
Analysing Cryptography in the Wild1

A Retrospective2

Martin R. Albrecht1 and Kenneth G. Paterson23

1 King’s College London4

2 ETH Zurich5

Abstract. We reflect on our experiences analysing cryptography de-6

ployed “in the wild” and give recommendations to fellow researchers7

about this process.8

1 Introduction9

Cryptography is not in Kansas, anymore. From e-commerce, online banking,10

payment systems, mobile phones, government/military communication systems11

and authentication systems of old, it has spread to secure messaging, video12

conferencing, full disc encryption, encrypted cloud storage, cryptographic custody13

solutions, anonymous authentication tokens, private browser analytics and privacy-14

preserving contact tracing, to name but a few.15

Meanwhile, academic cryptography, too, has moved on and expanded its16

scope. Additionally, the rigour with which we study cryptographic artefacts, from17

primitives (such as public-key encryption), schemes (such as modes of encryption)18

to protocols (such as TLS), has increased.19

Yet, in all the excitement about deploying cryptography to secure our brave20

new digital world, those cryptographic solutions in practice rarely receive that21

“academic” level of scrutiny, either in private before deployment or in public post22

deployment. This leads to a glut of cryptographic technologies “out there, in the23

wild”, often protecting the data of millions of people, where the veracity of their24

security promises is unclear.25

Studying “cryptography in the wild”, then, means to find examples of cryp-26

tography being used in standards, products or deployed systems. It means to27

analyse them by either finding vulnerabilities and reporting them or by building28

security models and proofs for the cryptographic cores of these systems. The29

end result is that those who use these systems gain greater assurance about the30

security of the systems on which they rely.31

Cryptography in the wild as it is understood here is not about developing new32

cryptographic primitives and pushing them towards practice. It is not applied33

cryptography in the sense of applying cryptography to real-world settings. This34

is an incredibly valuable activity and is the traditional theory-to-practice trans-35

fer process. Rather, here we are studying current practice as is. The activities36

considered here can be defined as applied cryptanalysis, the analysis of crypto-37

graphic solutions after their realisation in the wild. In this article, we present38



our reflections on this activity. These are based on our combined experience of39

pursuing it over the last couple of decades, as well as our observation of the work40

of the small, but growing, community of researchers who have chosen to plough41

the same furrow as us.42

The nature of this piece – a reflection on our own practice – implies a certain43

accumulation of references to our own work. We would like to stress that this is44

not at all reflective of this area, which is shaped by the works of many others45

such as [HDWH12, ABD+15, GGK+16, MBP+19, DPS21] to name but a few.46

2 Methodology47

The methodology consists of selecting an object of study (a protocol, an imple-48

mentation, a scheme), deciding on what it means for this object to be “secure”49

by identifying a suitable adversarial model and security goals, and analysing the50

extent to which those goals are met.351

Object Selection. The process of selecting an object to study can start from two52

directions. We can start from the cryptographic technology. Does a product use53

non-trivial and/or non-standard cryptographic constructions? Do the security54

claims of the vendor seem to match what we could reasonably expect from the55

advertised building blocks? Is the cryptographic processing easy to analyse in56

the form of available source code and whitepapers? If not, is it easy and legal to57

reverse engineer? What are the first impressions? On the other hand, we may58

also start from social or societal considerations. How big is the (claimed) “user59

base”, i.e. people relying on this piece of technology, either in absolute terms or60

in some area, e.g. a particular country or in a particular group of people? Are61

there users in sometimes (e.g. protesters) or continuously (e.g. domestic abuse62

victims) particularly vulnerable situations?63

Our analysis of Telegram [AMPS22] came about as a result of the second kind64

of consideration. A previous work [ABJM21] had highlighted (similarly to prior65

works in other settings) that protesters in Hong Kong were relying on Telegram66

to coordinate their activities. Crucially, the optional end-to-end encryption in67

Telegram, which had been considered somewhat in the cryptographic literature,68

played essentially no role in this setting. Instead, large group chats secured by69

Telegram’s bespoke MTProto 2.0 protocol in lieu of TLS were at the centre of70

the communication infrastructure for these protests. Based on this [AMPS22]71

studied Telegram’s secure channel protocol, found several vulnerabilities (which72

were fixed after being reported) and fashioned a formal statement of the security73

guarantees of the repaired protocol.74

The latter is otherwise known as “a proof of security” in the literature.75

However, here we deliberately shun this language to avoid the impression of a76

3 The wider literature often uses the term “threat model” to also mean adversarial
models as understood here. We avoid this term here because it only has a rather
loose meaning and thus can give a semblance of rigour where it is lacking.



