
FEBRUARY 2017 | VOL. 60 | NO. 2 | COMMUNICATIONS OF THE ACM 99

A Messy State of the Union:
Taming the Composite State
Machines of TLS
By Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss,
Alfredo Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue

DOI:10.1145/3023357

Abstract
The Transport Layer Security (TLS) protocol supports
various authentication modes, key exchange methods,
and protocol extensions. Confusingly, each combination
may prescribe a different message sequence between the
client and the server, and thus a key challenge for TLS
implementations is to define a composite state machine
that correctly handles these combinations. If the state
machine is too restrictive, the implementation may fail
to interoperate with others; if it is too liberal, it may allow
unexpected message sequences that break the security of
the protocol. We systematically test popular TLS imple-
mentations and find unexpected transitions in many of
their state machines that have stayed hidden for years. We
show how some of these flaws lead to critical security vul-
nerabilities, such as FREAK. While testing can help find
such bugs, formal verification can prevent them entirely.
To this end, we implement and formally verify a new com-
posite state machine for OpenSSL, a popular TLS library.

1. TRANSPORT LAYER SECURITY
Transport Layer Security (TLS),13 previously known as Secure
Sockets Layer (SSL), is a standard cryptographic protocol
widely used to secure communications for the web (HTTPS),
email, and wireless networks. Figure 1 depicts the common
usage of TLS and its threat model. Following the protocol, a
client and a server exchange messages to establish a secure
channel across an insecure network. Meanwhile, a network
attacker can intercept these messages, tamper with them,
and inject new messages to confuse the two. Additionally,
the attacker may control some malicious clients and servers
that are free to deviate from the protocol. The goal of TLS is
to ensure the integrity and confidentiality of data exchanged
between honest clients and servers, despite the best efforts
of attackers.

TLS offers a large choice of cryptographic algorithms and
protocol features to accommodate the needs of diverse appli-
cations. Each TLS connection consists of a channel establish-
ment protocol, called the handshake, followed by a transport
protocol, the record. During the handshake, the client and
server negotiate which algorithms and features they wish to
use. For example, the client and server may be authenticated
with certificates, or with pre-shared keys, or may remain
anonymous; the key exchange may use Ephemeral Diffie–
Hellman or RSA Encryption; the record protocol may encrypt
sensitive application data using AES-GCM or RC4.

If a connection uses a secure key exchange and a strong
record encryption scheme, security against network attack-
ers can be reduced to the security of these building blocks.
Indeed, recent works provide cryptographic proofs for
some of the key exchange methods7, 16, 19, 22 and encryption
schemes27 used in TLS. However, not all of choices offered
by TLS have been proved secure; in fact, many of them are
obsolete and some are even known to be broken. Still, TLS
client and servers continue to support old protocol versions,
extensions, and ciphersuites for interoperability reasons.
For example, TLS 1.0 offered several deliberately weakened
ciphersuites to comply with US export regulations at the
time. These ciphersuites were explicitly deprecated in TLS
1.1 but are still supported by mainstream implementations.

Even if the client and server support weak protocol
modes, the TLS handshake is designed to negotiate and exe-
cute the strongest protocol that they both support. Hence,
if one party is configured to accept only strong parameters,
then its connections are expected to be secure, even if its
peer supports other weaker modes. However, this guarantee
depends on the implementation correctly composing differ-
ent protocol modes, a task that is surprisingly tricky.

1.1. Composing protocol state machines
Each TLS client and server implements a state machine
that keeps track of the protocol being run: which messages

The original version of this paper was published in IEEE
Symposium on Security and Privacy, 2015, pages 535–552.

Figure 1. TLS threat model: network attacker aims to subvert client–
server exchange.

Client Server

http://dx.doi.org/10.1145/3023357
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3023357&domain=pdf&date_stamp=2017-01-23

research highlights

100 COMMUNICATIONS OF THE ACM | FEBRUARY 2017 | VOL. 60 | NO. 2

have been sent and received, what cryptographic materials
have been computed, which messages are expected next,
etc. The state machine for each individual ciphersuite is
specified in the standard, but the task of writing a compos-
ite state machine for multiple ciphersuites is left to each
implementation.

Figure 2 depicts a simplified TLS handshake for some
(fictional) ciphersuite, as seen from the viewpoint of the
client. On the left, the client first sends a Hello message
containing a list of supported ciphersuites to the server.
The server chooses a ciphersuite and responds with two
protocol messages, A and B, to establish a session key for
this ciphersuite. The client completes the handshake by
sending a Finished message to confirm knowledge of
the session key. At the end of the handshake, both the cli-
ent and server can be sure that they have the same key and
that they agree on the ciphersuite. Now suppose we wish
to support a new ciphersuite, such that the client receives
a different pair of messages, C and D, between Hello and
Finished. To reuse our well-tested code for processing
Hello and Finished, it is tempting to extend the client
state machine to receive either A or C, followed by either
B or D. This naive composition implements both cipher-
suites, but it also enables unintended sequences, such
as Hello; A; D; Finished. In TLS, clients and servers
authenticate the full message sequence at the end of the
protocol (in the Finished messages) and, since no hon-
est server would send D after A, allowing extra sequences
at the client may seem harmless.

However, a client that accepts this message sequence is
actually running an unknown handshake protocol, with a
priori no security guarantees. In our example, the code for
processing D expects to run after C has been received. If C
contains the server’s signature, then accepting D without
C may allow a crucial authentication step to be bypassed.
Furthermore, the code for processing D may accidentally
use memory that should have been initialized while pro-
cessing C. Such memory safety bugs can lead to dangerous
attacks such as HeartBleed,a which exposed the server’s
internal state and private keys to remote attackers.

1.2. Testing for state machine flaws
In Section 2, we describe a methodology for systematically

testing whether a TLS client or server correctly implements
the protocol state machine. We find that many popular
TLS implementations exhibit composition flaws like those
described above, and consequently accept unexpected mes-
sage sequences. While some flaws are benign, others lead
to critical vulnerabilities that a network attacker can exploit
to bypass TLS security. In Section 3, we show how a network
attacker can impersonate a TLS server to a buggy client,
either by simply skipping messages (SKIP) or by factoring
the server’s export-grade RSA key (FREAK). These attacks
were responsibly disclosed and have led to security updates
in major web browsers, servers, and TLS libraries.

