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Abstract Developing end-to-end encrypted instant messaging solutions for group conversations is an
ongoing challenge that has garnered significant attention from practitioners and the cryptographic
community alike. Notably, industry-leading messaging apps such as WhatsApp and Signal Messenger
have adopted the Sender Keys protocol, where each group member shares their own symmetric encryption
key with others. Despite its widespread adoption, Sender Keys has never been formally modelled in the
cryptographic literature, raising the following natural question:

What can be proven about the security of the Sender Keys protocol,
and how can we practically mitigate its shortcomings?

In addressing these questions, we first introduce a novel security model to suit protocols like Sender
Keys, deviating from conventional group key agreement-based abstractions. Our framework allows for a
natural integration of two-party messaging within group messaging sessions that may be of independent
interest. Leveraging this framework, we conduct the first formal analysis of the Sender Keys protocol,
and prove it satisfies a weak notion of security. Towards improving security, we propose a series of
efficient modifications to Sender Keys without imposing significant performance overhead. We combine
these refinements into a new protocol that we call Sender Keys+, which may be of interest both in
theory and practice.
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1 Introduction

Messaging applications like WhatsApp, Facebook Messenger, Signal, and Telegram have witnessed
remarkable global adoption, serving as essential communication tools for billions of users. All of
these applications rely, to a varying degree, on cryptography to provide diverse forms of authenticity
and secrecy. Among end-to-end encrypted messaging services (this excludes, among others, Telegram
and Facebook Messenger by default), numerous cryptographic solutions have emerged, each with its
own merits. Notably, for two-party messaging, Signal’s Double Ratchet Protocol [MP16a] stands out
as the dominant choice in practice. In the context of group messaging, Signal [M+16]1 and later
WhatsApp [Wha20] have adopted the so-called Sender Keys protocol [Mar14], which has enjoyed
widespread adoption for numerous years. Besides these, other popular solutions such as Matrix
[ADJ24] and Session [Jef20] implement variants of this protocol. In Sender Keys, messages are
encrypted using a user-specific symmetric key (which is then hashed forward) and then authenticated
with a signature. Additionally, parties rely on secure two-party channels (instantiated in practice
with the Double Ratchet) to share key material between them. Looking ahead, two-party channels
will be central to determine the security attained by any instantiation of Sender Keys.

A baseline for secure group messaging has been recently established by the IETF Messaging Layer
Security (MLS) [BBR+23] standard, a joint effort between academia and industry2. The protocol
provides sub-linear complexity for group operations (adding/removing members and updating
key material). Academic works have also explored so-called continuous group key agreement
(CGKA) [BBR18, ACDT20, KPPW+21, ACJM20, ACDT21], although these are only a component
of a fully-fledged group messaging protocol. So far, in terms of complete messaging protocols, only the
modular construction from [ACDT21] building on CGKA (which includes MLS), DCGKA [WKHB21]
in the decentralised setting and very recently Matrix [ADJ24] have been formalised to date.

Despite being the most complete and well-studied protocol to-date in the literature, MLS (and
CGKAs in general) still present some drawbacks. While some exhibit sub-linear performance in
specific executions (and this class of executions is not well-characterised in the literature), their
performance can degrade to linear in general, which is unavoidable at least when using off-the-shelf
cryptographic primitives [BDG+22]. Moreover, they tend to be complex, increasing their attack
surface and making them more susceptible to design and implementation bugs. Finally, given the
standardisation of MLS only occurred recently, MLS is yet to be widely deployed.

Hence, Sender Keys and similar approaches to group messaging remain an essential and practical
alternative with different security / performance trade-offs. Firstly, Sender Keys stands out for its
relative simplicity, which reduces its potential attack surface, making the protocol less susceptible to
vulnerabilities in both its design and implementation. Secondly, Sender Keys offers good performance
in small to moderate-sized groups, as demonstrated by its successful adoption for groups of up to
1024 parties in WhatsApp and Signal [Wha20, M+16]. While the main group operations (adding and
removing users) respectively have O(n) and O

(
n2

)
total communication complexity for groups of size

n, concrete efficiency suffices in practice. Thirdly, Sender Keys offers forward-secure confidentiality
and robust support for concurrent and out-of-order application message exchange.

1 Contrary to the folklore understanding that the Signal Messenger uses the pairwise channels approach for group
messaging in small groups, Signal currently uses Sender Keys whenever possible. We refer to Appendix B for details.

2 Recent academic works and ongoing discussions in mailing lists have identified and addressed several security issues
that emerged during the standardisation of MLS [ACDT20, AJM22, IETF23].
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Surprisingly, despite having the widest adoption and an open source implementation of its core
cryptographic operations [M+16], Sender Keys has not been formally studied in the literature,
prompting the following natural question:

Can we formalise the Sender Keys protocol in a meaningful security model?

To answer this question we start by introducing a new cryptographic primitive, along with a
security model, to capture a broad class of group messaging protocols that do not necessarily
employ CGKA [ACDT20] at their core. Our framework provides native support for group messaging
protocols that utilise secure two-party communication channels under the hood, for which we
introduce a clean level of abstraction. This novel framework proves instrumental in our analysis, as
existing literature predominately focuses on CGKA-oriented models that do not suit Sender Keys
and similar protocols.

Subsequently, we present a detailed description of the core Sender Keys protocol within our
framework and provide a security proof validating the soundness of the protocol. In our analysis, we
observe that Sender Keys presents several deficiencies that, despite not being easily exploitable flaws,
prevent several desirable and fundamental security notions, such as secure group membership, from
being met. These include forward security under message injections, resilience against injections
impacting group membership changes3, and fast recovery from state compromise. These findings call
into question the widespread use of the term “secure messaging” by commercial messaging solutions,
motivating the need for more detailed discussion about the nuances around these protocols.

In this regard we propose an improved version of Sender Keys, that we call Sender Keys+, where
we only employ readily available cryptographic primitives that have minimal impact on efficiency4.
This addresses the following pertinent question:

How can we improve the security of Sender Keys whilst preserving its practical efficiency?

Overall, we believe that the formalisation and establishment of a provably secure variant of
Sender Keys, such as the Sender Keys+ protocol proposed in this work, can serve as a valuable
foundation for future implementations of the protocol.

1.1 Contributions

In summary, the main scientific contributions of our paper are the following:

– We introduce a new cryptographic primitive that we call Group Messenger (GM). We establish
a modular security model for GM designed to capture messaging protocols like Sender Keys that
are not necessarily based on group key agreement. It accounts for an active adversary capable of
controlling the network and adaptively learning the secret states of different parties.

– We develop a general framework for composing two-party channels with group messaging
protocols that use them. Our approach parameterises the security of the Group Messenger
primitive based on the underlying two-party channels, presenting a novel perspective that, to
the best of our knowledge, has not been explored previously.

3 Note that Signal uses a dedicated private group management solution in practice [CPZ20] that we do not capture
and is less affected by this attack vector than WhatsApp [RMS18]; we refer to Appendix B for further details.

4 Our approach veers away from a theoretically systematic exploration to determine the “optimal” security for a Sender
Keys-like protocol, as this would require non-standard primitives that considerably degrade performance [BRV20,
ACJM20].
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– We formally describe Sender Keys, based on an analysis of Signal’s source code [M+16],
WhatsApp’s security white paper [Wha20], and the yowsup library [Gal21].

– We prove the security of Sender Keys in our model and describe several shortcomings. These
force us to restrict the capabilities of the adversary substantially for the proof to be carried out.

– We propose security fixes and improvements, several of which result in the improved protocol
Sender Keys+. In particular, we secure group membership changes, improve the forward security
of the protocol, and introduce an efficient key update mechanism. We also formalise the additional
security guarantees in our model.

1.2 Paper Overview

Security in group messaging. Besides standard notions such as confidentiality, authenticity, and
integrity of sent messages, two security properties are commonly considered in the messaging
literature: forward security (FS) and post-compromise security (PCS) [CCG16]. Both properties
require some form of key updating mechanism, and forward security requires secure state erasures to
achieve. Additionally, protocols must secure group membership updates, namely removed members
must not be able to read messages sent after their removal, and newly added members must not (by
default) be able to read past messages.

Most of the different formalisations of security in the literature model an adversarial Delivery
Service (DS), the entity responsible for delivering messages between parties over the network. The
adversary (modelling the DS) can act as an eavesdropper with extended capabilities, e.g., that
can schedule messages to be consistently delivered by users, as in [ACDT20], as a semi-active
adversary that can schedule messages arbitrarily [KPPW+21], or as an active adversary that can
inject messages [ACJM20, BCV23]. In many protocols, including Sender Keys and MLS, the DS
relies mainly on some centralised infrastructure (the central server hereafter).

Sender Keys. In a Sender Keys group G, every user ID ∈ G owns a so-called sender key which
is shared with all group members. A sender key is a tuple SK = (spk, ck), where spk is a public
signature key (with a private counterpart ssk), and ck is a symmetric chain key. Every time ID
sends a message m to the group, ID encrypts m using a message key mk that is deterministically
derived (via a key derivation function H1) from its chain key ck and erased immediately after being
used. Upon message reception, group members derive mk to decrypt the corresponding ciphertext,
which can also be delivered out-of-order as we discuss in later sections. Messages are authenticated
by appending the sender’s signature to them. In Figure 1, we show a high-level abstraction of what
occurs in a three-member group G = {A,B,C} when A sends a message that parties B and C
receive.

Informally, forward security is provided by using a fresh message key for every message: every
time a message is sent, the chain key is symmetrically ratcheted, i.e., hashed forward using a key
derivation function H2. The protocol, that we describe further in Section 4, also requires that there
exist confidential and authenticated two-party communication channels between each pair of group
members. These are used for sharing sender keys when parties are added or removed from the group,
or when some party updates their key material. For example, in the event that some ID leaves the
group, members erase their own sender key and start over. This mechanism provides a form of PCS
when a user is removed as the key material is refreshed.
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A B C

γA := (ckB , spkB , γB := (ckA, spkA, γC := (ckA, spkA,

ckC , spkC , ckC , spkC , ckB , spkB ,

ckA, spkA, sskA) ckB , spkB , sskB) ckC , spkC , sskC)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Send(mi, γA) Recv(Ci, γB) Recv(Ci, γC)

mkA ← H1(ckA)
Ci

−−−−−−−−−−−−−−−−−−−−−−−−−→ Ver(spkA, σi)
?
= 1

ci
$← Enc(mkA,mi) Ci Ver(spkA, σi)

?
= 1 mkA ← H1(ckA)

Delete(mkA) mkA ← H1(ckA) mi ← Dec(mkA, ci)

ckA ← H2(ckA) mi ← Dec(mkA, ci) Delete(mkA)

σi
$← Sgn(sskA, (ci, i, A)) Delete(mkA) ckA ← H2(ckA)

Ci ← (ci, i, A, σi) ckA ← H2(ckA)

Figure 1. Simplified diagram for sending/receiving messages between three group members. For ID ∈ {A,B,C},
ID’s initial sender key is (ckID, spkID). The state γID of ID contains the sender keys of all group members.