binary “yes/no” answer to the question of security. Rather, the relevant theorems77

establish certain security guarantees under certain conditions.78

This conflation – a security proof is a binary statement rather than a statement79

of a particular security guarantee in a given model – is also one reason why object80

selection can be contentious at times. Producing a formal security statement for,81

say, a brittle protocol or a protocol in a product from a controversial company82

might be considered as providing a “seal of approval” for shoddy practices.4 We83

argue that often this ship has sailed. If a considerable number of people rely on84

a given piece of technology, its security guarantees need to be understood, no85

matter how we might view the particular parties involved.86

It is worth noting that an object having survived one or more security audits87

should not deter researchers from studying it. These audits are typically performed88

under a strict time limit and so tend to focus on more surface-level security89

issues than those uncovered by an in-depth cryptographic investigation of the90

type discussed here. Our own prior works referenced throughout this article all91

took several person-months to complete. Multiplying that time by the assumed92

day-rate of an experienced auditor results in an amount that is well beyond what93

most vendors are willing to pay. The flip-side of this observation is that we do94

not consider the existence of positive security audits as providing meaningful95

evidence of the soundness of a cryptographic solution. Going further, we strongly96

suggest that consumers of cryptography demand formal theorems and proofs to97

at least rule out large classes of attacks.98

Adversarial Model. When studying cryptographic solutions in the wild, we have99

to settle on what adversarial model we select. In the case of [AMPS22] this meant100

not considering the Telegram server as the adversary, i.e. not targeting end-to-end101

encryption. This decision was based on prior works suggesting this was not the102

most pressing security concern. Often, defining such a model is straightforward:103

if end-to-end encryption is offered then it is fair to consider the service provider104

as an adversary. Sometimes, the marketing material used to promote a given105

technology will provide an indication of what the developers themselves see as106

being a suitable adversarial model, though non-standard terminology may be107

used to make these claims.5108

However, the decision to choose a particular adversarial model can be non-109

trivial and, again, lead to controversy. Just because end-to-end encryption is110

built-in and even advertised as present, this feature may not be of central111

importance to the developers. Yet, some groups of people may rely on these112

guarantees. For example, Bridgefy advertised itself as a solution for reaching113

4 Here we do not mean misrepresenting the security guarantees, e.g. by omitting non-
standard assumptions or the brittleness of the design. We simply mean formalising
the security guarantees provided and the conditions under which these guarantees
hold.

5 For example, the term “zero-knowledge encryption” has become popular in the realm
of cloud storage, meaning roughly that not even the storage provider should be
able to access user data. However, this term does not match any standard technical
definition in the research domain.



target groups in disaster areas thanks to its mesh networking technology. On the114

other hand, media reports claimed adoption of Bridgefy’s flagship messenger in115

some protest and conflict settings, claims which Bridgefy were happy to amplify on116

their website and social media. However, while the Bridgefy developers advertised117

their product as being secure, this was not tended to with sufficient care: the118

protocol was broken, fixed, and broken again with practical attacks, all in the119

span of two years.120

So the study of cryptography in the wild may require defining an adversarial121

model in the face of opposition from the providers of the technology in question;122

adversarial adversary definitions, so to speak. We consider it a responsibility of123

academic cryptographic research to not allow vendors to define adversarial models124

for their own technologies. As we will argue below, we see our responsibility as125

not to the technology producers but to those who (may be forced to) rely on126

it. Discharging this responsibility starts with defining what we consider to be127

a suitable adversarial model based on the actual use of the technology, i.e. the128

place of that technology in the world, not the way in which its designers prefer129

to think about it or intend it to be used.6130

Ingesting. The next step is to digest the available information, a process that131

may take months to complete. This information might come from whitepapers,132

design documents, API documentation, security audit reports or source code. It133

may also involve reverse engineering readable source code from binary blobs or134

minified archives, a process that we caution may itself take weeks if not months135

to conduct.136

A natural next step is then to build pseudo-code models describing the137

cryptographic “core” of the object under study. Defining this core, too, can be138

difficult. For example, cryptographic group management is typically considered139

out of scope/outside the model when formally studying (group) messaging, yet140

this is a routine source of vulnerabilities as any kind of secure group management141

is often simply absent (as for example is the case with Matrix and WhatsApp).142

Another difficulty here is to find the right level of abstraction and to unify the143

possibly conflicting implementations in different implementations (for example144

mobile and desktop clients) into that one pseudo-code model. Continuing with our145

example of analysing Telegram from above, we looked at three different official146