1.3. Formally verifying state machine code
We have seen that the security of a TLS implementation
depends crucially on its correct implementation of the protocol
state machine. Testing can help find some bugs, but once these
have been fixed, how can we be sure that the code does not have
other hidden flaws? We advocate the use of formal verification
to prove the absence of any state machine flaws. In Section 4,
we present a new state machine implementation for OpenSSL
that supports all commonly enabled ciphersuites, versions, and
extensions. Using Frama-C,11 we verify that our code conforms
with a logical specification of the TLS protocol state machine.

1.4. Online materials
We refer to https://mitls.org/pages/attacks/SMACK for addi-
tional details, including security testing tools, a summary
of vulnerability disclosures and security updates, our state
machine code for OpenSSL, and related verification work on
TLS.

2. TESTING THE TLS STATE MACHINE
The TLS standard14 does not define a state machine. Instead,
it specifies a collection of message sequences, one for each
handshake protocol mode. Other specifications add new
ciphersuites, authentication methods, or protocol exten-
sions; they typically define their own message sequences,
reusing the message formats and mechanisms of TLS, and it
is left to the implementation to design a state machine that
can account for all these sequences.

2.1. A TLS state machine
We propose a reference state machine for TLS by adopting
and extending the one used in the miTLS verified implemen-
tation,6 based on a careful reading of the standard. Figure 3
depicts a simplified version of this state machine, which can
be read from the viewpoint of the client or the server. Each
state refers to the last message sent or received; messages
prefixed by Client are sent by the client; those prefixed by
Server are sent by the server. Transitions, shown as black
arrows, indicate the order in which these messages are
expected. When two transitions are possible, each is labeled
by the condition under which it is allowed. (Dotted arrows
are flawed transitions; they will be explained in Section 3.)
The state machine depicted here covers the common usages
of TLS on the web, a small but important subset of the full
protocol. The figure only shows message sequences; it does
not detail message contents, local states, or cryptographic

Figure 2. Unsafe composition of two protocol state machines.

Send Hello

Receive A

Receive B

Send Finished

Send Hello

Receive C

Receive D

Send Finished

Send Hello

Receive A|C

Receive B|D

Send Finished

a  https://heartbleed.com.

FEBRUARY 2017 | VOL. 60 | NO. 2 | COMMUNICATIONS OF THE ACM 101

computations.
Each TLS connection begins with either a full handshake

or an abbreviated handshake (also called a resumption). Full
handshakes consist of four message flights: the client first
sends a ClientHello; the server responds with a series of
messages from ServerHello to ServerHelloDone; the

client then sends messages ending with ClientFinished;
and the server completes the handshake by sending mes-
sages ending with ServerFinished. The ServerHello
includes negotiated protocol parameters, such as the ver-
sion (v) and key exchange method (kx), that determine the
rest of the handshake. The Finished messages include
transcripts of all prior handshake messages, authenticated
using the new keys established by the handshake. Before
sending them, the client and the server send a change cipher
spec (CCS) message to signal the use of the new keys. Once
the handshake is complete, the client and the server may
exchange streams of ApplicationData messages.

The server is identified by a certificate sent in the Server-
Certificate message. In ephemeral Diffie–Hellman
handshakes, the server proves knowledge of the certificate’s
private key by signing the ServerKeyExchange that
carries its Diffie–Hellman public key. In the RSA hand-
shake, instead, it uses the private key to decrypt the
ClientKeyExchange message. In both key exchanges,
upon receiving a CertificateRequest from the server,
the client may optionally send a ClientCertificate and
use its private key to sign the message transcript so far in the
ClientCertificateVerify. The state variables cask and
coffer track whether client authentication was requested and
accepted.

Abbreviated handshakes rely on shared secrets estab-
lished in a previous full handshake. The server may store
secrets either in a server-side cache or in a client-side session
ticket. The server sends a ServerHello indicating which
kind of resumption will be used, and then goes straight to
ServerCCS and ServerFinished. The client immedi-
ately completes the handshake by sending its ClientCCS
and ClientFinished messages.

To what extent does our reference state machine corre-
spond to the one implemented in any given TLS library? For
miTLS, we have a type-based proof that its code conforms to
this state machine. Next, we investigate mainstream imple-
mentations, such as OpenSSL, by systematically testing for
deviations from our state machine.

2.2. Generating deviant traces
We first describe the message sequences we use to search
for state machine bugs. Let σ be a sequence of messages, m a
message, and σ; m their concatenation. We write σ ≤ τ when
σ is a prefix of τ. We write m ∼ m′ when m and m′ have the
same message type, but different parameters; for instance
when both are ServerHello messages selecting different
ciphersuites. We also lift ∼ from messages to traces. Let V
be the set of prefixes of valid traces allowed by the state
machine outlined in Figure 3. A deviant trace is a minimal
invalid trace: σ; m is deviant when σ ∈ V but σ; m ∉ V.

Deviant traces are useful for systematically detect-
ing bugs, because a compliant implementation should
accept σ and then reject m. If it accepts m, it has a bug.
This does not necessarily mean that it has an exploit-
able security vulnerability: an exploit may involve several
carefully crafted messages after the deviant trace. Hence,
once we identify an implementation accepting a deviant
trace, we look into its source code to learn more about the

Figure 3. State machine for commonly used TLS configurations.
Paths in the graph represent valid message sequences. Each node
indicates the last message sent or received. Black arrows indicate
the order in which these messages are expected; labels specify
conditions under which the transition is allowed. Dashed arrows on
the left show example incorrect transitions found in mainstream TLS
servers; dotted arrows on the right show incorrect transitions found
in TLS clients. The executed message sequence depends on the
negotiated protocol version v ∈ {TLSv1.0, TLSv1.1, TLSv1.2}; key
exchange kx ∈ {RSA, DHE, ECDHE}, and optional features such as fast
session resumption (rid, rtick), client authentication (cask, coffer), and
session tickets (ntick).

ClientHello

ServerHello(v, kx, rid)

(abbreviated handshake)

ServerNewSessionTicket

ServerCCS

ServerFinished

ClientCCS

ClientFinished

ApplicationData

ApplicationData

ntick = 1

ntick = 1

ntick = 0

ntick = 0

(full handshake)

ServerCertificate

ServerKeyExchange

(authenticate client?)

