyExchange to C and, due to the state machine 
flaw, C accepts this message and overwrites the server’s 
public key with the weaker 512-bit RSA key in this message. 
Assuming M can factor this key (to obtain the private expo-
nent), it can compute the connection keys and complete the 

Figure 4. FREAK attack: a man-in-the-middle downgrades a connection 
from RSA to RSA_EXPORT. Then, by factoring the server’s 512-bit 
export-grade RSA key, the attacker can hijack the connection, while 
the client continues to think it has a secure connection to the server.
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We reported all the bugs presented in this paper to the 
various TLS libraries. They were acknowledged and several 
patches were developed in consultation with us. We then 
reran FlexTLS to test whether they fixed the state machine 
bugs. All of the exploitable bugs we found have now been 
fixed, but other seemingly benign state machine flaws 
remain unfixed, and deserve closer analysis in future work.

4. A VERIFIED STATE MACHINE FOR OPENSSL
Systematic state-machine testing uncovers dangerous bugs, 
but does not guarantee that all flaws have been found and 
eliminated. Instead, it would be valuable to formally prove 
that a given state machine implementation complies with 
the TLS standard. Since new ciphersuites and protocol ver-
sions are continuously added to TLS implementations, it 
would be even better if we could set up an automated verifi-
cation framework that could be maintained and systemati-
cally used to prevent regressions.

The miTLS implementation6 uses refinement types to ver-
ify that its handshake implementation is correct with respect 
to a logical state machine specification. Furthermore, it 
establishes a strong security theorem: a TLS connection 
between a miTLS client and server is a secure channel, unless 
one of the low-level cryptographic primitives used by the 
connection is broken. However, it only covers RSA and DHE 
ciphersuites and only applies to carefully written F# code.

In this section, we investigate whether we could achieve 
a similar, if less ambitious, verification result for the state 
machine implemented by the popular OpenSSL TLS library, 
which is written in C and covers many more protocol ver-
sions, extensions, and ciphersuites than miTLS.

4.1. A new state machine for OpenSSL
The client and server state machines in OpenSSL are coded 
as loops with large switch statements, with one case for each 
message in the protocol. A series of functions implement the 
individual messages: each ssl3_send_* function constructs and 
sends a message; each ssl3_get_* function receives and pro-
cesses a message. These functions maintain the current state 
in a shared SSL data structure with about 100 mutable fields.

The state machine code in OpenSSL has evolved over 17 
years to incorporate new protocol versions, ciphersuites, 
and extensions, resulting in surprisingly complex handling 
of optional messages and subtle dependencies on vari-
ous state variables. The current structure makes it difficult 
to verify whether this code conforms to its intended state 
machine. Indeed, the flaws in Table 1 indicate that it does 
not.

We propose a new state machine for OpenSSL that makes 
the allowed message sequences more explicit and easier to 
verify. In addition to the full SSL data structure used by the 
messaging functions, we maintain a separate STATE data 
structure (see Figure 5) with just the elements that control 
state transitions: the role (client or server); the protocol ver-
sion; the key exchange method; the client authentication 
mode; flags for resumption and renegotiation; the last mes-
sage received; and the message sequence so far. By default, 
each element is initially set to a special UNDEFINED value.

The core of our state machine is a single function, 

ssl3_next_message, which takes as arguments the current SSL 
and STATE structures, the next message to send or receive, 
its direction, and its content type. This function enforces the 
state machine on all incoming and outgoing messages. For 
incoming messages, it checks that the transition is enabled, 
and then calls the corresponding message handler in legacy 
code; that code may in turn send some messages, causing 
our ssl3_next_message function to be called in the outgoing 
direction. For outgoing messages, it similarly checks that 
the transition is enabled and then calls the usual OpenSSL 
ssl_send_* functions.

Our state machine is coded in about 500 lines, supple-
mented by about 250 lines of simple message parsing func-
tions that can extract message types, protocol versions, and 
key exchange methods, from various handshake messages.

4.2. Experimental evaluation
To test our new state machine, we deployed it as an inline 
reference monitor alongside the legacy OpenSSL state 
machine. Our function ssl3_next_message is called before 
sending or receiving any message, but it does not itself call 
any message handlers. Instead, it maintains the STATE data 
structure and logs whether the next message violates the 
state machine. We use this variant of OpenSSL in two ways. 
First, by running standard interoperability tests for against 
peers running OpenSSL and other TLS implementations, 
we check that our new code does not reject valid message 
sequences. Using this method, we found and fixed some 
early bugs in our state machine. Second, by running it 
against deviant FlexTLS peers, we check that our code logs 
an error for all the deviant traces presented in Section 2.