Telegram clients and found that they all performed slightly different checks on147

messages to decide on whether to accept them or not, each choice having different148

security consequences. Even official Telegram clients deviated from Telegram’s149

own implementation advice for developers. This left open the question of what150

the “correct” choice should be in a model.151

6 Living up to this responsibility can lead to highly complex questions more adequately
answered by the social sciences rather than computer science: how do we understand
actual use and how do we cryptographers translate that into a suitable adversarial
model? A technology might have many places in the world, how do we decide on
an adversarial model, which “place” is taken into consideration? Or do we consider
different adversarial models for a piece of technology depending on its role in different
social settings?



The choice of model can have a dramatic effect on whether relevant and152

practical attacks are discovered or not. Again, picking an example from our own153

work, our first work breaking (Open)SSH [APW09] succeeded despite it enjoying154

a proof of security [BKN02]. This was possible because our attack exploited a155

property of the protocol abstracted away in the security model. Among other156

works, our later work [ADHP16] produced a security theorem in a refined model.157

This, too, was later shown to be incorrect in a work presenting a practical attack158

on SSH [BBS23]. This attack, again, succeeded because a simplifying assumption159

– an abstraction – made in our security model turned out to be both false and160

significant.161

Attacks. With pseudo-code models in hand, we can start to reason about potential162

avenues of attack (or proofs). This might entail considering known attacks from the163

literature: ECB mode, exotic or home-made encryption modes, lack of integrity164

mechanisms, improper use of integrity (e.g. Mac-then-Encrypt Encrypt-and-165

Mac), the presence of padding oracle vulnerabilities, nonce reuse, lack of proper166

key separation/key reuse, lack of domain separation, bad interactions between167

different protocols, use of weak PRNGs or home-brew randomness generation168

methods, compression combined with encryption, etc, etc.169

Of course, a more rewarding direction is to come up with novel (variants of)170

attacks, possibly chaining together multiple attacks to achieve a given aim. This171

is a process sometimes endearingly referred to as “stunt cryptography” (a phrase172

we attribute to Thomas Ptacek7). This may be needed if the object under study173

does not allow us to apply known attacks as is, yet the object is – by inspection174

– insecure. Turning that inspection into a practical attack might then require175

significant new ideas.176

Proof of Concepts. It is much easier to convince third parties of the seriousness177

of a vulnerability by providing a working proof-of-concept exploit. Indeed, most178

bug bounty programs require this of submitters. Yet, developing such exploits179

can be a laborious process. The obstacle to pulling off that stunt might be a180

computation taking 260 steps and several person-months to carefully implement,181

cf. the construction of a special key pair needed to complete an attack in [PST23].182

Even if a vulnerability should be exploitable without consuming too many183

resources (queries, time, memory), developing proof-of-concept exploits can be184

time and resource intensive. Quite often, the complexity arises from wrestling with185

the state-machine or parser of the considered protocol and not the cryptographic,186

and thus interesting, core.187

Proofs. Finally, the cryptographic object under study might be amenable to a188

more formal analysis, i.e. the establishment of a formal theorem characterising its189

security in the previously defined adversarial model. This rules out large classes190

of attacks and thus gives greater confidence in the actual security properties of191

the studied object. The difficulties here often stem from needing to first develop192

7 https://news.ycombinator.com/item?id=31829130



models of security, the studied protocol attempting to use novel cryptographic193

functionalities, or the studied protocol using unconventional approaches to solve194

cryptographic problems with known solutions, e.g. by hashing a key together with195

some message in lieu of a MAC construction. For these bespoke constructions, we196

might be able to reduce their security to some standard and well-studied assump-197

tions, or we might need to simply state the required (likely novel) assumptions on198

the underlying primitives needed for the proof to go through. In the latter case,199

opportunities are created for follow-up research to either support or invalidate200

these assumptions.201

3 Responsibilities202

A standard step in this line of research, if significant vulnerabilities are discovered,203

is to consider how to disclose these vulnerabilities in a way that minimises harm,204

defined in some way. The standard approach here is “coordinated vulnerability205

disclosure”, previously known as “responsible disclosure”. This involves privately206

disclosing vulnerabilities to vendors, typically with a 90-day deadline attached. If207

by the end of the disclosure period no remedy is made available, the vulnerability208

will be publicly announced regardless. Prior to this deadline, the invitation is209

for the vendor and the researchers to coordinate the public disclosure. In our210

experience, it may happen for the initial deadline to slip to 120 days but not211

longer. We strongly recommend that the decision on timing should be maintained212

under the complete control of the research team.213

It is worth, though, mentioning that for some (classes of) vulnerabilities a214

90 day disclosure vulnerability is a priori unrealistic. Examples that come to215

mind are hardware/micro-architecture level vulnerabilities. Put differently, the216