Modelling two-party channels. Formally capturing the security of two-party channels is central
to our analysis of Sender Keys in particular since fresh sender keys are sent over these channels.
Two-party channels that are not regularly used can undermine security. For example, if a group
member ID ’s state is compromised, there is no guarantee that fresh keys sent by other members
(via two-party channels) are not leaked, since ID ’s two-party channels may not yet have healed yet.
Moreover, two-party channels can take more than one round trip to heal when using the Double
Ratchet, as is the case for WhatsApp and the Signal Messenger [ACD19].

Our modelling starts in Section 2 with the introduction of a primitive 2PC for two-party channels.
We define a two-party channel with initialisation (Init), channel initialisation (InitCh) send (Send)
and receive (Recv) algorithms. Notably, InitCh allows parties to adaptively bootstrap channels,
and deviates from works on ratcheting-based two-party messaging that abstract authentication
away [BSJ+17]. Our security model captures both forward security and post-compromise security.
To model PCS, we introduce a crucial parameter, denoted as ∆ and referred to as the PCS bound.
This parameter, inspired by [ACD19] and [BBL+22], serves as an upper bound on the number of
communication steps or channel epochs required to restore security following a compromise.

Our primitive: Group Messenger. In Section 3, we define a new cryptographic primitive, Group
Messenger (GM), which includes five stateful algorithms that: initialise a party’s state (Init), send an
application message (Send), receive an application message (Recv), execute a change proposal in the
group (Exec), and process a change in the group (Proc). Supported group changes are: group creation,
member addition, member removal, and sender key updates. Note this contrasts with the three-phase
propose/commit/process flow for updates (the so-called propose-commit paradigm [ACJM20]) used
by MLS and newer CGKA protocols.

We define a game-based security notion for GM that captures a partially active adversary with
control over the Delivery Service, taking inspiration from previous CGKA modelling [ACJM20,
BCV23]. In our model in Section 3.1, we capture the security of each protocol by parameterising
the game with a cleanness predicate (sometimes safety predicate in other work), which excludes
trivial attacks and reflects security weaknesses.
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Security analysis of Sender Keys. With this formalism established, in Section 5.1 we define cleanness
predicates for Sender Keys that precisely capture its security. We define three sub-predicates that
restrict the capabilities of the adversary for message challenges, capturing confidentiality; for message
injections, capturing integrity and authenticity; and for re-orderings and forgeries of control messages
(concurrency), capturing the message ordering provided by the central server.

Notably, the restrictions that we impose via our cleanness predicates are necessary for the
security proof to go through and reveal several shortcomings in the protocol. Examples include:

– Sender Keys achieves only a weak form of PCS through key updates. Healing from a compromise
requires multiple messages (at least ∆+ 1), even if a user is removed during healing.

– Control messages lack proper authentication and are malleable. An adversary with partial control
over the network, such as the server, can make arbitrary changes in the group membership
(such as adding new users without any member’s authorisation), which is a significant practical
concern.

– Forward security is sub-optimal, as messages are malleable after they are sent if a state exposure
occurs.

In Appendix B, we compare our description of Sender Keys with the implementations in
WhatsApp and Signal, clarifying the extent to which our findings are applicable to these popular
apps. We remark that our core analysis is nevertheless implementation-agnostic, and the fact that
we model the underlying two-party channels in a fine-grained fashion allows us to capture their
impact on security of Sender Keys in the face of state exposure (i.e., FS and PCS).

Shortcomings and proposed improvements. Leaving aside the security limitations that are intrinsic
to the design of the protocol, we find that one can improve both its security and efficiency in several
aspects. Hence, in Section 6 we propose modifications to the protocol with the aim of securing group
membership, strengthening the (weaker than expected) forward security for authentication, and
integrating efficient post-compromise security updates. Notably, our novel PCS update mechanism
improves the key update mechanism implemented by our core protocol and performed in Signal,
bringing down the total communication complexity from quadratic to linear in the group size.
Moreover, as a result of our modular approach with respect to modelling two-party channels, our
modelling can capture the security improvement (or weakening) that results from replacing the
Double Ratchet by an alternative two-party messaging protocol.

We extend the techniques used in the original proof to establish the security of our modified
protocol, called Sender Keys+. The main technical step involves redefining the cleanness predicates,
which are strictly less restrictive compared to those used for the original protocol. Notably, the
adversary is now allowed to inject control messages (given the group has recovered from any state
exposures). We also allow the adversary to mount more fine-grained attacks for application message
forgeries, and allow arbitrary challenges after some party has updated over a refreshed channel
(before, we could only allow challenges on the updater).

1.3 Additional Related Work

A notable recent research direction revolves around the MLS protocol [BBR+23] and the CGKA
abstraction [ACDT20]. This line of work started with asynchronous ratchet trees [CCG+18] and
quickly led to TreeKEM [BBR18] and its variants [KPPW+21, ACJM20, AJM22, AAN+22b].
[AHKM22] considers CGKA where the central server ‘splits’ ciphertexts for receiving parties,
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reducing bandwidth overhead. The CGKA of [HKP+21] has O(n)-sized ciphertexts in all cases, but
its relative simplicity makes them attractive and for smaller groups can be concretely competitive in
performance. We provide a more thorough comparison between CGKA-based protocols and Sender
Keys in Section 6.4.

The formal extension of CGKA to group messaging was explored in [ACDT21], while the key
schedule of MLS was proven secure in [BCK22]. The work of [CEST22] shares some similarities with
ours as it also constructs group messaging from two-party channels and achieves O(n) key update
complexity. However, they do not model two-party channels as a standalone primitive nor dynamic
groups formally, and their protocols require more interaction than ours (e.g., the initial group key
agreement protocol can take several rounds).

Concurrency, a crucial aspect in CGKA-based protocols, has been a central topic in works such
as [AAN+22b, AAN+22a, BDR20]. Secure administration in CGKAs was explored in [BCV23].
In [WKHB21] a Sender Keys-like approach is utilized to construct a decentralised CGKA protocol
but they do not capture group messaging, and their security model does not support message
injections (hence considering a passive adversary). Moreover, the theorems in their work assume a
non-adaptive adversary where the adversary must announce all queries at the game’s outset. This
work nonetheless extends the scope of modern messaging to decentralised networks without a central
authority, diverging from existing approaches that target centralised networks. A simplified (notably
lacking forward security) decentralised variant of Sender Keys is implemented by the Session app
[Jef20].

Also relevant to our work are secure two-party messaging protocols that propose alternatives
to the Double Ratchet [MP16a], such as [JS18, PR18, DV19, ACD19, BRV20, PP22]. Inspired
by more practical-oriented endeavors, we acknowledge recent cryptographic audits conducted
on Telegram [AMPS22], Matrix [ACDJ23], Threema [KGP23], and WhatsApp’s backup service
[DFG+23].

Sender Keys. While some works on Sender Keys lack formalism and security proofs, they offer
valuable insights. In [RMS18] the authors evaluate Sender Keys, provide a high-level description of
the protocol, and examine practical vulnerabilities in WhatsApp group chats. Multi-group security
and key update mechanisms for Sender Keys are informally discussed in [CHK21]. In [BCG22], a
preliminary analysis of the security of Sender Keys is carried out. While the paper only includes
informal discussions and no proofs, it serves as an initial exploration for the ideas in the present
work. We remark that the scope of [BCG22] is limited, as it does not formally develop a security
model, and assumes that all two-party channels used by Sender Keys are perfectly secure, which is
unrealistic and impossible to develop in practice.

Concurrent work by Albrecht, Dowling and Jones [ADJ24] develops a device-oriented security
model and a proof for a recent specification of Matrix (i.e., for the updated protocol that mitigates the
issues described in [ACDJ23]). For group messaging, Matrix implements the Megolm protocol, which
is Sender Keys-inspired but still deviates significantly from our description in this work, particularly
regading server interaction. Remarkably, [ADJ24] and our work arrive to similar conclusions in our
analysis, such as the insecurity of group management and the challenges imposed by message ordering.
Our works are complimentary and open new research directions. Examples include exploring whether
the improvements behind Sender Keys+ can also be applied to Megolm, as well as extending our
modelling to consider the (challenging) multi-device setting as they do.
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2 Preliminaries

Notation. Unless otherwise stated, all algorithms are probabilistic, and (x1, . . . )
$← A(y1, . . . ) is

used to denote that A returns (x1, . . . ) when run on input (y1, . . . ). Blank values are represented
by ⊥, which we return in case of algorithm failure. We denote the security parameter by λ and its
unary representation by 1λ. We also define the state γ of a user ID as the data required by ID for
protocol execution, including message records, group-related variables, and cryptographic material.
We store such material in dictionaries M [·] and write a←M [b] to assign, to a, the value stored in
M under key b. All dictionaries can optionally be indexed by an oracle query q to represent the
state of a dictionary at the time q is made, e.g., E [ID ; q] denotes the value of E [ID ] at the beginning
of query q. We define the clause require P on a logical predicate P that immediately returns ⊥
if P is not satisfied (or false if the algorithm returns a boolean value). For two sets S and T , let
S ∪←− T denote the reassignment of S to the set S ∪T , and let S −←− T denote the reassignment of S
to the set S \ T . To indicate that certain variable values are not crucial to the algorithm’s logic, we
use “·” notation. For instance, Receive(ID , C) = (·, ID ′, e′′2pc, i′′2pc) denotes that the first variable
can take any value. We defer the definitions of standard cryptographic primitives used throughout
this work to Appendix A. In Table 1, we present a summary of the variables, dictionaries, and keys
used throughout this paper.

2.1 Two-Party Channels

Towards defining our Group Messenger primitive with support for two-party channels, we define
them below as a standalone primitive.

Definition 1 (Two-Party Channel). A two-party channel scheme
2PC := (Init, InitCh,Send,Recv) is defined as the following tuple of PPT algorithms.