4.3. Formal verification
To gain further confidence in our state machine, we for-
malize our reference TLS state machine as an inductive 
predicate isValidState over the current STATE structure. The 
predicate holds if and only if the message sequence seen so 

Figure 5. A new state machine for OpenSSL: the STATE data 
structure encodes the current state; ssl3_next_message encodes 
allowed transitions.

typedef struct  state {
Role  role; // r ∈ {Client, Server}
PV  version; // v ∈ {SSLv3, TLSv1.0, TLSv1.1, TLSv1.2}
KEM  kx; // kx ∈ {DH∗, ECDH∗, RSA∗}
Auth  client_ auth; // (cask, coffer)
int  resumption; // (rid , rtick)
int  renegotiation; //  = 1 if renegotiating
int  ntick; //  = 1 if ticket expected

Msg_type  last_message; // previous message type
unsigned char∗ log;          // handshake messages so far
unsigned int  log_length;

} STATE;

int ssl3_next_ message(SSL∗ ssl, STATE ∗st,
unsigned char∗ msg, int  msg_len,
int  direction,—unsigned char  content_ type);
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ciphersuite, and that this sequence cannot be confused with 
that of another ciphersuite. The second step is to prove that it 
is safe to share the long-term signing keys used in our cipher-
suite with other, unverified ciphersuites. This property is prob-
lematic for current versions of TLS, but is expected to hold for 
TLS 1.3.14 The third step is to show that the session secrets of 
our verified ciphersuite are cryptographically independent 
from any other ciphersuite. This property should hold for con-
nections that use TLS 1.3, and also for those that use the TLS 
extended master secret extension.4

In summary, by verifying its state machine, we have taken a 
first step toward an OpenSSL security theorem, but many prob-
lems remain before we can verify mainstream libraries that 
include legacy code, insecure ciphersuites, and obsolete proto-
col versions. Partly as a result of our work, the state machine in 
next major version OpenSSL 1.1.0 was rewritten from scratch, 
with the goal of making it simpler, stricter, and easier to validate. 
We hope that with similar efforts in the rest of the codebase, all of 
OpenSSL will one day become amenable to formal verification.

5. RELATED WORK
5.1. TLS attacks
The reader is advised to refer to Soghoian and Stamm24 for a 
broad survey of previous attacks on TLS and its implementa-
tions; here, we discuss here only closely related work.

Wagner and Schneier28 describe various attacks against 
SSL 3.0, and their analysis has proved prescient for many 
attacks on TLS, including the state machine flaws discussed 
in this paper. For instance, they present an early cross-cipher-
suite attack (predating23) that rely on confusing ephemeral 
RSA handshakes with ephemeral Diffie–Hellman. They also 
anticipate some of our message skipping attacks by pointing 
out that, in MAC-only ciphersuites, the attacker can bypass 
authentication by skipping CCS messages.

In parallel with our work, de Ruiter and Poll12 apply 
machine learning techniques to reverse engineer the state 
machines of several TLS libraries and discover flaws like 
the ones described in this paper. Their technique is able to 
reconstruct abstract state machines even for closed-source 
libraries, whereas our method focuses on testing confor-
mance to the standard and uncovering concrete exploits.

Jager et al.17 identify a class of backwards compatibility 
attacks on protocol implementations that support both 
strong and weak algorithms, showing for instance how a 
side-channel attack on RSA decryption in TLS servers can be 
exploited to mount a cross-protocol attack on server signa-
tures.18 FREAK, our downgrade attack on export RSA cipher-
suites, can also be seen as a backwards compatibility attack. 
Inspired by FREAK, Logjam1 is a downgrade attack that 
exploits a protocol-level ambiguity between the DHE and 
export DHE ciphersuites. Whereas FREAK relied on a state 
machine flaw, Logjam relies on the widespread acceptance 
of weak Diffie–Hellman groups in TLS clients.

Another class of TLS vulnerabilities stems from the 
incorrect composition of TLS sub-protocols for renegotia-
tion,26 alerts,6 and resumption.8 These flaws may be partly 
blamed on the state machine being underspecified in the 
standard—the last two were discovered while designing and 
verifying the state machine of miTLS.

far is allowed by the state machine. We then specify that this 
predicate must be maintained as an invariant by our ssl3_
next_message function.