CertificateRequest

ServerHelloDone

ClientCertificate(coffer)

ClientKeyExchange

ClientCertificateVerify

ClientCCS

ClientFinished

ServerNewSessionTicket

ServerCCS

ServerFinished

kx = DHEECDHE

rid = 0 & rtick = 0 rid = 1 rtick = 1

kx = RSA

cask = 0

cask = 1

cask = 1

cask = 0

cask = 0
 coffer = 0

cask = 1 &
coffer = 1

FREAK

SKIP
Ephemeral

SKIP
Exchange

SKIP
Verify

research highlights

102 COMMUNICATIONS OF THE ACM | FEBRUARY 2017 | VOL. 60 | NO. 2

state-passing style, where each line of code typically corre-
sponds to a message being sent or received. Sending mes-
sages out-of-order is as simple as reordering lines in the
script. FlexTLS handles most of the complexity internally,
filling in reasonable defaults for any missing values. For
example, if the script sends a Finished message imme-
diately after a ServerHello message, bypassing the full
handshake, FlexTLS would still derive default well-formed
connection keys based on empty key exchange values (see
Ref.3 for more detailed examples of FlexTLS scripts).

For each deviant trace, we generate a FlexTLS client
or server script that tests its peer by executing the mes-
sage sequence, which ends by sending a deviant message.
According to the standard, the peer should then send an
alert (usually unexpected_message) and close the con-
nection. If a non-alert message is received, or the peer does
not respond, we assume it wrongly accepted the message,
and we flag the trace for further investigation. Not all the
TLS implementations we tested support all the scenarios
and ciphersuites considered in our traces, and some had
unusual error behavior, so we instrumented our scripts
to automatically classify peer behavior as correct, unsup-
ported, or wrong. For flagged traces, we manually reviewed
the code of the TLS peer, and wrote more detailed FlexTLS
scripts by hand to expose and exploit the state machine flaw.

3. IMPLEMENTATION FLAWS AND ATTACKS
Using FlexTLS, we tested several mainstream open-
source TLS clients and servers for state machine flaws.
To ensure maximal support across implementations,
we restricted our tests to use TLS 1.0 with RSA and DHE
ciphersuites. Table 1 summarizes our experimental
results for OpenSSL, GnuTLS, NSS, SecureTransport, Java,
Mono, and CyaSSL. Of these, OpenSSL is widely used on
servers and on Android phones; NSS is used in many web
browsers including Firefox and some versions of Chrome
and Opera; SecureTransport is used on Apple devices.
Mono and CyaSSL do not support DHE key exchanges, so
they are tested on a smaller set of deviant traces. CyaSSL
and SecureTransport sometimes tear down the TCP con-
nection when they reject a message, instead of sending a
fatal alert as prescribed in the standard, so we filtered out

cause of the state machine bug.
The set of deviant traces is large (and even infinite unless we
bound the number of renegotiations allowed), so we auto-
matically generate a representative, finite subset using three
heuristic rules:

Skip � If σ; m; n ∈ V and δ = σ; n ∉ V, test δ. Thus, for every
prefix of a valid sequence, we skip a message if it is
mandatory. For example, ClientHello; Server-
Hello(kx=DHE); ServerKeyExchange is a trace
that skips the Certificate message. (Pragmatically,
we also skip several messages within flights, but
not their last messages, as otherwise the peer is
deadlocked.)

Hop � Let σ; m ∈ V and σ′; n ∈ V. If σ ∼ σ ′, m ≠ n, and δ = σ; n ∉
V, test δ. Thus, if two valid traces have the same pre-
fix, up to their parameters, and they differ on their
next messages, we create a deviant trace from the
context of the first trace and the next message of the
second trace. For example, ClientHello; Server-
Hello(kx=RSA); Certificate; ServerKey
Exchange is a trace that sends an unexpected
ServerKeyExchange by hopping from RSA to
Diffie–Hellmann key exchanges.

Repeat  If σ; m; σ′ ∈ V and δ = σ; m; σ′; m ∉ V, test δ. Thus,
we resend any message that appears in a valid trace
at any subsequent invalid position. For example,
ClientHello; ServerHello; . . .; ServerHello-
Done; Client-Hello is a trace where the
ClientHello message is repeated in the middle of
a handshake, making it invalid.

An advantage of generating deviant traces from these rules
is that, when a trace is accepted by an implementation, it is
relatively simple to track the corresponding state machine
bug by manual code review. We also experimented with
randomly generated deviant traces, but their manual
interpretation was more time-consuming and hence less
effective.

2.3. Running deviant traces with FlexTLS
As can be expected, generating arbitrary sequences of well-
formed messages is hard. By design, each message in a pro-
tocol depends on previously exchanged values, and must
pass many basic checks before being accepted by the state
machine—after all, TLS implementations are meant to com-
ply with the protocol. At the very least, we need to provide
reasonable defaults for any missing values, for instance
when keys are needed to format a message and yet the peer’s
input to the key derivation is not available yet.

To this end, we develop FlexTLS, a tool for scripting and
prototyping plausible TLS message sequences. To send
and receive messages, FlexTLS relies on miTLS. Using this
robust, verified TLS library helped us to significantly reduce
false positives due, for instance, to malformed messages or
incorrect cryptographic processing.

FlexTLS promotes a succinct and purely functional

Table 1. Running deviant traces against mainstream TLS
implementations

Library Key exchange Traces	 Bugs

OpenSSL 1.0.1j Client RSA, DHE 83 3
Server RSA, DHE 94 6

GnuTLS 3.3.9 Client RSA, DHE 83 0
Server RSA, DHE 94 2

SecureTransport Client RSA, DHE 83 3
  55471.14
NSS 3.17 Client RSA, DHE 83 9
Java 1.8.0_25 Client RSA, DHE 71 6

Server RSA, DHE 94 46
Mono 3.10.0 Client RSA 35 32

Server RSA 38 34
CyaSSL 3.2.0 Client RSA 41 19

Server RSA 47 20

FEBRUARY 2017 | VOL. 60 | NO. 2 | COMMUNICATIONS OF THE ACM 103

such results, and only counted the traces that expose real
state machine bugs.