γ $← Init(ID): Given a user identity ID, the probabilistic initialisation algorithm returns an initial
state γ.

b $← InitCh(ID∗, γ): Given a state γ and a user identity ID∗, the probabilistic channel initialisation
algorithm returns an acceptance bit b ∈ {0, 1} and updates the caller’s state.

(C, e2pc, i2pc)
$← Send(m, ID∗, γ): Given a message m, the intended message recipient ID∗ and a

state γ, the probabilistic sending algorithm returns a ciphertext C and a channel epoch-index
pair (e2pc, i2pc) corresponding to m (or ⊥ upon failure), and updates the state.

(m, ID∗, e2pc, i2pc)← Recv(C, γ): Given a ciphertext C and a state γ, the deterministic receiving
algorithm returns a message m, a user identity ID∗ corresponding to the sender of m and a
channel epoch-index pair (e2pc, i2pc) corresponding to m (or ⊥ upon failure), and updates the
state.

Our 2PC := (Init, InitCh,Send,Recv) primitive captures two initialisation functions. The first function
initialises the state of a party by taking its ID as input, while the second function is used to
initialise a communication channel with a counterpart ID∗. Consider two parties, ID and ID∗

who intend to communicate over a two-party channel. Both parties initialise their states, γID
and γID∗ using the Init function. Subsequently, ID (or ID∗) initiates the communication channel
by invoking the InitCh(γID , ID

∗) (or InitCh(γID∗ , ID)) function. It is worth noting that, similar
to DCGKA [WKHB21], our two-party channel primitive assumes the presence of a public-key
infrastructure, which is omitted here for simplicity.
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We adopt the notion of channel epochs from [ACD19], such that in each two-party channel, ID
and ID ′ are associated with a channel epoch e2pc, indicating the number of times the direction of
communication has changed (alongside a message index i2pc). Appendix C provides a more detailed
description of the semantics, including the correctness notion.

Security. The Double Ratchet protocol has been the subject of several academic
works [ACD19, CCD+20, CJSV22, BFG+22] that analyse its security on a fine-grained level for
two-party communication. When used by multiple parties in a group during the execution of Sender
Keys, analysing the Double Ratchet protocol becomes complex, making it difficult to replace it with
other protocols. To tame this complexity, we adopt a comparatively simpler notion of two-party
communication in similar complexity to the formalism of Weidner et al. for their DCGKA
protocol [WKHB21]. Our modelling captures forward security, is parameterised by the
post-compromise security of the underlying channels and supports out-of-order message delivery.

Definition 2 (Security of 2PC). Let 2PC be a two-party channels scheme. Two-party channel
indistinguishability or 2PC-IND security parameterised by b ∈ {0, 1}, cleanness predicate C2pc and
PCS bound ∆ > 0 for 2PC is defined via the game 2PC-INDA2PC,b,C2pc,∆

depicted in Figure 19. We

define the advantage of adversary A in 2PC-INDA2PC,b,C2pc,∆
as

Adv2pc-ind2PC,C2pc,∆
(A) :=

∣∣∣Pr[2PC-INDA2PC,1,C2pc,∆⇒1]−Pr[2PC-INDA2PC,0,C2pc,∆⇒1]
∣∣∣ .

We say that 2PC is (ϵ, q)-2PC-IND2PC,C2pc,∆ if for all PPT adversaries A who make at most q

oracle queries, we have Adv2pc-ind2PC,C2pc,∆
(A) ≤ ϵ.

The notion of security defined in the 2PC-INDA2PC,b,C2pc,∆
game in Figure 19 is parameterised

by a cleanness predicate C2pc and a PCS bound ∆ > 0. Broadly, the cleanness predicate prevents the
adversary from winning the game by making a trivial attack, i.e., via a bit guess (resp. forgery) based
on a challenge (resp. delivery) using exposed key material. PCS after an exposure is parameterised
by ∆, which is the number of message round-trips (i.e. number of times that the sender-receiver roles
alternate) that the channel requires for healing. We defer the precise description, including Figure 19
and the predicates, to Appendix C.

Instantiations. By previous work [ACD19], the Double Ratchet can be seen to achieve a PCS bound
of ∆ = 3. However, by replacing the Diffie Hellman key exchange component in the Double Ratchet
(referred to as continuous key agreement [ACD19]) with a KEM, the PCS bound can be improved to
∆ = 2. This is optimal since if a user is exposed in channel epoch e2pc and acts as the sender, then
they can decrypt a message from channel epoch e2pc + 1 based on correctness requirements. While
we do consider protocols with weak PCS and hence larger values of ∆, including ∆ = ∞ if new
randomness is never injected in key derivation, protocols lacking forward security are considered
insecure within our model.

For channel initialisation InitCh, an initial key exchange between the parties needs to be carried
out. Typically this is done via the asynchronous X3DH protocol [MP16b] and by relying on a PKI,
that we abstract away in this work.
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3 Group Messenger

We introduce our main cryptographic primitive called Group Messenger that captures sending and
receiving application messages between members of a dynamic group. We note that our primitive
captures a single group; extending it to multiple groups is straightforward by using group identifiers
(see e.g. [BCV23]).

Definition 3 (Group Messenger). A Group Messenger GM := (Init,Send,Recv,Exec,Proc) is
defined as the following tuple of PPT algorithms.

γ $← Init(ID): Given a user identity ID, the probabilistic initialisation algorithm returns an initial
state γ.

C $← Send(m, γ): Given a message m and a state γ, the probabilistic sending algorithm returns a
ciphertext C (or ⊥ upon failure) and updates the state.

(m, ID∗, e, i)← Recv(C, γ): Given a ciphertext C and a state γ, the deterministic receiving algorithm
returns a message m, an identity ID∗ corresponding to the sender, a group epoch e and index i
both corresponding to m (or ⊥ upon failure), and updates the state.

T $← Exec(cmd, IDs, γ): Given a command cmd ∈ {crt, add, rem, upd}, a list of identities IDs and
a state γ, the probabilistic execution algorithm returns a control message T (or ⊥ upon failure)
and updates the state.

b← Proc(T, γ): Given a control message T and a state γ, the deterministic processing algorithm
outputs an acceptance bit b ∈ {0, 1} and updates the state.

In our syntax, a distinction is made between application messages and control messages.
Specifically, distinct algorithms are employed for the transmission and reception of application
messages, as well as for the execution and processing of group modifications. These modifications,
executed via Exec, are parameterised by a command cmd that encompasses various operations such
as user addition add, removal rem, group creation crt, or user key material update upd. Moreover,
in scenarios where two-party messaging protocols are necessitated for the implementation of the
group primitive (although not applicable to CGKAs such as TreeKEM [ACDT20]), two-party
messages are formally assumed to be sent alongside or within ciphertexts or control messages.
Consequently, they are abstracted away from our syntax. Looking ahead, we will enforce that
ciphertexts and control messages are sent alongside two-party channel ciphertexts (and can be
received with a different ciphertext or control message) when we define security in Section 3.1.

Message epochs. We define a message epoch as a pair of integers (e, i), internal to the state γ of a
party ID , that captures time and synchronisation between parties. Message epochs are central to our
description of Sender Keys and security model. Each application message sent by ID corresponds
to a single message epoch (e, i), which is output by the Recv algorithm at the receiver’s end. The
epoch e advances whenever ID processes a new group change (i.e., a control message). The index
i advances when ID sends a new message. If control messages are delivered to group members in
lockstep (i.e. sequentially in the same order), parties who have the same epoch e will have the same
view of the group membership. We define a total ordering (e, i) ≤ (e′, i′) when e < e′, or e = e′ and
i < i′. Nevertheless, we remark that 2PC channel epochs are independent from GM message epochs.

Oracles for Correctness and Security. We introduce game-based notions for GM correctness
and security, where the adversary A will have access to various oracles that we outline below.
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Create(ID , IDs): creates a group by executing Exec(crt, IDs, γ) with ID as the initiator,
generating a control message T .

Challenge(ID ,m0,m1): outputs a ciphertext Cb corresponding to the message mb sent by ID , where
b is the bit that parametrises the game. Namely, A obtains Cb ← Send(mb, γ[ID ]).

Send(ID ,m): ID sends an application-level message m using the Send algorithm, producing a
ciphertext C.

Receive(ID , C): ID receives a ciphertext C by calling Recv(C, γ[ID ]). The sender ID ′ is inferred
from the message as output by Recv. In the event of a successful forgery, A obtains the value of
b.

Add(ID , ID ′)/Remove(ID , ID ′)/Update(ID): ID adds ID ′ / removes ID ′ / refreshes ID ’s secrets by
calling Exec(add, ID ′, γ[ID ]) / Exec(rem, ID ′, γ[ID ]) / Exec(upd, ID , γ[ID ]), generating control
message T .

Deliver(ID , T ): ID is delivered a control message T via Proc(T, γ[ID ]).
Expose(ID): Leaks the state γ of ID to A.

Correctness. To ensure correctness, several properties must be satisfied given that all messages
are generated honestly.

– Message delivery : Application messages (generated by Send) must be received correctly by all
group members.

– Group evolution: Group operations, such as crt (group creation), add (user addition), rem (user
removal), and upd (key update), must have their intended effects on the group when received
and processed.

– Group membership consistency : The list of group members must be consistent among all group
members, assuming they process the same sequence of control messages.

– Out-of-order delivery : Messages corresponding to past epochs must be decryptable if delivered
out-of-order. Messages corresponding to future epochs must be rejected upon reception.

To formally capture correctness, a game-based correctness notion can be considered between a
challenger and a computationally unbounded adversary. In the correctness game, the adversary
initiates the protocol by calling the Create oracle once. The adversary can use the Send and Receive

oracles as usual, and also has access to the Add, Remove, Update, Deliver and Expose oracles.
However, the Challenge oracle may not be called, and Send and Deliver can only be called on
honestly generated ciphertexts or control messages.

Looking ahead, the predicates used in the correctness analysis need to be modified from those
used in security to suit the context. Notably, there is no need for a challenge predicate since the
challenge oracle is not allowed. However, the concurrency predicate (defined later) is essential,
addressing situations where members propose concurrent group changes or process group changes in
different orders.