“90 days” rule is somewhat arbitrary but works fairly well for software-based217

vulnerabilities when the vendor has an established update process.218

A common misconception here is that the research team has a responsibility219

to the vendor. Yet, no such particular responsibility exists, as typically there is220

no pre-established legal or commercial relationship between the parties. Rather,221

insofar we want to or can speak of responsibility, we see it as being to those222

who (have to) rely on the technology provided by the vendor in question.8 The223

users of an insecure-by-design protocol may be better protected by them being224

warned against relying on it rather than attempts to patch it by an inexperienced225

team of developers. Yet, avoiding a given protocol may simply be impossible for226

many. This suggests cooperation with vendors as being a solid strategy. This may227

involve informally advising vendors on remediation strategies and reviewing their228

patches. We recommend that research teams discuss amongst themselves (or229

potentially with trusted mentors) to whom they consider themselves responsible230

before disclosing to vendors.231

Researchers do have a responsibility to be realistic about the impact of any232

vulnerabilities discovered when communicating publicly. Insinuating the existence233

8 While we, the authors, certainly consider this our responsibility, we are mindful that
we are in no position to prescribe such a responsibility for others.



of serious vulnerabilities in a robust system may deter some from using it, possibly234

encouraging them to pivot to insecure alternatives.235

4 Reception236

The style of works discussed here is received by three rather distinct audiences.237

Vendors. Disclosing vulnerabilities to vendors is often a time-consuming and238

frustrating process. Some vendors may simply never have handled a vulnerability239

disclosure before and thus lack any processes for dealing with one when it arrives240

out of the blue. Other vendors enthusiastically start to make patches in public241

code repositories, forgetting everything that the word “coordinated” implies, and242

potentially allowing the patches to be reverse-engineered and exploited by others243

before new product versions can be distributed. Yet other vendors do not ever244

tell their users that their product is being updated for security reasons. More245

rarely, disclosure is a butter-smooth and pleasurable experience, in which case246

the vendor concerned should be publicly credited.247

A worrying trend in this area is that vendors “outsource” this process to248

“bug bounty” service providers. These services are based around the idea of249

vulnerability disclosure being financially rewarded, often in return for some form of250

agreement on non-disclosure. This process is unsuited to the activities considered251

here; both with regard to their motivation – improving security independently of252

financial reward – and with regard to their content – cryptographic vulnerabilities253

are rarely disclosed and thus the industry around vulnerability disclosures and254

bug bounties is inexperienced in dealing with them.255

We recommend avoiding any intermediaries in the disclosure process, since256

they may impose their own policies with negative consequences. For example,257

our disclosure of the previously mentioned plaintext recovery attack against258

(Open)SSH [APW09] was hampered by us going via the UK’s Centre for the259

Protection of National Infrastructure, resulting in the following notification on260

the OpenSSH project webpages:261

The OpenSSH team has been made aware of an attack against the SSH262

protocol version 2 by researchers at the University of London. Unfortu-263

nately, due to the report lacking any detailed technical description of the264

attack and CPNI’s unwillingness to share necessary information, we are265

unable to properly assess its impact.9266

Vendors who ship cryptography may also overestimate their own understand-267

ing of it. Vendors might not be impressed with an attack on the IND-CPA security268

of their scheme but may expect key or plaintext recovery. Similarly, they might269

dismiss an attack taking 260 steps as too expensive, underestimating the tendency270

of “attacks only getting better” with time. As an extreme illustration of this,271

consider the rapid evolution of attacks against MEGA, an end-to-end encrypted272

9 See https://www.openssh.com/txt/cbc.adv.



cloud storage service. The first analysis required a user to make 512 logins in273

order to be able to recover their private key [BHP23]. This was followed within274

a couple of months by a second, more sophisticated analysis needing only six275

logins [HR23]. Then just a few months later, a third analysis requiring only two276

logins was published [AHMP23]. This evolution somewhat undermined MEGA’s277

claim that their users were secure because, according to their logs, none of them278