Each bug found by our method corresponds to an unex-
pected transition in the state machine. For example, Figure 3
shows four bugs we found in various libraries. Extra transi-
tions allowed by clients are depicted as dotted arrows on the
right, and those allowed by servers as dotted arrows on the left.
Not all such transitions lead to attacks, but in the rest of this
section we show how these four transitions can be exploited
by an attacker to break the core security guarantees of TLS.

3.1. SKIP exchange (server impersonation)
Our first vulnerability enabled a network attacker to attack
TLS clients that used the Java, CyaSSL, or Mono libraries.
Our tests found that these client libraries were willing to
accept handshakes where the server skips the Server-
CCS message, thereby disabling encryption for incoming
application data. While this is clearly an implementation
flaw, it cannot be exploited in isolation; it only becomes
an attack when it is combined with a second bug. We also
found that Java and CyaSSL clients allowed the server to
skip the ServerKeyExchange message in Diffie–Hellman
exchanges. Since this message normally contains a signa-
ture for server authentication, by skipping it, a network
attacker can impersonate any server.

Suppose a Java client C wants to connect to some trusted
server S (e.g., PayPal). A network attacker M can hijack the
TCP connection and impersonate S, without any actual inter-
action with S, by sending S’s certificate, skipping all mes-
sages, notably ServerKeyExchange and ServerCCS, and
directly sending ServerFinished. Hence, M bypasses the
authenticated key exchange: it can now send unencrypted
data to C, and C will interpret it as secure data from S.

Practically exploiting the attack required just a bit more
attention to implementation details. The Java and CyaSSL
client state machines are so liberal that they allow almost
all server messages to be skipped. When they receive the
ServerFinished message, they authenticate it using an
uninitialized master secret (since the key exchange was
never performed). The Java client uses an empty master
secret, a bytestring of length 0, which M can easily compute.
The CyaSSL client compares the received authenticator with
an uninitialized block of memory, so M can simply send a
bytestring of 12 zeroes, and this will work against any client
executed with fresh memory.

In effect, a network attacker can impersonate an arbitrary
TLS server S, such as PayPal, to any Java or CyaSSL client.
Even if the client carefully inspects the received certificate,
it will find it to be perfectly valid for S. Hence, the security
guarantees of TLS are completely broken. Furthermore,
all the (supposedly confidential and authenticated) traffic
between C and M is sent in the clear without any protection.

3.2. SKIP verify (client impersonation)
Our tests showed that OpenSSL, CyaSSL, and Mono
allow a malicious client to skip the optional Client
CertificateVerify message, even after sending a client
certificate to authenticate itself. Since the skipped message
normally carries the signature proving ownership of that

certificate, this bug leads to a client impersonation attack, as
follows.

Suppose a malicious client M connects to a Mono server S
that requires client authentication. M can then impersonate
any client C at S by running a regular handshake with S, except
that, when asked for a certificate, it provides C’s client certificate
instead, and then it skips the ClientCertificateVerify
message. The server accepts the connection, incorrectly
authenticating the client as C, allowing M to read and write
sensitive application data belonging to C.

The attack works against Mono as described above, but
requires more effort to succeed against other libraries:
against OpenSSL, it works only for static Diffie–Hellman cer-
tificates, which are rarely used in practice; against CyaSSL,
it requires the client to also skip the ClientCCS message
and then send zeroes in the ClientFinished message
(like in Section 3.1).

As a result, any attacker can connect to (say) a banking
website that uses TLS client certificates to authenticate
users. If the website use Mono or CyaSSL, the attacker can
login as any user on this website, as long as it knows the
user’s public certificate. The attack also works if the website
uses OpenSSL and allows static Diffie–Hellman certificates.

3.3. SKIP ephemeral (forward secrecy downgrade)
In some settings, a powerful adversary may be able to force
a server to reveal its private key (see, e.g., Ref.27) and thus
impersonate the server in future connections. Still, we would
like to ensure that prior connections to the server (before the
private key was revealed) remain secret. This property, com-
monly called forward secrecy, is achieved by the DHE and
ECDHE ciphersuites in TLS, whereas RSA, DH, and ECDH
ciphersuites do not offer this property.

Forward secrecy is particularly important for web brows-
ers that implement the TLS “False Start” feature.20 These
browsers start sending encrypted application data to the
server before the handshake is complete. Since the server’s
chosen ciphersuite (and, in some cases, even the server’s
identity) has not been authenticated yet, this early applica-
tion data need the additional protection of forward secrecy.

However, our tests found that NSS and OpenSSL clients
allow the server to skip the ServerKeyExchange mes-
sage even in DHE and ECDHE handshakes, which require
this message. In such cases, these clients try to use the static
key provided in the server certificate as key exchange value,
thereby falling back to the corresponding DH and ECDH
ciphersuites, without forward secrecy.

Suppose a client based on NSS C (such as Firefox) connects
to a website S authenticated by an ECDSA certificate (such as
Google) using an ECDHE ciphersuite. A network attacker M
can suppress the ServerKeyExchange message from S to C.
The client then computes the session secrets using the static
elliptic curve key of the server certificate, but still believes it
is running ECDHE with forward secrecy, and immediately
start sending sensitive application data (such as cookies or
passwords) because of False Start. Although the connection
never completes (as the client and server detect the message
suppression at the end of the handshake), the attacker can
capture this False Start encrypted data. As a result, assuming

research highlights

104 COMMUNICATIONS OF THE ACM | FEBRUARY 2017 | VOL. 60 | NO. 2

connection, hence impersonating S at C.
FREAK: Factoring 512-bit RSA keys. The main challenge

that remains for the attacker is to factor the 512-bit modulus
to recover the ephemeral private key during the handshake.
First, we observe that 512-bit factorization is now solvable
in hours. Second, we note that since computing ephemeral
RSA keys on-the-fly can be quite expensive, many implemen-
tations of RSA_EXPORT (including OpenSSL) allow servers
to precompute, cache, and reuse these public keys for the
lifetime of the server (typically measured in days). Hence,
the attacker does not need to break the key during the hand-
shake; it can download the key, break it offline, then exploit
the attack above for days.