3.1 Security Model

We introduce a game-based model of security for our Group Messenger primitive that captures the
main desirable security properties of a group messaging scheme. In brief, our game M-INDGM,C

captures a partially active adversary who can, in particular, expose the state of users and inject
(possibly malformed) messages at any time. We consider the confidentiality of application messages
with FS and PCS, and we also model the out-of-order delivery of application and control messages.
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Definition 4 (Message indistinguishability of GM). Let GM := (Init,Send,Recv,Exec,Proc)
be a group messenger. Message indistinguishability with b ∈ {0, 1} and cleanness predicate C for GM
is defined via the game M-INDGM,C depicted in Figure 2. We define the advantage of adversary A
in M-INDGM,C as

Advm-ind
GM,C (A) :=

∣∣Pr[M-INDAGM,1,C ⇒ 1]− Pr[M-INDAGM,0,C ⇒ 1]
∣∣ .

We say that GM is (q, ϵ)-M-INDGM,C if for all PPT adversaries A who make at most q oracle queries
we have Advm-ind

GM,C (A) ≤ ϵ.

Game M-INDA
GM,b,C

01 for all ID :

02 γ[ID ] $← Init(1λ, ID)

03 T [·],M[·], CH[·],SM[·]← ⊥
04 ep← 0

05 E [·], I[·]← 0

06 b′ ← ACreate,...,Receive

07 require C

08 return b′

Oracle Create(ID , IDs) //Called only once

09 require ID ∈ IDs

10 require ep = 0

11 T $← Exec(crt, IDs, γ[ID ])

12 T [ep]← T ; ep← ep+ 1

13 return T

Oracle Send(ID ,m)

14 C $← Send(m, γ[ID ])

15 require C ̸= ⊥
16 I[ID ]← I[ID ] + 1

17 M[ID , E [ID ], I[ID ]]← C

18 return C

Oracle Challenge(ID ,m0,m1)

19 require |m0| = |m1|
20 C∗ $← Send(mb, γ[ID ])

21 require C∗ ̸= ⊥
22 I[ID ]← I[ID ] + 1

23 CH[ID , E [ID ], I[ID ]]← C∗

24 return C∗

Oracle Expose(ID)

25 return γ[ID ]

Oracle Add(ID , ID ′)

26 T $← Exec(add, {ID ′}, γ[ID ])

27 require T ̸= ⊥
28 T [ep]← T ; ep← ep+ 1

29 return T

Oracle Remove(ID , ID ′)

30 T $← Exec(rem, {ID ′}, γ[ID ])

31 require T ̸= ⊥
32 T [ep]← T ; ep← ep+ 1

33 return T

Oracle Update(ID)

34 T $← Exec(upd, {ID}, γ[ID ])

35 require T ̸= ⊥
36 T [ep]← T ; ep← ep+ 1

37 return T

Oracle Deliver(ID , T )

38 acc← Proc(T, γ[ID ])

39 require acc

40 E [ID ]← E [ID ] + 1

41 I[ID ]← 0

42 if proc-forgery(T ) :

43 return b //A wins

44 return

Oracle Receive(ID , C)

45 (m, ID ′, e, i)← Recv(C, γ[ID ])

46 if m ̸= ⊥ :

47 Update SM[ID , ID ′]

48 if recv-forgery(C) :

49 return b //A wins

50 return

Figure 2. Game defining M-INDA
GM,b,C with adversary A and cleanness predicate C. Lines in teal correspond only to

bookkeeping and state update operations. All oracles except for Create and Expose can only be called when ep > 0.
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Game Description. The M-INDGM,C game that we introduce in Figure 2, is played between a
PPT adversary A and a challenger. The game is parameterised by a bit b that has to be guessed by
A, as in a message indistinguishability game. The adversary wins the game if it directly guesses b
correctly, or if it carries out a successful forgery. The game is further parameterised by a protocol-
specific cleanness predicate (sometimes safety predicate [ACDT20]) that rules out trivial attacks
and captures the exact security of the protocol.

Message epochs. We define a function m-ep(ID , ID ′, q) that indicates the highest message epoch
(e, i), as output by the Recv algorithm, for which a user ID has received a message from ID ′ at the
time of query q for ID ≠ ID ′. For ID = ID ′, this indicates the local state value for (E [ID ], I[ID ]).
The m-ep function reflects the view of user ID ′ by user ID .

Dictionaries. The challenger keeps a record of messages and game variables in several dictionaries.
The state of each party is stored in γ[·] and updated when an algorithm is called on a given γ[ID ].
Ciphertexts and challenged ciphertexts are stored inM and CH, respectively, each of them indexed
by an ID and a message epoch (e, i). The unique honest control message that starts a given epoch
e is stored in T [e], and the most recent epoch of the group is stored in variable ep (note that we
implicitly assume a total ordering of control messages). The current message epoch of ID is stored in
E [ID ], I[ID ]. Even if each control message in T corresponds to a single epoch, different parties can
be in different epochs. We say ID is in epoch e before query q if the last control message processed
by ID before query q is T [e].

The message epochs corresponding to skipped messages from sender ID ′ stored by ID are kept
in SM[ID , ID ′]. We keep SM updated in the Receive oracle as follows: given a message epoch
(e, i) and an ID ′ output by Recv, if (e, i) ∈ SM[ID , ID ′] then (e, i) is erased from SM[ID , ID ′].
Otherwise, we add all pairs (e′, i′) such that (e′, i′) < (e, i) and (e′, i′) corresponds to all messages
sent by ID ′ not delivered to ID .

Outcome. After q oracle queries, A outputs a guess b′ of b if the cleanness predicate C is satisfied
(otherwise the game aborts). A can win the game in three different ways: by directly guessing the
challenge bit correctly, by injecting a forged application message via Receive successfully, or by
injecting a forged control message via Deliver. The cleanness predicate C parameterises the security
of a given protocol by restricting the capabilities of the adversary to exclude a class of attacks.
Additionally, we explicitly state predicates recv-forgery and proc-forgery in our game, which model
the (general, not protocol-specific) conditions under which a Receive or Deliver call result in a
successful forgery (leaking b to A). We expand on these predicates in Section 3.2.

Related Security Notions. Our security model takes inspiration from the game-based modelling
developed for MLS and for CGKA [ACDT20, KPPW+21]. Nevertheless, it is not possible to adopt
these models as they consider a single group key, which is not compatible with a Sender Keys (or
similar) approach to group messaging. The closest security model to ours in the literature comes
from the DCGKA scheme [WKHB21], which however does not consider message injections nor
adaptive security.

Limitations. Our security game allows a single successful injection to occur, since after this point
the adversary is given the secret key for free. That is, we do not allow ‘trivial’ message forgeries that
do not result in the adversary winning the game. Hence, full active security cannot be captured by
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our modelling. Like several other models in the literature (e.g., [ACDT20, KPPW+21, WKHB21]),
our security model considers a single group (see [CHK21] for an analysis of cross-group security)
and ignores randomness exposure or manipulation [BRV20].

3.2 Modelling Two-Party Channel Ciphertexts

Given that the GM protocol uses two-party channels (as Sender Keys does), these need to be modelled
accurately within the GM security game, particularly to describe forgeries via the recv-forgery and
proc-forgery predicates. We introduce additional notation to define how two-party ciphertexts can be
sent alongside GM messages; we opt for such modelling for convenience, as in this way the adversary
gets access to all two-party channels explicitly. We remark that this subsection can be skipped for
GM protocols that do not employ two-party channels.

Essentially, we want to capture the fact that an Exec or Send call can output several two-
party channel ciphertexts, whereas Proc and Recv should only take as input a single two-party
channel ciphertext (i.e., the one intended for the caller) for efficiency. We thus assume input/output
ciphertexts and control messages for group messenger algorithms take the following form. Let C2pc

be a 2PC ciphertext and let Tcore (resp. Ccore) be the remaining part of a control (resp. application)
message in the GM primitive. For output, we assume control messages output by Exec are of the
form (Tcore, C

1
2pc, . . . , C

k
2pc), and ciphertexts output by Send are of the form (Ccore, C

1
2pc, . . . , C

k
2pc)

for some k. For input, we assume control messages input to Exec (resp. to Recv) are of the form
(Tcore, C2pc) (resp. (Ccore, C2pc)).

Forgery predicates. We define the predicates proc-forgery and recv-forgery in Figure 3 used in Figure 2
using the input/output semantics introduced above. The purpose of these predicates is to handle
ciphertext ‘splitting’ resulting from the use of two-party channels. Without accounting for this
splitting, forgeries could be defined as usual, i.e. any ciphertext input to Proc (resp. Recv) that was
not previously output by Exec (resp. Proc) would be considered a forgery. Essentially, we consider
that a control message T ∗ = (T ∗core, C

∗
2pc) is a forgery whenever either T ∗core or C∗2pc are not part of

an honestly generated message (i.e. in T [·]). Forgeries for Recv are defined analogously.

proc-forgery(T ∗ = (T ∗
core, C

∗
2pc)) : ̸ ∃

{
(T,C), (T ′,C′)

}
⊆ T [·] :

(T ∗
core, C

∗
2pc) ∈

{
(T,Ci), (T

′, Ci), (T,C
′
j)
}
∧ (Ci ∈ C) ∧ (C′

j ∈ C′)

recv-forgery(C = (C∗
core, C

∗
2pc)) : ̸ ∃

{
(C0,C), (C′

0,C
′)
}
⊆ CH[·] ∪M[·] :

(C∗
core, C

∗
2pc) ∈

{
(C0, Ci), (C

′
0, Ci), (C0, C

′
j)
}
∧ (Ci ∈ C) ∧ (C′

j ∈ C′)

Figure 3. Predicates that determine what is considered a forgery in Figure 2 for algorithms Proc and Recv.

The predicates imply that it is not considered a forgery if a two-party ciphertext is received
with a different control message/ciphertext than it was sent with. That is, the adversary is allowed
to mix-and-match ciphertexts, i.e., by replacing the Ci corresponding to some T (resp. C0) by C ′i
corresponding to some other T ′ (resp. C ′0).

4 Sender Keys

Two-Party Channels and the Server. The Sender Keys protocol assumes the existence of
authenticated and secure two-party communication channels between each pair of users, which can
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be achieved through the use of Signal’s Double Ratchet protocol [MP16a] also used by
WhatsApp [Wha20]. Additionally, the protocol relies on a central server to distribute both control
messages and application messages. We assume that the server provides a total ordering for control
messages, ensuring that all parties process control messages in the correct order.5 Total ordering is
not required for application messages. User authentication is initially performed via the central
server (modelled here with 2PC.InitCh), after which users authenticate other group members
through the underlying two-party communication channel. We note that this deviates from other
work in the literature such as [AJM22] where the authentication service is different to the delivery
service.