had logged in as many as 512 times. Here we must also recognise MEGA, however,279

as being one of those vendors who made disclosure and remediation a positive280

experience.281

Moreover, vendors have an incentive to “downplay” the significance of vul-282

nerabilities, fearing negative market perception. A shift towards downplaying is283

often seen as the agreed-upon disclosure date approaches and the conversation284

moves from the security or development team to a more senior party, such as a285

CEO. The flip side is that the disclosing researchers have an interest to “play up”286

the vulnerability for obvious prestige reasons.287

Scientific Community. Reception in the scientific community is typically both288

rather negative and exceptionally positive, with the two reactions occurring289

simultaneously. First, strong attacks or detailed proofs of high-profile targets290

routinely win best paper awards at security research venues, highlighting the291

community’s appreciation for this sort of work. At the same time, it is rare for292

these works to find a home in more traditional cryptographic venues, e.g. the293

flagship venues of the International Association for Cryptologic Research (IACR).294

This is because many reviewers perceive this endeavour as lacking scientific295

significance, as expressed in reviews asking for comparative studies, lessons296

learned for the field, a higher degree of novelty, attacks with greater technical297

depth, new primitives, new security models, etc.298

In an ideal world, every system relying on cryptography would be thoroughly299

analysed before release, drawing on the wealth of scientific literature available,300

and there would be no need for the study of cryptography in the wild. This301

does happen sometimes, for example, with TLS 1.3 or more recently when Apple302

engaged two teams of academic researchers to review their new post-quantum303

version of the iMessage protocol prior to its release. However, this is rarely the304

case. Our contention is that we, the scientific community, can gain a lot from305

observing cryptography in the wild. Not only do we obtain valuable examples306

for use in the classroom (answering in concrete ways questions like “Why is307

key separation really needed?”), but we may also begin to understand why308

cryptography is seemingly so hard to get right in practice, why developers so309

often get it wrong, and how we can design new cryptographic primitives and310

protocols so that they can be more safely consumed.311

Indeed, if we consider science to be the process by which we get to understand312

the world, then a security analysis of a significant object in the world – say313

a protocol relied upon by millions of people – is then in and of itself a valid314

scientific result. The situation here is not at all dissimilar to many other sciences315

which feature branches labelled “theoretical”, branches labelled “applied” and316

branches labelled “experimental”, “empirical” or “observed”. We consider the317



study of cryptography as it exists in the world as “observed cryptography” in318

that sense.319

“The Public”. Eventually, the results of the analysis are made public. If those320

results are “only” a formal security statement then news of this barely reaches321

even IT-security-focused practitioner circles. However, if vulnerabilities are also322

disclosed and if the object is sufficiently high-profile then this may well produce323

a short burst of interest with news reporting and social media threads. In our324

own practice, we typically reach out to a journalist before disclosure to give325

them a chance to get a more accurate technical account of what is and what is326

not broken and what that means. This aids with communicating the findings327

clearly. In addition, we may set up a special website containing high-level and328

less-technical discussions of the vulnerabilities, the disclosure process and patch329

status. This, of course, creates an additional burden on the research team. We330

regard the production of logos and stickers as highly optional.331

The typical social media response to vulnerabilities is then some variant of332

“don’t roll your own crypto”. While this truism is, well, true – people not trained333

in the development of cryptography should not develop it, just like people who334

are not trained to design bridges should avoid that activity – it glosses over335

what allows someone to “roll their own”: careful modelling and cryptographic336

design, formal security analysis, and an appreciation for secure cryptographic337

implementation. Instead of this simple scientific message, we are typically left338

with a simple measurement contest – “who is better at it” – which does not help339

to improve the general state of cryptographic solutions.340

Moreover, despite the heavy moralising typically found on social media about341

the failings of vendors to roll cryptography, as far as we can tell, this “name and342

shame” approach has little lasting effect. In our own experience, such approaches343

do not harm the popularity of the relevant vendor.344

5 Conclusion345

We have described some of our experiences with and approaches to studying346

cryptography in the wild. We encourage the further development and refinement347

of this folklore methodology. As the scope of application of cryptography continues348

to broaden, it becomes ever more deeply embedded as a foundation of privacy,349

trust and security in our digital society. So we anticipate the topic of cryptography350

in the wild to be of perennial interest and value.351

Acknowledgements352

We thank Rikke Bjerg Jensen for helpful discussions.353



References354

ABD+15. David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,355

Matthew Green, J. Alex Halderman, Nadia Heninger, Drew Springall, Em-356

manuel Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wustrow, Santi-357

ago Zanella-Béguelin, and Paul Zimmermann. Imperfect forward secrecy:358

How Diffie-Hellman fails in practice. In Indrajit Ray, Ninghui Li, and359

Christopher Kruegel, editors, ACM CCS 2015, pages 5–17. ACM Press,360

October 2015. 1361

ABJM21. Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen, and Lenka Mareková.362