After the disclosure of the vulnerability described above,
we collaborated with other researchers to explore its real-
world impact. The ZMap team15 used internet-wide scans
to estimate that more than 25% of HTTPS servers still sup-
ported RSA_EXPORT, a surprisingly high number. We
downloaded the 512-bit ephemeral keys offered by many
prominent sites and Nadia Heninger used CADO-NFSb on
Amazon EC2 cloud instances to factor these keys within
hours. We then built a proof-of-concept attack demo that
showed how a man-in-the-middle could impersonate any
vulnerable website to a client that exhibited the RSA_
EXPORT downgrade vulnerability. The attack was dubbed
FREAK—factoring RSA_EXPORT keys.

We independently tested other TLS implementations for
their vulnerability to FREAK. Microsoft SChannel and IBM
JSSE also allowed RSA_EXPORT downgrades. Earlier ver-
sions of BoringSSL and LibreSSL had inherited the vulner-
ability from OpenSSL, but they had been recently patched
independently of our discovery. In summary, at the time of its
disclosure, our server impersonation attack was effective on
any client that used OpenSSL, SChannel, SecureTransport,
IBM JSSE, or older versions of BoringSSL and LibreSSL. The
resulting list of vulnerable clients included most mobile web
browsers (Safari, Android Browser, Chrome, BlackBerry,
Opera) and a majority of desktop browsers (Chrome,
Internet Explorer, Safari, Opera).

3.5. Summary and responsible disclosure
We systematically tested eight TLS libraries including miTLS,
found serious state machine flaws in six of them, and were
able to mount ten practical attacks, including eight imperson-
ation attacks that break the core security guarantees of TLS.

Almost all implementations allowed some handshake
messages to be skipped even if they were required for
the current key exchange. We believe that this misbehav-
ior results from a naive composition of handshake state
machines. Notably, several implementations allowed CCS
messages to be skipped. Considering our attacks as well as
the recent Early CCS attack on OpenSSL,c we note that the
handling of CCS messages in TLS state machines is particu-
larly error-prone and deserves close attention. Many imple-
mentations (OpenSSL, Java, Mono) also allowed messages
to be repeated.

it eventually obtains the server’s private key, the attacker will
be able to decrypt this data, thereby breaking forward secrecy.

3.4. HOP to RSA_EXPORT (server impersonation)
In compliance with US export regulations before 2000, SSL
and TLS 1.0 include several ciphersuites that deliberately
use weak keys and are marked as eligible for export. For
example, several RSA_EXPORT ciphersuites require that
servers send a ServerKeyExchange message with an
ephemeral RSA public key (modulus and exponent) whose
modulus does not exceed 512 bits. RSA keys of this size were
first factorized in 19999 and with advancements in hardware
are now considered broken. In 2000, export regulations
were relaxed, and in TLS 1.1 these ciphersuites were explic-
itly deprecated. Consequently, mainstream web browsers
no longer offer or accept export ciphersuites. However, TLS
libraries still include legacy code to handle these cipher-
suites, and some servers continue to support them. We show
that this legacy code causes a downgrade attack from RSA to
RSA_EXPORT.

Our tests showed that OpenSSL, SecureTransport, and
Mono accepted ServerKeyExchange messages even dur-
ing regular RSA handshakes, in which such messages should
never be sent. Upon receiving this message, the client would
fallback to RSA_EXPORT by accepting the (signed) 512-bit
RSA key in the message and using it instead of the full-size
public key in the server certificate. This flaw leads to a man-
in-the-middle attack, called FREAK, depicted in Figure 4.

Suppose a client C wants to connect to a server S using RSA,
but the server S still supports some RSA_EXPORT cipher-
suites. M intercepts C’s RSA handshake to S and responds
to C with S’s certificate. In parallel, M connects to S using
RSA_EXPORT and ensures that the client and server nonces
on the two connections are the same. Now, M forwards S’s
ServerKeyExchange to C and, due to the state machine
flaw, C accepts this message and overwrites the server’s
public key with the weaker 512-bit RSA key in this message.
Assuming M can factor this key (to obtain the private expo-
nent), it can compute the connection keys and complete the

Figure 4. FREAK attack: a man-in-the-middle downgrades a connection
from RSA to RSA_EXPORT. Then, by factoring the server’s 512-bit
export-grade RSA key, the attacker can hijack the connection, while
the client continues to think it has a secure connection to the server.

ClientHellocr, [...,RSA,...]

Client C MitM Server S

ServerHello(sr, RSA_EXPORT)ServerHello(sr, RSA)

ServerCertificate(certS)

ServerKeyExchange(sign
skS (cr  sr  p

512
))

ClientKeyExchange(rsa
p512

 (pms))

ClientCCS

(ms, k
1
, k

2
) = kdf(pms, cr  sr)

(ms, k
1
, k

2
) = kdf(pms, cr  sr)

s
512

 = factor(p
512

)

logC

log

ClientFinished(mac
ms

 (log
C
))

ServerCCS

ServerFinished (mac
ms

 (log′
C
))

authenc
k

1 (Data)

authenc
k

2 (Data’)

ClientHellocr, [RSA EXPORT]

′
C

b  http://cado-nfs.gforge.inria.fr/.
c  http://ccsinjection.lepidum.co.jp.

FEBRUARY 2017 | VOL. 60 | NO. 2 | COMMUNICATIONS OF THE ACM 105

We reported all the bugs presented in this paper to the
various TLS libraries. They were acknowledged and several
patches were developed in consultation with us. We then
reran FlexTLS to test whether they fixed the state machine
bugs. All of the exploitable bugs we found have now been
fixed, but other seemingly benign state machine flaws
remain unfixed, and deserve closer analysis in future work.

4. A VERIFIED STATE MACHINE FOR OPENSSL
Systematic state-machine testing uncovers dangerous bugs,
but does not guarantee that all flaws have been found and
eliminated. Instead, it would be valuable to formally prove
that a given state machine implementation complies with
the TLS standard. Since new ciphersuites and protocol ver-
sions are continuously added to TLS implementations, it
would be even better if we could set up an automated verifi-
cation framework that could be maintained and systemati-
cally used to prevent regressions.

The miTLS implementation6 uses refinement types to ver-
ify that its handshake implementation is correct with respect
to a logical state machine specification. Furthermore, it
establishes a strong security theorem: a TLS connection
between a miTLS client and server is a secure channel, unless
one of the low-level cryptographic primitives used by the
connection is broken. However, it only covers RSA and DHE
ciphersuites and only applies to carefully written F# code.