To mechanically verify that our state machine implemen-
tation complies with its isValidState specification, we use 
the C verification tool Frama-C.11 We annotate our code with 
logical assertions and requirements in Frama-C’s specifica-
tion language, called ACSL, including 460 lines of first-order 
logic to define isValidState. To verify our state machine code, 
we ran Frama-C to generates proof obligations for multiple 
SMT solvers. We used Alt-Ergo to discharge some obliga-
tions and Z3 for others, for a total verification time of 30 min. 
Technically, verification also involves memory invariants, to 
ensure that our code maintains separation between its pri-
vate state and the rest of OpenSSL, and 900 lines of lemmas 
to facilitate the proof. (We formally assume that the rest of 
OpenSSL does not interfere with our code; verifying their full 
codebase is well beyond the scope of this work.)

4.4. Discussion
Predicates such as isValidState are logical encodings of our 
state machines. They are inspired by the simpler log predi-
cates used in the cryptographic verification of miTLS.6 The 
properties they capture depend only on the TLS specifica-
tion; they omit any implementation details, and are even 
independent of their programming languages.

Although our logical specification is almost as long as the 
code we verified, we found verification useful in several ways. 
First, in addition to our state invariant, we prove memory 
safety for our code, a mundane but important goal for C pro-
grams. Second, our predicates provide an independent speci-
fication of the state machine, and verifying that they agree with 
the code helped us find bugs, especially regressions due to the 
addition of new features to the machine. Third, our logical 
formulation of the state machine allows us to prove theorems 
about its precision. For example, we used the Coq proof assis-
tant to formally establish that the message sequence stored in 
STATE is unambiguous, that is, if the sequences in two valid 
state are the same, then the rest of the states must be the same 
as well. This property is a key lemma for proving the security of 
TLS, inasmuch as the message transcripts (not the states they 
encode) are authenticated at the end of the handshake.

Still, our verification result is far from a miTLS-style security 
theorem for OpenSSL. We proved that our state machine for 
OpenSSL is functionally correct, but we did not, for example, 
verify the cryptographic constructions or the full message pro-
cessing code. We could attempt to extend our results to a larger 
fragment of OpenSSL that implements all important protocol 
features; verifying all this code may be feasible but remains a 
daunting task.

An intermediate goal may be to verify the code in OpenSSL 
for a single strong ciphersuite, such as TLS_ECDHE_ECDSA_
WITH_AES_128_GCM_SHA256. We would then need to prove 
that, no matter which other ciphersuites are supported, if the 
client and server choose this ciphersuite, then the resulting 
connection is secure. To achieve even this limited security 
theorem, we must overcome several challenges. The first step, 
which we have already accomplished, is to prove that the state 
machine correctly implements the message sequence for this 
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5.2. TLS verification
Cryptographers have developed proofs for DHE,16 RSA,19 and 
PSK22 key exchanges run in isolation; they apply to the TLS 
design, but not its implementations.

Bhargavan et al.6, 7 proved that composite RSA and 
DHE are jointly secure in the miTLS implementation, pro-
grammed in F# and verified using refinement types.

Several works extract formal models from TLS imple-
mentations and analyze them with automated protocol veri-
fication tools. Bhargavan et al.5 extract and verify ProVerif 
and CryptoVerif models from an F# implementation of 
TLS. Chaki and Datta10 verify the SSL 2.0/3.0 handshake of 
OpenSSL using model checking and find several known roll-
back attacks. Avalle et al.2 verify Java implementations of the 
TLS handshake protocol using ProVerif.

Others analyze TLS libraries for programming bugs. 
Lawall et al.21 use the Coccinelle framework to detect incor-
rect checks on values returned by the OpenSSL API, and 
Frama-C has been used to verify parts of PolarSSL.

6. CONCLUSION
While security analyses of TLS primarily focused on flaws 
in fixed cryptographic constructions, the state machines 
that control the flow of protocol messages in their imple-
mentations have escaped scrutiny. Using a combination of 
automated testing and manual source code inspection, we 
discovered serious flaws in several TLS implementations. 
These flaws predominantly arise from the incorrect composi-
tion of the multiple ciphersuites and authentication modes 
supported by TLS.

Considering the impact and prevalence of these flaws, 
we advocate a principled programming approach for pro-
tocol implementations that includes systematic testing 
against unexpected message sequences (a form of directed 
fuzzing) as well as formal proofs of correctness for critical 
components.

Although current TLS implementations are far from per-
fect, upcoming improvements in the protocol and progress 
in verification tools let us hope that the security verification 
of mainstream TLS libraries will soon be within reach.
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