Collective information security in large-scale urban protests: the case of363

hong kong. In Michael Bailey and Rachel Greenstadt, editors, USENIX364

Security 2021, pages 3363–3380. USENIX Association, August 2021. 2365

ADHP16. Martin R. Albrecht, Jean Paul Degabriele, Torben Brandt Hansen, and366

Kenneth G. Paterson. A surfeit of SSH cipher suites. In Edgar R. Weippl,367

Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai368

Halevi, editors, ACM CCS 2016, pages 1480–1491. ACM Press, October369

2016. 2370

AHMP23. Martin R. Albrecht, Miro Haller, Lenka Mareková, and Kenneth G. Paterson.371

Caveat implementor! Key recovery attacks on MEGA. In Carmit Hazay372

and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume 14008 of373

LNCS, pages 190–218. Springer, Heidelberg, April 2023. 4374

AMPS22. Martin R. Albrecht, Lenka Mareková, Kenneth G. Paterson, and Igors375

Stepanovs. Four attacks and a proof for Telegram. In 2022 IEEE Symposium376

on Security and Privacy, pages 87–106. IEEE Computer Society Press, May377

2022. 2, 2378

APW09. Martin R. Albrecht, Kenneth G. Paterson, and Gaven J. Watson. Plaintext379

recovery attacks against SSH. In 2009 IEEE Symposium on Security and380

Privacy, pages 16–26. IEEE Computer Society Press, May 2009. 2, 4381

BBS23. Fabian Bäumer, Marcus Brinkmann, and Jörg Schwenk. Terrapin attack:382

Breaking SSH channel integrity by sequence number manipulation. CoRR,383

abs/2312.12422, 2023. 2384

BHP23. Matilda Backendal, Miro Haller, and Kenneth G. Paterson. MEGA: Mal-385

leable encryption goes awry. In 2023 IEEE Symposium on Security and386

Privacy, pages 146–163. IEEE Computer Society Press, May 2023. 4387

BKN02. Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Authenti-388

cated encryption in SSH: Provably fixing the SSH binary packet protocol.389

In Vijayalakshmi Atluri, editor, ACM CCS 2002, pages 1–11. ACM Press,390

November 2002. 2391

DPS21. Luca De Feo, Bertram Poettering, and Alessandro Sorniotti. On the392

(in)security of ElGamal in OpenPGP. In Giovanni Vigna and Elaine Shi,393

editors, ACM CCS 2021, pages 2066–2080. ACM Press, November 2021. 1394

GGK+16. Christina Garman, Matthew Green, Gabriel Kaptchuk, Ian Miers, and395

Michael Rushanan. Dancing on the lip of the volcano: Chosen ciphertext396

attacks on apple iMessage. In Thorsten Holz and Stefan Savage, editors,397

USENIX Security 2016, pages 655–672. USENIX Association, August 2016.398

1399

HDWH12. Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman.400

Mining your ps and qs: Detection of widespread weak keys in network401

devices. In Tadayoshi Kohno, editor, USENIX Security 2012, pages 205–220.402

USENIX Association, August 2012. 1403



HR23. Nadia Heninger and Keegan Ryan. The hidden number problem with small404

unknown multipliers: Cryptanalyzing MEGA in six queries and other applica-405

tions. In Alexandra Boldyreva and Vladimir Kolesnikov, editors, PKC 2023,406

Part I, volume 13940 of LNCS, pages 147–176. Springer, Heidelberg, May407

2023. 4408

MBP+19. Jens Müller, Marcus Brinkmann, Damian Poddebniak, Hanno Böck, Sebas-409

tian Schinzel, Juraj Somorovsky, and Jörg Schwenk. “Johnny, you are fired!”410

- Spoofing OpenPGP and S/MIME signatures in emails. In Nadia Heninger411

and Patrick Traynor, editors, USENIX Security 2019, pages 1011–1028.412

USENIX Association, August 2019. 1413

PST23. Kenneth G. Paterson, Matteo Scarlata, and Kien T. Truong. Three lessons414

from Threema: Analysis of a secure messenger, 2023. 2415