In this section, we investigate whether we could achieve
a similar, if less ambitious, verification result for the state
machine implemented by the popular OpenSSL TLS library,
which is written in C and covers many more protocol ver-
sions, extensions, and ciphersuites than miTLS.

4.1. A new state machine for OpenSSL
The client and server state machines in OpenSSL are coded
as loops with large switch statements, with one case for each
message in the protocol. A series of functions implement the
individual messages: each ssl3_send_* function constructs and
sends a message; each ssl3_get_* function receives and pro-
cesses a message. These functions maintain the current state
in a shared SSL data structure with about 100 mutable fields.

The state machine code in OpenSSL has evolved over 17
years to incorporate new protocol versions, ciphersuites,
and extensions, resulting in surprisingly complex handling
of optional messages and subtle dependencies on vari-
ous state variables. The current structure makes it difficult
to verify whether this code conforms to its intended state
machine. Indeed, the flaws in Table 1 indicate that it does
not.

We propose a new state machine for OpenSSL that makes
the allowed message sequences more explicit and easier to
verify. In addition to the full SSL data structure used by the
messaging functions, we maintain a separate STATE data
structure (see Figure 5) with just the elements that control
state transitions: the role (client or server); the protocol ver-
sion; the key exchange method; the client authentication
mode; flags for resumption and renegotiation; the last mes-
sage received; and the message sequence so far. By default,
each element is initially set to a special UNDEFINED value.

The core of our state machine is a single function,

ssl3_next_message, which takes as arguments the current SSL
and STATE structures, the next message to send or receive,
its direction, and its content type. This function enforces the
state machine on all incoming and outgoing messages. For
incoming messages, it checks that the transition is enabled,
and then calls the corresponding message handler in legacy
code; that code may in turn send some messages, causing
our ssl3_next_message function to be called in the outgoing
direction. For outgoing messages, it similarly checks that
the transition is enabled and then calls the usual OpenSSL
ssl_send_* functions.

Our state machine is coded in about 500 lines, supple-
mented by about 250 lines of simple message parsing func-
tions that can extract message types, protocol versions, and
key exchange methods, from various handshake messages.

4.2. Experimental evaluation
To test our new state machine, we deployed it as an inline
reference monitor alongside the legacy OpenSSL state
machine. Our function ssl3_next_message is called before
sending or receiving any message, but it does not itself call
any message handlers. Instead, it maintains the STATE data
structure and logs whether the next message violates the
state machine. We use this variant of OpenSSL in two ways.
First, by running standard interoperability tests for against
peers running OpenSSL and other TLS implementations,
we check that our new code does not reject valid message
sequences. Using this method, we found and fixed some
early bugs in our state machine. Second, by running it
against deviant FlexTLS peers, we check that our code logs
an error for all the deviant traces presented in Section 2.

4.3. Formal verification
To gain further confidence in our state machine, we for-
malize our reference TLS state machine as an inductive
predicate isValidState over the current STATE structure. The
predicate holds if and only if the message sequence seen so

Figure 5. A new state machine for OpenSSL: the STATE data
structure encodes the current state; ssl3_next_message encodes
allowed transitions.

typedef struct state {
Role role; // r ∈ {Client, Server}
PV version; // v ∈ {SSLv3, TLSv1.0, TLSv1.1, TLSv1.2}
KEM kx; // kx ∈ {DH∗, ECDH∗, RSA∗}
Auth client_ auth; // (cask, coffer)
int resumption; // (rid , rtick)
int renegotiation; // = 1 if renegotiating
int ntick; // = 1 if ticket expected

Msg_type last_message; // previous message type
unsigned char∗ log; // handshake messages so far
unsigned int log_length;

} STATE;

int ssl3_next_ message(SSL∗ ssl, STATE ∗st,
unsigned char∗ msg, int msg_len,
int direction,—unsigned char content_ type);

research highlights

106 COMMUNICATIONS OF THE ACM | FEBRUARY 2017 | VOL. 60 | NO. 2

ciphersuite, and that this sequence cannot be confused with
that of another ciphersuite. The second step is to prove that it
is safe to share the long-term signing keys used in our cipher-
suite with other, unverified ciphersuites. This property is prob-
lematic for current versions of TLS, but is expected to hold for
TLS 1.3.14 The third step is to show that the session secrets of
our verified ciphersuite are cryptographically independent
from any other ciphersuite. This property should hold for con-
nections that use TLS 1.3, and also for those that use the TLS
extended master secret extension.4

In summary, by verifying its state machine, we have taken a
first step toward an OpenSSL security theorem, but many prob-
lems remain before we can verify mainstream libraries that
include legacy code, insecure ciphersuites, and obsolete proto-
col versions. Partly as a result of our work, the state machine in
next major version OpenSSL 1.1.0 was rewritten from scratch,
with the goal of making it simpler, stricter, and easier to validate.
We hope that with similar efforts in the rest of the codebase, all of
OpenSSL will one day become amenable to formal verification.

5. RELATED WORK
5.1. TLS attacks
The reader is advised to refer to Soghoian and Stamm24 for a
broad survey of previous attacks on TLS and its implementa-
tions; here, we discuss here only closely related work.

Wagner and Schneier28 describe various attacks against
SSL 3.0, and their analysis has proved prescient for many
attacks on TLS, including the state machine flaws discussed
in this paper. For instance, they present an early cross-cipher-
suite attack (predating23) that rely on confusing ephemeral
RSA handshakes with ephemeral Diffie–Hellman. They also
anticipate some of our message skipping attacks by pointing
out that, in MAC-only ciphersuites, the attacker can bypass
authentication by skipping CCS messages.

In parallel with our work, de Ruiter and Poll12 apply
machine learning techniques to reverse engineer the state
machines of several TLS libraries and discover flaws like
the ones described in this paper. Their technique is able to
reconstruct abstract state machines even for closed-source
libraries, whereas our method focuses on testing confor-
mance to the standard and uncovering concrete exploits.

Jager et al.17 identify a class of backwards compatibility
attacks on protocol implementations that support both
strong and weak algorithms, showing for instance how a
side-channel attack on RSA decryption in TLS servers can be
exploited to mount a cross-protocol attack on server signa-
tures.18 FREAK, our downgrade attack on export RSA cipher-
suites, can also be seen as a backwards compatibility attack.
Inspired by FREAK, Logjam1 is a downgrade attack that
exploits a protocol-level ambiguity between the DHE and
export DHE ciphersuites. Whereas FREAK relied on a state
machine flaw, Logjam relies on the widespread acceptance
of weak Diffie–Hellman groups in TLS clients.