4.1 Protocol

We describe the Sender Keys protocol in our GM syntax according to the details inferred from [Wha20]
and [M+16], although we acknowledge that our interpretation may not precisely match the closed-
source implementation of WhatsApp. In this section we present a detailed overview of the main
algorithms depicted in Figure 4. For Exec and Proc, we only present the remove operation as it
involves key refreshing and is considered the most complex, while the create, add, and update
operations follow a similar approach. For the sake of clarity, we make some simplifications in this
section, but the complete protocol logic can be found in Figures 22 to 24 (in Appendix F, where we
also provide supplementary descriptions of the protocol logic and a table including a description of
all variables).

Primitives. The protocol relies on standard primitives including a symmetric encryption scheme
SymEnc = (Gen,Enc,Dec), a signature scheme Sig = (Gen,Sgn,Ver), and two different key derivation
functions H1,H2 (our improved protocol also uses message authentication codes). We include formal
definitions in Appendix A.

State initialisation. Each user is assumed to maintain a state γ containing: a secret key used for
signing ssk, a list of current group members G, the current epoch ep, the current index of their
chain key ick (indicating the number of times the user’s sender key has been ratcheted forward), a
list of key counters kc (indicating the number of times that a sender key has been re-sampled since
ID initialised their state), a dictionary of sender keys SK[·] := (spkID , ckID , ick) indexed by a user ID
and a key counter, and a list of message keysMK. The Init algorithm initialises the state variable
of users; in practice this is done by a user when they install the messaging application.

Group creation. This occurs via Exec(crt, IDs, γ), which takes a list of users G := {ID1, . . . , ID |G|}
as input; two-party channels are initialised by users upon processing the control message via
2PC.InitCh.

Message sending. To send an application message m to the group, every ID ∈ G must have the
caller’s (ME ) sender key. The process is as follows:

– If ME does not have a sender key, ME generates a fresh sender key ((γ.ssk, spk) $← Sig.Gen(1λ)
and ck $← {0, 1}λ). The sender key is then set as SK[ME , kc[ME ]]← (spk, ck, ick) where ick = 0.
ME shares this key with each ID ∈ G using 2PC.Send, resulting in a vector of ciphertexts C.

5 We remark that total ordering is a standard assumption in the CGKA line of work [ACDT20, KPPW+21, ACJM20,
AJM22, ACDT21] and is assumed by MLS.
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Init(ID , 1λ)

01 γ.ME ← ID

02 γ.(ssk,G, ep, iME )← ⊥
03 γ.(SK[·],MK[·], kc[·])← ⊥
04 return γ

Send(m, γ)

05 require ME ∈ G

06 if SK[ME , kc[ME ]] = ⊥ :

// Sample fresh sender key

07 C ← PreSendFirst()

08 if iME = 0 :

09 C ← (C,SendToMissing())

10 mk← H1(SK[ME , kc[ME ]].ck)

11 c $← Enc(mk,m)

12 UpdateCK(ME , kc[ME ])
//This also updates iME

13 M ← (c, (ep, iME ), kc[ME ], ick,ME)

14 σ $← Sig.Sgn(ssk,M)

15 return C := ((M,σ),C)

Exec(cmd = rem, ID , γ)

16 require ID ∈ G

17 C[·]← ⊥
18 T ← (rem,ME , ID , ep+ 1)

19 return (T,C)

Recv(C = ((M,σ), C2pc), γ)

20 parse M as (c, (e, i), kc′, ick
′, ID)

21 require ID ∈ G

22 if SK[ID , kc′] = ⊥ :

23 (SK[ID , kc′], kc∗, ep′, aux, ID∗)← 2PC.Recv(C2pc, γ)

24 require (ID , e, kc′) = (ID∗, ep′, kc∗)

25 DeleteOldCK(ID , aux)

26 else require C2pc = ⊥
27 require e ≤ ep

28 require Sig.Ver(SK[ID , kc′].spk, σ,M)

29 mk← UpdateKeysRecv()

30 m← Dec(mk, c)

31 return (m, ID , e, i)

Proc((T = (rem, ID , ID ′, ep′), C2pc), γ)

32 require ID ∈ G ∧ C2pc = ⊥
33 require ep′ = ep+ 1

34 G
−←− {ID ′}

35 ep← ep+ 1; iME ← 0

36 for all ID∗ ∈ G :

37 kc[ID∗]← kc[ID∗] + 1

38 SK[ID ′, ·]← ⊥
39 if ID = ME : γ ← ⊥
40 return true

Figure 4. Sender Keys protocol description (main operations). For conditions of the form “require T” when T is
false, the function outputs ⊥ and all computation is reverted. The full protocol is available in Appendix F.

– If ME has a non-empty sender key but not all parties have it, ME shares the key with them via
2PC.Send and updates C.

Then ME generates a new message key mk from their chain key SK[ME , kc[ME ]].ck, encrypts m
using mk, and ratchets its chain key forward by setting ck← H2(SK[ME , kc′].ck). Finally, ME signs
the ciphertext and sends it together with C.

Message receiving. To receive a message from ID , ME follows these steps:

– ME checks if they have ID ’s sender key SK[ID , kc′] corresponding to the key counter kc′ indicated
in the received message. If ME does not have it, they retrieve it from the two-party ciphertext
C2pc using 2PC.Recv, aborting the Recv call if the sender key cannot be found.

– ME performs epoch consistency checks and verifies the signature on the ciphertext using the
signature public key SK[ID , kc′].spk.

– The message key mk required to decrypt the message is computed from the chain keys as
mk← H1(SK[ID , kc′].ck), and is deleted after use.

Out-of-order messages. In the scenario of out-of-order message delivery (handled by
UpdateKeysRecv), the following cases arise (we let ick := SK[ID , kc′].ick):
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– If the received message comes from a past epoch (e, i) < (ep, ick), ME searches for the relevant
skipped message key inMK.

– If e = ep and i > ick, ME ratchets ID ’s chain key i− ick times, and stores the skipped message
keys inMK.

– If e > e, the message reception fails since ME is not synchronised with the latest group epoch
and cannot (even) determine whether the sender is still a member of the group.

Handling out-of-order message delivery constitutes a significant portion of the protocol’s logic. For
instance, parties must keep track of (and announce) the highest ick associated with a given kc.
Failing to do so can result in correctness and security issues, as parties may overlook the need to
store and delete keys inMK.

Key updates. In certain implementations of Sender Keys (although not specified in [Wha20]) a
simple (but weak) on-demand key update mechanism is supported. A party ME can update its
key material via Exec(crt,ME , γ). This operation lazily samples a fresh sender key (spk, ck, 0) and
distributes it over the two-party channels. All users sample a fresh key after processing a removal.

Membership changes. The protocol allows individual group members to be added or removed from
the group via Exec(add, ID , γ) and Exec(rem, ID , γ). These operations result in the distribution of a
control message T to the group sent in clear. Newly added members are also sent a welcome 2PC
ciphertext containing group information. Note that we model single adds/removes for simplicity but
this can be extended in a straightforward manner to handle batched group changes.

Upon processing a control message via Proc(T, γ), ME proceeds as follows:

– If some ID∗ is being removed at epoch e, ME erases all sender keys corresponding to ID∗ (except
for skipped message keys).6 For other users, old sender keys are replaced with new ones when
receiving messages from epoch e′ ≥ e, ensuring messages sent concurrently with the removal can
be received.

– If some ID∗ is being added, ME initialises its 2PC with ID∗ via 2PC.InitCh.
– If ME is itself removed, it erases its state. If it is added to some group (or processes a create

message), it initialises two-party channels with every ID ∈ G.

Note that after either updating or adding or removing a user, new sender keys are only distributed
once a party sends his first message.

5 Security

In this section, we argue that Sender Keys as described in Section 4 is secure with respect to our
security model in Section 3.1. However, the security captured by our cleanness predicate is far
from theoretically optimal since Sender Keys is relatively weak in security, and so in Section 6 we
strengthen it by modifying the protocol in different ways. Our predicates are parameterised by the
security of the underlying two-party channels. We first state our main theorem below.

Theorem 1. Let SymEnc := (Enc,Dec) be a (q, ϵsym)-IND-CPASymEnc,b symmetric encryption
scheme, Sig := (Gen,Sgn,Ver) a (q, ϵsig)-SUF-CMASig signature scheme,

6 A different deletion schedule may be applied as long as these keys are clearly marked as being no longer valid, e.g.,
if ID∗ announces its maximum ick value over two-party channels when it processes its own removal.
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H : {0, 1}λ → {0, 1}λ × {0, 1}λ (where H(x) := (H1(x),H2(x))) a (q, ϵprg)-PRGH function and 2PC
a (q, ϵ2pc)-2PC-IND2PC,C2pc,∆ two-party channels scheme for PCS bound ∆ > 0. Then Sender
Keys (Figure 4) is

(q, 2 · ϵ2pc + q2 · (ϵ2pc + ϵsym + q · ϵprg) + q · ϵsig)-M-INDGM,C

with respect to cleanness predicate C = C∆
sk (Figure 8), where two-party channels cleanness predicate

C2pc is defined in Figures 20 and 21.

We define Csk in Section 5.1 and prove the theorem in Appendix D. A proof sketch is provided
in Section 5.2. Our security notion is adaptive as users can adaptively call oracles and in particular
compromise users. Security is tighter when we restrict the game to consider non-adaptive adversaries
as described below.

Corollary 1. Under the same conditions of Theorem 1, and considering a non-adaptive security
game, Sender Keys (Figure 4) is (q, 2 · ϵ2pc + q · (ϵsym + q · ϵprg) + q · ϵsig)-M-INDGM,C with respect
to cleanness predicate C = Csk (Figure 8).

Sender Keys and Two-Party Channels. To illustrate how the cleanness predicates for Sender Keys
must depend on the underlying two-party channels, consider a strongly secure two-party channel
2PC that provides optimal FS and PCS. Now, consider an execution of Sender Keys where all parties
share the same view of the group G = {ID1, ID2, ID3}, in which

1. ID1 generates a control message (Tcore,C) to remove party ID3 (q1 = Remove(ID1, ID3)),

2. ID1 and ID2 process T (q2,1 = Deliver(ID1, (Tcore,C[ID1])),
q2,2 = Deliver(ID2, (Tcore,C[ID2]))),

3. A exposes ID2 (q3 = Expose(ID2));

4. ID1 sends an application message (q4 = Send(ID1,m)).

Recall that in step 4, ID1 samples a new sender key that it sends to ID2 over 2PC, since processing
remove messages results in the sender keys of all parties being refreshed. Even with optimally-secure
2PC, the adversary will be able to decrypt the key sent over 2PC (by the correctness of the channel)
and thus decrypt the ciphertext output in query q4.

5.1 Cleanness

Our goal is to describe a suitable cleanness predicate Csk for Sender Keys. The intuition behind this
cleanness predicate is based on the following observations about the protocol:

– The exposure of a group member compromises the security of subsequent chain and message
keys7 until a secure key refresh takes place. This enables the adversary to forge messages since
they also gain access to the exposed signature keys.

– Control messages can be trivially forged and injected by a network adversary as they are not
authenticated.

7 Although it is not captured in our model, note that the exposure of a message key alone only compromises the
message it refers to and does not (computationally) leak information about the chain key or other message keys.
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– Forward-secure confidentiality holds except for messages delivered out-of-order since parties
only delete message keys after using them, so a message that is delayed forever results in the
corresponding message key never being deleted.8

– All parties recover from state exposure (via Expose(ID)) after security on the two-party channels
is restored (considering the PCS bound ∆) and then either a) a removal is made effective, or b)
all parties update their keys successfully.

To formalise the security predicate we introduce conventions for tracking the channel epochs of
each user’s two-party channels. We assume the game M-INDGM,C maintains the largest channel
epoch-index for each user’s two-party channels over time. The game obtains this information by
observing the channel epoch-index pairs generated by the 2PC.Send and 2PC.Recv operations within
the group messenger. Specifically, we use a variable of the form EI[ID , ID ′], where EI[ID , ID ′]
represents the largest channel epoch-index pair from ID ’s perspective for the channel between them
and user ID ′, as for two-party channels. More generally, two-party state variables that we use below
can be tracked easily by an M-INDGM,C adversary such that our predicates are well-defined.

The refresh∆ Predicate. We define the predicate refresh∆(ID , ID ′, qi, e), parameterised by the
PCS bound ∆ > 0 of the underlying two-party channels. Informally, given that ID ′ is exposed in
query qi (qi = Expose(ID ′)), refresh∆(ID , ID ′, qi, e) is true if the (ID , ID ′) channel has healed and
then ID has sampled a fresh sender key in or by epoch e (or will do so upon their next Send call). If
the predicate is true, ID has recovered from the exposure in qi.

More formally, let (e2pc, i2pc) = max{EI[ID ′, ID ; qi], EI[ID , ID ′; qi]}. Then refresh∆(ID , ID ′, qi, e)
is true if a) for (e′2pc, i

′
2pc) = EI[ID ′, ID ; qj ] for some j > i, e′2pc ≥ e2pc +∆ holds; and b) during

query qk with k ≥ j, member ID processes one of the following control messages corresponding to
epoch e:

1. a removal of some member ID∗,
2. an addition of ID itself,
3. a group creation message, or
4. an update from ID itself.

In particular, if ID executes (and processes) an update that involves sending new key material
over a refreshed two-party channel, this key material should be safe. We also define a simpler
predicate refresh-s(ID , e) which is true if member ID processes one of the aforementioned control
messages corresponding to epoch e. Observe that both refresh∆ and refresh-s events may only happen
when ID moves to a new group epoch e.

Cleanness for Sender Keys. We divide our cleanness predicate into three components (challenge,
injection, concurrency) that we specify below. The final predicate is defined in Figure 8.

Challenge (Figure 5). The effect of this predicate is to prevent challenges on exposed users (i.e.,
due to Expose calls). After exposing (with query qi) any user ID ′, adversarial queries to Challenge

are disallowed for every ID in the group until refresh∆(ID , ID ′, qi, e) occurs for some later epoch
e > E [ID ′; qi]. Note that this only restricts challenge queries qj where i < j. To capture forward

8 In practice, applications like WhatsApp and Signal bound the amount of (logical) time that keys are active for and
the total number of keys that can be stored at once.
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security precisely, some challenges made before an exposure (i > j) are also forbidden. These affect
messages sent by some ID in epochs (e, i) ≥ m-ep(ID ′, ID , qi), which correspond to keys that ID ′

still stores (including skipped message keys stored at exposure time) or can derive due to being in a
previous message epoch (for example if the user is offline).

C∆
sk-chall: ∀(i, j, ID , ID ′) : qi = Expose(ID ′) ∧ qj = Challenge(ID , ·, ·),(
i > j ∧m-ep(ID ′, ID , qi) > (E [ID ; qj ], I[ID ; qj ]) ∧
(E [ID ; qj ], I[ID ; qj ]) ̸∈ SM[ID ′, ID ; qi]

)
∨
(
i < j ∧ ∃e : E [ID ′; qi] < e ≤ E [ID ; qj ] ∧ refresh∆(ID , ID ′, qi, e)

)
Figure 5. Challenge cleanness predicate for Sender Keys where the adversary makes oracle queries q1, . . . , qq.

Injection (Figure 6). Firstly, let us recall the two-party ciphertext splitting semantics defined
in Section 3.2. Namely, a GM ciphertext C naturally splits into C = (Ccore, C2pc) where C2pc is
processed by the two-party channels. An injection is said to have occurred when a message with a
forged Ccore and/or C2pc was successfully processed.

We define the injection predicate to prevent injections of application messages coming from a
user that has been exposed and has not refreshed its keys. We start with the definition for Ccore.
After exposing a specific user ID ′ with query qi, A cannot make a query qj = Receive(ID , C) to
impersonate ID ′ with a forgery ciphertext C corresponding to some epoch e∗ (i.e., such that tuple
(ID ′, e∗) is output by Recv(C, γ[ID ]) in the game) in the following situations:

1. e∗ ≥ E [ID ′; qi] and there hasn’t been a refresh∆(ID
′, ID , qi, e

′) event for the sender ID ′ at some
epoch e′ such that E [ID ′; qi] < e′ ≤ e∗, where the receiver ID has also processed the key update
from ID ′’s message at injection time, i.e., E [ID ; qj ] ≥ e′.

2. e∗ < E [ID ′; qi] but the signature key of ID ′ at epoch e∗ was the same key as in the exposure
epoch E [ID ′; qi]. Formally, this is expressed by the condition that there has not been any event
refresh-s(ID ′, e′) for an epoch e∗ < e′ ≤ E [ID ′; qi].

For C2pc, we directly adopt the injection cleanness predicate C2pc-inj used to define two-party
channel security (Figure 21). For additional clarity, we parametrize the predicates by the ciphertexts
Ccore, C2pc. We also define the auxiliary predicate C∆

sk-inj-core(Ccore) in Figure 6.

C∆
sk-inj-core(Ccore) : ∀(i, j, ID , ID ′) :

(Ccore, ·) ̸∈ M[ID ′, ·; qj ] ∧ (i < j) ∧ qi = Expose(ID ′) ∧
qj = Receive(ID , (Ccore, ·)) ∧ (·, e∗, ·, ID ′)← Recv((Ccore, ·), γ[ID ]) in qj ,

∃e′ :
[
(E [ID ′; qi] < e′ ≤ e∗ ∧ refresh∆(ID ′, ID , qi, e

′))

∨ (e∗ < e′ ≤ E [ID ′; qi] ∧ refresh-s(ID ′, e′))
]

C∆
sk-inj: ∀ Ccore, C2pc,C

∆
sk-inj-core(Ccore) ∧ C2pc-inj(C2pc)

Figure 6. Auxiliary core injection cleanness predicate (top) and injection cleanness predicate (bottom) for Sender
Keys, where the adversary makes oracle queries q1, . . . , qq. The injection cleanness predicate additionally uses
C2pc-inj (Figure 21).
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Concurrency (Figure 7). This predicate ensures several properties in the protocol. Firstly, it enforces
that users process control message in the same order (albeit they need not be synchronised beyond
this restriction). Additionally, it prevents the injection of all control messages. It is important to
note that control messages are not signed in the core protocol, making injections trivial. Furthermore,
the predicate guarantees that every user proposing a group change (via the Exec, Add, Remove or
Update oracles) is in the most recent epoch. In practice, this predicate ensures that there is a unique
honest control message in each epoch of the game.

The concurrency predicate ensures both security and correctness by addressing scenarios where
members propose concurrent group changes or process group changes in different orders. Without
enforcing this predicate, the protocol’s behaviour becomes ill-defined.

Csk-con : ∀(i, ID) : qi = Deliver(ID , (Tcore, C2pc)),∃j < i :

qj = (Add or Remove or Update or Create)(ID , ·) ∧ ∃e′ :
(T,C) = T [e′] ∧ (C2pc ∈ C) ∧ (E [ID ; qi] = e′ − 1 = E [ID ; qj ])

Figure 7. Concurrency cleanness predicate in the ideal case where the adversary makes oracle queries q1, . . . , qq.

C∆
sk : C∆

sk-chall ∧ C∆
sk-inj ∧ Csk-con

Figure 8. Sender Keys cleanness predicate which makes use of sub-predicates defined in Figures 5 to 7.

Limitations and Extensions. Our cleanness predicate enforces a total ordering on control
messages, in contrast to considering causal ordering such as in [WKHB21] or no ordering at all.
This assumption is consistent with real-world protocols (as in WhatsApp) where a central server is
trusted to provide such an ordering, but makes our model unsuitable for decentralized protocols. If
our security model allowed for it, one could modify our cleanness predicates to allow for ‘trivial’
injections that are non-winning, by not giving the adversary the challenger’s bit b given that the
forgery is trivial (i.e., it violates the injection predicate). Our concurrency predicate and security
model could be strengthened to allow several Exec calls in an epoch, from which the network chooses
one that is processed to all parties, which has been modelled for TreeKEM in the past [ACDT20].

5.2 Proof Sketch for Theorem 1

Towards proving the theorem (full proof in Appendix D), we construct a series of hybrids. We first
transition to a game where injections on the two-party channels are disallowed, following from
their underlying security. After that, we transition to a game where oracle Receive never outputs
challenge bit b, reducing the transition to SUF-CMA signature security, while still excluding trivial
injections due to cleanness. Then, we move to a game where the adversary is limited to a single
Challenge query, losing a factor of q in the resulting reduction. Subsequently, we transition to a
game where the message key used in the Challenge query (if it exists) is replaced by a uniformly
random key that remains unknown to the adversary due to cleanness, and the two-party ciphertexts
that send the key’s ancestor chain key are replaced by dummy ciphertexts, which follows from the
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2PC security and the PRG security of (H1, H2). Finally, we directly reduce to the IND-CPA security
of the symmetric encryption scheme.