Another class of TLS vulnerabilities stems from the
incorrect composition of TLS sub-protocols for renegotia-
tion,26 alerts,6 and resumption.8 These flaws may be partly
blamed on the state machine being underspecified in the
standard—the last two were discovered while designing and
verifying the state machine of miTLS.

far is allowed by the state machine. We then specify that this
predicate must be maintained as an invariant by our ssl3_
next_message function.

To mechanically verify that our state machine implemen-
tation complies with its isValidState specification, we use
the C verification tool Frama-C.11 We annotate our code with
logical assertions and requirements in Frama-C’s specifica-
tion language, called ACSL, including 460 lines of first-order
logic to define isValidState. To verify our state machine code,
we ran Frama-C to generates proof obligations for multiple
SMT solvers. We used Alt-Ergo to discharge some obliga-
tions and Z3 for others, for a total verification time of 30 min.
Technically, verification also involves memory invariants, to
ensure that our code maintains separation between its pri-
vate state and the rest of OpenSSL, and 900 lines of lemmas
to facilitate the proof. (We formally assume that the rest of
OpenSSL does not interfere with our code; verifying their full
codebase is well beyond the scope of this work.)

4.4. Discussion
Predicates such as isValidState are logical encodings of our
state machines. They are inspired by the simpler log predi-
cates used in the cryptographic verification of miTLS.6 The
properties they capture depend only on the TLS specifica-
tion; they omit any implementation details, and are even
independent of their programming languages.

Although our logical specification is almost as long as the
code we verified, we found verification useful in several ways.
First, in addition to our state invariant, we prove memory
safety for our code, a mundane but important goal for C pro-
grams. Second, our predicates provide an independent speci-
fication of the state machine, and verifying that they agree with
the code helped us find bugs, especially regressions due to the
addition of new features to the machine. Third, our logical
formulation of the state machine allows us to prove theorems
about its precision. For example, we used the Coq proof assis-
tant to formally establish that the message sequence stored in
STATE is unambiguous, that is, if the sequences in two valid
state are the same, then the rest of the states must be the same
as well. This property is a key lemma for proving the security of
TLS, inasmuch as the message transcripts (not the states they
encode) are authenticated at the end of the handshake.

Still, our verification result is far from a miTLS-style security
theorem for OpenSSL. We proved that our state machine for
OpenSSL is functionally correct, but we did not, for example,
verify the cryptographic constructions or the full message pro-
cessing code. We could attempt to extend our results to a larger
fragment of OpenSSL that implements all important protocol
features; verifying all this code may be feasible but remains a
daunting task.

An intermediate goal may be to verify the code in OpenSSL
for a single strong ciphersuite, such as TLS_ECDHE_ECDSA_
WITH_AES_128_GCM_SHA256. We would then need to prove
that, no matter which other ciphersuites are supported, if the
client and server choose this ciphersuite, then the resulting
connection is secure. To achieve even this limited security
theorem, we must overcome several challenges. The first step,
which we have already accomplished, is to prove that the state
machine correctly implements the message sequence for this

FEBRUARY 2017 | VOL. 60 | NO. 2 | COMMUNICATIONS OF THE ACM 107

5.2. TLS verification
Cryptographers have developed proofs for DHE,16 RSA,19 and
PSK22 key exchanges run in isolation; they apply to the TLS
design, but not its implementations.

Bhargavan et al.6, 7 proved that composite RSA and
DHE are jointly secure in the miTLS implementation, pro-
grammed in F# and verified using refinement types.

Several works extract formal models from TLS imple-
mentations and analyze them with automated protocol veri-
fication tools. Bhargavan et al.5 extract and verify ProVerif
and CryptoVerif models from an F# implementation of
TLS. Chaki and Datta10 verify the SSL 2.0/3.0 handshake of
OpenSSL using model checking and find several known roll-
back attacks. Avalle et al.2 verify Java implementations of the
TLS handshake protocol using ProVerif.

Others analyze TLS libraries for programming bugs.
Lawall et al.21 use the Coccinelle framework to detect incor-
rect checks on values returned by the OpenSSL API, and
Frama-C has been used to verify parts of PolarSSL.

6. CONCLUSION
While security analyses of TLS primarily focused on flaws
in fixed cryptographic constructions, the state machines
that control the flow of protocol messages in their imple-
mentations have escaped scrutiny. Using a combination of
automated testing and manual source code inspection, we
discovered serious flaws in several TLS implementations.
These flaws predominantly arise from the incorrect composi-
tion of the multiple ciphersuites and authentication modes
supported by TLS.

Considering the impact and prevalence of these flaws,
we advocate a principled programming approach for pro-
tocol implementations that includes systematic testing
against unexpected message sequences (a form of directed
fuzzing) as well as formal proofs of correctness for critical
components.

Although current TLS implementations are far from per-
fect, upcoming improvements in the protocol and progress
in verification tools let us hope that the security verification
of mainstream TLS libraries will soon be within reach.

Acknowledgments
The authors would like to thank Matthew Green, Nadia
Heninger, Santiago Zanella-Béguelin, the ZMap team, and
the CADO-NFS team for their help with evaluating and
exploiting FREAK. We thank the developers of OpenSSL,
SChannel, SecureTransport, NSS, BoringSSL, Oracle JSSE,
CyaSSL, and Mono for their rapid response to our disclo-
sures. Bhargavan, Beurdouche, and Delignat-Lavaud were
supported by the ERC Starting Independent Researcher
Grant no. 259639 (CRYSP).�

(WOOT) (2015).
	 4.	 Bhargavan, K., Delignat-Lavaud, A.,

Pironti, A., Langley, A., Ray, M.
Transport Layer Security (TLS)
session hash and extended
master secret extension. IETF RFC
7627, 2014.

	 5.	 Bhargavan, K., Fournet, C., Corin, R.,
Zălinescu, E. Verified cryptographic
implementations for TLS. ACM
TISSEC 15, 1 (2012), 1–32.