6 Analysis and Improvements

For the proof of security of Sender Keys (Theorem 1) to go through, we need to impose severe
restrictions on the adversarial behaviour through the cleanness predicate Csk. Hence, even if we
manage to prove Sender Keys secure, we do so under a weak model that reveals important security
shortcomings of the protocol. In this section, we elaborate on these limitations and propose changes to
enhance security while maintaining efficiency. Some of these findings were presented in a preliminary
analysis in [BCG22].

6.1 Security Analysis and Limitations

Injection of Control Messages. Our first observation is that control messages lack user
authentication, necessitating a high level of trust in the server to prevent the crafting of its own
messages. To address this, in predicate Csk-con we need to enforce that every delivered control
message has been honestly generated. A server deviating from standard behavior could mount a
host of attacks. Here are three examples.

Censorship attack: The server can remove any member(s) ID from G such that all remaining
members assume ID left the group by himself, whilst ID believes a different user ID ′ removed him.

– The server delivers a control message T := (rem, ID , ID , ·) ← Exec(rem, ID ,⊥) to every ID ′ ∈
G \ {ID}.

– The server delivers a control message T ′ := (rem, ID ′, ID , ·)← Exec(rem, ID ,⊥) to ID ∈ G.

Burgle into the group attack: This attack, observed in [RMS18], allows the server to add any
member(s) ID to G. For this, the server just delivers a control message T := (add, ·, ID , ·) ←
Exec(add, ID ,⊥) to every ID ′ ∈ G.

Unsafe group administration: In general, administration cannot be enforced or trusted due to
the lack of authentication of control messages, similarly to what has been observed for CGKA-based
protocols in [BCV23].

Weak Post-Compromise Security. Sender Keys offers a very limited form of PCS. Essentially,
a refresh∆ event is the only possibility for ID to recover from a state compromise. This event only
occurs whenever another user is removed or whenever ID triggers an on-demand update (or trivially
when ID is new to the group). On-demand updates are supported by our primitive syntax and
protocol description, but it is not clear whether they are implemented in practice (for instance,
there is no mention to them in [Wha20]).

Moreover, the update mechanism is not satisfactory. Since only the updater ID refreshes its
sender key, this allows a passive adversary to eavesdrop on messages sent by any other group member
due to the adversary’s knowledge of the chain keys corresponding to those members. Extending the
update mechanism to the entire group in a naive manner would result in a total communication
complexity of O

(
n2

)
.
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PCS and two-party channels. PCS guarantees are even weaker due to the reliance of Sender Keys
on two-party channels. As parametrized by refresh∆, if ID sends new key material over a two-party
channel with ID ′ that has not been healed (after ∆ round-trip messages) since the last exposure
of either ID or ID ′, then such key material is still compromised. In practice, if the state of ID is
compromised, both the group and the two-party sessions will be exposed. Therefore, unless parties
refresh their individual two-party channels consciously (by sending each other messages), executing
updates or removals in the group session will not have the desired healing effect.

In the real world, usually not all pairs of members of a group exchange private messages
regularly, hence not refreshing their two-party channels. The fact that even manually triggering
a key update does not necessarily heal the group from a state compromise conveys an important
security limitation.

Lack of Forward Security on Authentication. Beyond PCS limitations, we observe that the
forward security guarantees for authentication provided by Sender Keys are sub-optimal. Consider
a simple group G = {ID1, ID2} and the attack described in Figure 9. Note that q3 is a forbidden
query by Csk-inj. q3 attempts to inject a message that corresponds to key material used before the
state exposure, hence one can envision stronger FS where queries like q3 are allowed. This attack
can occur naturally if ID2 is offline when m is first sent.

01 q1 = Send(ID1,m) generates ciphertext C encrypted under mk and signed under ssk1.

02 q2 = Expose(ID1), where A obtains ssk1, but not mk.

03 A modifies C and signs it again under ssk1 to create a forgery C′ corresponding to the same message epoch
as C.

04 q3 = Receive(ID2, ID1, C
′), which is a successful injection.

Figure 9. Attack on authentication forward security in Sender Keys.

An attack of a similar nature can also occur in a messaging scheme where the same signature
keys are re-used across groups, and are refreshed at different times, as pointed out in [CHK21].

Additional Remarks. In a Sender Keys group, each user is associated with a distinct symmetric
key, resulting in a state that contains O(n) secret material at all times. However, the exposure
of a single member compromises the keys of all group members, rendering the use of multiple
keys ineffective for enhancing security. The primary advantage of employing multiple keys is for
concurrency reasons. Nevertheless, in large groups, this approach can pose solubility challenges.
As a result, it is possible to explore trade-offs between the level of concurrency supported and the
amount of secret material that needs to be stored at any given time. At the opposite end of the
spectrum, all users could maintain a single symmetric chain that is the same for everyone. This
approach, suitable for scenarios where concurrent message transmission is unlikely, reduces the state
size to O(1) and requires O(n) PCS updates. Moreover, this would improve security by reducing
PCS updates to the sending and processing of a single constant-sized message, which represents an
optimal solution.

Sender Keys, as described in Section 4, is susceptible to randomness exposure and randomness
manipulation attacks. Namely, the adversary does not need to leak a member’s state, but simply
control the randomness used by the device, inhibiting any form of PCS. Protection against this
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family of attacks can be attained at small cost if freshly generated keys are hashed with the state as
in [JS18] and the classic NAXOS trick used in authenticated key exchange [LLM07].

Other attacks are possible, but unavoidable unless symmetric encryption for application messages
is replaced by some form of public-key encryption. Suppose that the adversary A exposes user ID
(γ ← Expose(ID)) and then calls C ← Challenge(ID ,m0,m1). A can trivially win since it can
derive mk used in the Challenge query trivially from γ. Some ratcheting protocols provide strong
security in that, if a user is impersonated towards, their state should ‘diverge’ and no longer be
useful for decrypting messages from honest parties [PR18, JS18, BRV20]. This is not possible to
achieve in a Sender Keys-like protocol (nor is achieved by the Double Ratchet or MLS for messages)
since the key schedule for message encryption is deterministic and independent of previously received
messages.

Although our formalism does not capture multi-group security, it can be adapted to capture
it, for example by using group identifiers to label different groups. In principle, reusing the same
two-party channels between parties that are in several groups together could lead to an increase in
security by faster healing (since more messages would be sent on the same channel).9 As argued in
[CHK21], if a party reuses the same signature key across groups (ignoring any privacy concern from
doing so), PCS authenticity guarantees would improve, since replacing the key after channels are
healed would immediately heal authenticity across all groups (rather than just one). We leave it
open to explore cross-group security further and in particular capture multi-group security formally.

6.2 Proposed Improvements: Sender Keys+

We propose several improvements to Sender Keys below. Our improvements are constrained by the
desire to retain the performance characteristics and structure of Sender Keys. In particular, we
retain O(1)-sized ciphertexts, do not increase key sizes, and utilize only standard cryptographic
primitives. Our improved version of Sender Keys, which we call Sender Keys+, is presented fully
in Figures 22 to 24. We formalise security by introducing several modifications to our cleanness
predicate that we describe at the end of this section.

Secure Control Messages. A simple way of resolving the attacks in Section 6.1 would be for
users to sign their own control messages and verify signatures before processing control messages.
Additional protocol logic for correctness is required, namely that users who craft a control message
but have not shared their sender key yet (because they have not spoken in the group) generate a
signature key pair and share their public key over the two-party channels.

By introducing this tweak, we can weaken the cleanness predicate such that it no longer enforces
honest control message delivery (Csk+-con). On the other hand, we need to introduce the restriction
that no secret signature key ssk can be known to the adversary at delivery time, similar as in
the injection predicate. We do so by introducing a new control predicate C∆

sk+-ctr that follows the
blueprints of the injection predicate (Figure 6), and that we show in Figure 10.

Improved Forward-Secure Authentication. We propose two possible improvements that
address the attack in Section 6.1 to varying extents.

9 Note this would not reduce security upon state exposure since all of a given party’s state, and therefore channels,
are assumed to be compromised at the same time.
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MACing from the chain key. The first improvement, which has minimal overhead, is to MAC the
application messages with a MAC key τk that we derive via an additional H3(ck). The modification
is done in the Send algorithm as follows: given an unsigned ciphertext C̃ = (c, (e, i),ME ), we
obtain the MAC tag τ ← MAC.Tag(τk, C̃). Then, we sign the ciphertext with the appended tag
σ ← Sig.Sgn(ssk, (C̃, τ)). The verification of the MAC tag is easily carried out at the receiver’s end.
We include this simple tweak in the protocol in Figures 22 to 24. Naturally, symmetric encryption
can alternatively be replaced with an AEAD to achieve the same effect.

The main security improvement that results from this upgrade is that, in the attack in Section 6.1,
the adversary additionally needs knowledge of τk to forge the MAC tag. Hence, one of the following
situations must occur before delivery:

– The sender ID is exposed before the message is sent. Then, both τk and ssk are compromised.

– The sender ID is exposed after the message is sent (leaking ssk), and another group member
ID ′ is exposed before the message is delivered (leaking τk).

In particular, the attack of Figure 9 no longer results in a successful message delivery. The MAC
key can be stored together with the message key for out-of-order messages, such that the MAC can
always be verified in a correct execution of the protocol. We note that insider attacks (forgeries
from other group members) cannot be prevented by MACing, but we do not model these.

The modified injection predicate that results from this improvement is shown in Figure 12.
Essentially, we define an auxiliary predicate C∆

sk+-inj-extra that considers the security given by the

message/MAC keys (similarly as in Figure 5). Then, the modified Csk+-inj is the logical disjunction
of the former injection predicate with C∆

sk+-inj-extra, and hence strictly weaker.

Ratcheting signature keys. An alternative mitigation strategy for the attack of Figure 9 is to ratchet
signature keys. Let (ssk, spk) be ID ’s signature key pair, where spk is part of its sender key. Before
sending a new message m to the group, ID can generate a new key pair (ssk′, spk′) $← Gen(1λ). Then,
ID can attach the new spk′ to the ciphertext corresponding to encrypting m, and sign the package
using ssk. This (by now standard) countermeasure not only provides strong forward security but
also post-compromise security for the authentication of messages. Nevertheless, it involves larger
overhead, so it may not be desirable in all scenarios and we refrain from including it in Sender
Keys+.