	 6.	 Bhargavan, K., Fournet, C., Kohlweiss, M.,
Pironti, A., Strub, P. Implementing
TLS with verified cryptographic
security. In IEEE S&P (Oakland)
(2013), 445–459.

	 7.	 Bhargavan, K., Fournet, C.,
Kohlweiss, M., Pironti, A., Strub, P.-Y.,
Zanella-Béguelin, S. Proving the
TLS handshake secure (as it is). In
CRYPTO (2014), 235–255.

	 8.	 Bhargavan, K., Lavaud, A.D., Fournet, C.,
Pironti, A., Strub, P.-Y. Triple
handshakes and cookie cutters:
Breaking and fixing authentication over
TLS. In IEEE S&P (Oakland) (2014),
98–113.

	 9.	 Cavallar, S., Dodson, B., Lenstra, A.,
Lioen, W., Montgomery, P., Murphy, B.,
te Riele, H., Aardal, K., Gilchrist, J.,
Guillerm, G., Leyland, P., Marchand, J.,
Morain, F., Muffett, A., Putnam, C.,
Zimmermann, P. Factorization of a
512-bit RSA modulus. In EUROCRYPT
(2000), 1–18.

	10.	 Chaki, S., Datta, A. ASPIER: An
automated framework for verifying
security protocol implementations. In
IEEE CSF (2009), 172–185.

	11.	 Cuoq, P., Kirchner, F., Kosmatov, N.,
Prevosto, V., Signoles, J., Yakobowski, B.
Frama-C. In Software Engineering
and Formal Methods (2012), 233–247.

	12.	 de Ruiter, J., Poll, E. Protocol state
fuzzing of TLS implementations.
In USENIX Security (2015), 193–206.

	13.	 Dierks, T., Rescorla, E. The Transport
Layer Security (TLS) Protocol Version
1.2. IETF RFC 5246, 2008.

	14.	 Dierks, T., Rescorla, E. The Transport
Layer Security (TLS) Protocol Version
1.3. Internet Draft, 2014.

	15.	 Durumeric, Z., Wustrow, E.,
Halderman, J.A. ZMap: Fast Internet-
wide scanning and its security
applications. In USENIX Security
(2013), 605–620.

	16.	 Jager, T., Kohlar, F., Schäge, S.,
Schwenk, J. On the security of
TLS-DHE in the standard model. In
CRYPTO (2012), 273–293.

	17.	 Jager, T., Paterson, K.G., Somorovsky, J.
One bad apple: Backwards
compatibility attacks on state-of-the-
art cryptography. In NDSS (2013).

	18.	 Jager, T., Schwenk, J., Somorovsky, J.
On the Security of TLS 1.3 and QUIC
Against Weaknesses in PKCS#1 v1.5
Encryption. In ACM CCS (2015),
1185–1196.

	19.	 Krawczyk, H., Paterson, K.G., Wee, H.
On the security of the TLS protocol:
A systematic analysis. In CRYPTO
(2013), 429–448.

	20.	 Langley, A., Modadugu, N., Moeller, B.
Transport Layer Security (TLS) False
Start. IETF RFC 7918, 2010.

	21.	 Lawall, J., Laurie, B., Hansen, R.R.,
Palix, N., Muller, G. Finding error handling
bugs in OpenSSL using Coccinelle.
In European Dependable Computing
Conference (2010), 191–196.

	22.	 Li, Y., Schäge, S., Yang, Z., Kohlar, F.,
Schwenk, J. On the security of the
pre-shared key ciphersuites of TLS.
In Public-Key Cryptography (2014),
669–684.

	23.	 Mavrogiannopoulos, N., Vercauteren, F.,
Velichkov, V., Preneel, B. A cross-
cprotocol attack on the TLS protocol.
In ACM CCS (2012), 62–72.

	24.	 Meyer, C., Schwenk, J. Lessons
learned from previous SSL/TLS
attacks – A brief chronology of
attacks and weaknesses. IACR
Cryptology ePrint Archive, Report
2013/049, 2013.

	25.	 Paterson, K.G., Ristenpart, T.,
Shrimpton, T. Tag size does matter:
Attacks and proofs for the TLS record
protocol. In ASIACRYPT (2011),
372–389.

	26.	 Ray, M., Dispensa, S. Renegotiating
TLS, 2009.

	27.	 Soghoian, C., Stamm, S. Certified lies:
Detecting and defeating government
interception attacks against SSL.
In Financial Cryptography (2012),
250–259.

	28.	 Wagner, D., Schneier, B. Analysis of
the SSL 3.0 protocol. In USENIX
Workshop on Electronic Commerce
(1996), 29–40.

License held by owners/authors. Publication rights licensed to ACM. $15.00

References
	 1.	 Adrian, D., Bhargavan, K., Durumeric, Z.,

Gaudry, P., Green, M., Halderman, J.A.,
Heninger, N., Springall, D., Thomé, E.,
Valenta, L., VanderSloot, B., Wustrow, E.,
Zanella-Béguelin, S., Zimmermann, P.
Imperfect forward secrecy: How
Diffie–Hellman fails in practice. In
ACM CCS (2015), 5–17.

	 2.	 Avalle, M., Pironti, A., Pozza, D., Sisto, R.
JavaSPI: A framework for security
protocol implementation. Int. J. Sec.
Softw. Eng. 2 (2011), 34–48.

	 3.	 Beurdouche, B., Delignat-Lavaud, A.,
Kobeissi, N., Pironti, A., Bhargavan, K.
FlexTLS: A tool for testing TLS
implementations. In USENIX
Workshop on Offensive Technologies

Benjamin Beurdouche and Karthikeyan
Bhargavan ({benjamin.beurdouche,
karthikeyan.bhargavan, antoine.delignat-
lavaud, alfredo.pironti}@inria.fr), INRIA.

Alfredi Pironti (alfredo@pironti.eu), IOActive.

Antoine Delignat-Lavaud, Cédric
Fournet, and Markulf Kohlweiss ({antdl,
fournet, markulf}@microsoft.com),
Microsoft Research.

Pierre-Yves Strub (pierreyves.strub@
imdea.org), IMDEA Software Institute.

Jean-Karim Zinzindohoué (jean-karim.
zinzindohoue@inria.fr), INRIA & Ecole des
Ponts, ParisTech.