Efficient PCS Updates. We propose an asynchronous update mechanism to refresh all chain
keys at once, recovering PCS on-demand for the whole group with a single update (and O(n)
complexity for a group of n users). Recall that our Group Messenger primitive supports updates via
Exec(upd, {ID}).

A naive solution. Let ID be the updating party. ID generates a new sender key for himself as in
the case of a remove operation; namely samples a fresh ck and a fresh (ssk, spk) $← Sig.Gen(1λ).
Additionally, ID samples randomness r $← {0, 1}λ. Then, it distributes (ck, spk, r) over the two-party
channels. Upon reception, every group member (including ID itself) sets SK[ID ]← (ck, spk); and
then for every ID ′ ∈ G, set SK[ID ′].ck← Hr(SK[ID

′].ck, r), where Hr : {0, 1}2λ → {0, 1}λ is a secure
key derivation function. Since r is freshly sampled and distributed securely, all chain keys recover
from exposure. Note that r must be used and erased immediately, as all updated chain keys are
exposed if r is leaked at any future time.
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Our solution. The previous solution fails in out-of-sync scenarios such as the following. Suppose
that ID ′ is in message epoch (1, 1) when ID sends an update message T . Then, ID ′ speaks in the
group before receiving T (for example, while being offline), ratcheting its key to (1, 2). All group
members will update the chain key ck1,1

ID ′ (i.e. corresponding to the message epoch (e, i) = (1, 1)) in

SK[ID ′], but ID ′ will be in message epoch (1, 2) (and therefore will have erased ck1,1
ID ′). In general, if

there are application messages in transit concurrently with the update, users will be out-of-sync.
To support asynchronicity, we propose that all parties ratchet their chain key N times forward,

where N is a fixed constant that we call the concurrency bound (for example N = 100; in practice
the cost of executing 100 hash function calls sequentially is negligible). In the event that ℓ messages
have been sent out-of-sync, then the chain key is ratcheted N − ℓ times instead. Then, parties update
the ratcheted chain keys with the sent randomness r. To synchronise between them and with the
update initiator ID , the latter sends a list with his view of the key indices of each group member
(in the control message). We describe the update protocol as part of Figures 22 to 24. Note that
this mechanism requires the assumption of total ordering of control messages to avoid overlapping
updates.

The security improvement is reflected in the challenge cleanness predicate in Figure 11. The
predicate is as the challenge predicate for Sender Keys (Figure 5), except that now it also suffices
that some arbitrary member ID∗ that has a healed channel with ID ′ updates after the exposure,
and that ID processes such update before the challenge.

Efficient Remove Operations. The previous update mechanism can be extended to improve
the efficiency of group removals from O

(
n2

)
(everyone needs to generate and distribute a new key)

to O(n) in terms of communication complexity. Note a removal can be made effective if the party
that sends the remove message T distributes update material among all group members except
for the removed party ID ′. If ID ′ leaves, the next member that speaks in the group must also
trigger an update. This tweak, like our solution above, has the drawback that the signature keys
are not refreshed. Thus, we do not include this tweak in Sender Keys+. Furthermore, considering
the minimal overhead of updates, they could potentially become the preferred method for sharing
sender keys in the group under all circumstances. This approach allows the group to achieve PCS
almost for free.

Cleanness Predicates for Sender Keys+. The cleanness predicates corresponding to our
improvements and described informally above are detailed in Figures 10 to 12, and the joint
predicate C∆

sk+ in Figure 13.

6.3 Security of Sender Keys+

In Appendix E, we prove the security of our Sender Keys+ protocol. We do so with respect to the
modified cleanness predicate in Figure 13. The proof follows similar steps as the proof for Theorem 1.

Theorem 2. Let SymEnc := (Enc,Dec) be a (q, ϵsym)-IND-CPASymEnc,b symmetric encryption
scheme, Sig := (Gen,Sgn,Ver) a (q, ϵsig)-SUF-CMASig signature scheme,
H : {0, 1}λ → {0, 1}λ ×{0, 1}λ a (q, ϵprg)-PRGH function, F a (q, ϵdprf)-dual-PRFF function, MAC
a (q, ϵmac)-SUF-CMAMAC message authentication code and 2PC a (q, ϵ2pc)-2PC-IND2PC,C2pc,∆

two-party channels scheme for PCS bound ∆ > 0. Then Sender Keys+ (Figures 22 to 24) is

(q, 2 · ϵ2pc + q3 · (ϵ2pc + ϵsym + q · ϵprg +N · q · ϵdprf + q · ϵmac) + q · ϵsig)-M-INDGM,C
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Csk+-con : ∀(i, ID) : qi = Deliver(ID , T ), ∃j < i :

qj = (Add or Remove or Update or Create)(ID , ·) ∧
∃e′ : E [ID ; qi] = e′ = E [ID ; qj ]

C∆
sk+-ctr-core(Tcore) : ∀(i, j, ID , ID ′) :

(Tcore, ·) ̸∈ T [·] ∧ (i < j) ∧ qi = Expose(ID ′) ∧ qj = Deliver(ID , (Tcore, ·)),
∃e′ :

[
(E [ID ′; qi] < e′ ≤ e∗ ∧ refresh∆(ID ′, ID , qi, e

′))

∨ (e∗ < e′ ≤ E [ID ′; qi] ∧ refresh-s(ID ′, e′))
]

C∆
sk+-ctr: ∀ Tcore, C2pc : C

∆
sk-ctr-core(Tcore) ∧ C2pc-inj(C2pc)

Figure 10. Modified concurrency predicate, additional auxiliary core control predicate, and additional control predicate
for Sender Keys+.

C∆
sk+-chall : C∆

sk-chall ∨
[
i < j ∧ ∃e, e′, k, ID∗ : E [ID ′; qi] < e′ < e ≤ E [ID ; qj ] ∧

qk = Update(ID∗) ∧ ep[qk] = e− 1 ∧ refresh∆(ID∗, ID ′, e′, qk)
]

Figure 11. Modified challenge cleanness predicate for Sender Keys+.

C∆
sk+-inj-extra(Ccore) : C∆

sk-inj-core(Ccore)

∨
[
i > j ∧m-ep(ID ′, ID , qi) > (E [ID ; qj ], I[ID ; qj ]) ∧

(E [ID ; qj ], I[ID ; qj ]) ̸∈ SM[ID ′, ID ; qi]
]

∨
[
i < j ∧ ∃e : E [ID ′; qi] < e ≤ E [ID ; qj ] ∧ refresh∆(ID , ID ′, qi, e)

]
∨
[
i < j ∧ ∃e, e′, k, ID∗ : E [ID ′; qi] < e′ < e ≤ E [ID ; qj ] ∧

qk = Update(ID∗) ∧ ep[qk] = e− 1 ∧ refresh∆(ID∗, ID ′, e′, qk)
]

C∆
sk+-inj: ∀ Ccore, C2pc : C

∆
sk+-inj-extra(Ccore) ∧ C2pc-inj(C2pc)

Figure 12. Modified auxiliary injection predicate and injection predicate for Sender Keys+. We remark that the
additional logic simply mimics the structure of C∆

sk+-chall.

C∆
sk+ : C∆

sk+-chall ∧ C∆
sk+-inj ∧ C∆

sk+-con ∧ C∆
sk+-ctr

Figure 13. Modified cleanness predicate for Sender Keys+.

with respect to predicate C = C∆
sk+ (Figure 13) and concurrency bound N , where the two-party

channels predicate C2pc is defined in Figures 20 and 21.

6.4 Sender Keys+ vs CGKA

As remarked in the introduction, Sender Keys (and especially Sender Keys+) offers different efficiency
and security trade-offs over CGKA-based protocols. We provide a detailed comparison below.

PCS. When a user ID is exposed, the confidentiality of all subsequent messages is lost in both
CGKA and Sender Keys(+). For an update to take effect in Sender Keys(+), all two-party channels
must have healed. In this case, an update by ID ′ only heals the confidentiality of messages sent by
ID ′ in Sender Keys, as opposed to the confidentially of messages sent by all members in Sender
Keys+.
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It is worth noting that both Sender Keys and Sender Keys+ require up to PCS bound ∆
messages (or rounds) to heal after a compromise (due to the two-party channels) in addition to
the update message. In contrast, a single message suffices for some CGKA protocols [ACDT20,
KPPW+21, ACJM20, AHKM22].

Update Efficiency. In Sender Keys+, an update message requires O(n) communication by the
updating user, where each member is sent a constant-size message. In TreeKEM variants, or in
general binary-tree-based CGKAs, updates involve best-case O(log n) size for the updating user and
have to be entirely downloaded by each member, involving a total O(n log n) download overhead.
Nevertheless, this can be degrade to O(n) per member. The multi-recipient PKE approach in
[HKP+21] achieves the same asymptotic complexity as Sender Keys+, although with larger concrete
costs.

Insider Security. The attack in [AJM22] that reveals the need for IND-CCA (and not only
IND-CPA) encryption in TreeKEM also applies to Sender Keys, but can be fixed with the use of a
MAC. Following the analysis in [AJM22], it is not clear how to mount fake group attacks as they
do, although if different users process different control messages, they may end up with different
views of the group. This attack however also applies to CGKAs in general.

Separately, we note that Sender Keys(+) does not suffer from the forward security issues from
MLS’s CGKA [ACDT20].

7 Conclusion and Future Work

In conclusion, our modular approach to modelling Sender Keys has allowed us to identify its main
security limitations, some of which we can mitigate while preserving efficiency. We have demonstrated
that the protocol at its core is sound, although it does have notable shortcomings that can be
remedied without sacrificing performance. We propose Sender Keys+ as a viable alternative for
group messaging when strong PCS is not a critical requirement or regular updates are performed.
Interestingly, our modelling of two-party channels has revealed the difficulty of achieving PCS in
Sender Keys, even after updates or removals, contradicting folklore assumptions.

In practice, it is common for two-party channels between group members to remain stagnant for
extended periods if private communication is not frequent. This degrades the overall group security,
underscoring the importance of implementing a regular refresh mechanism by default, especially if
PCS updates are implemented. Additionally, Sender Keys is commonly supplemented by additional
mechanisms not considered in our study, such as support for multiple devices and encrypted cloud
backups that increase the attack surface.

Looking forward, several research directions emerge. Firstly, our security model can be extended
to encompass randomness manipulation, successful message injections, insider threats, and other
relevant scenarios. Investigating the practical behaviour of Sender Keys would provide valuable
insights for improved modelling and the identification of potential vulnerabilities. Benchmarking both
the baseline and extended Sender Keys protocols would also contribute to assessing their practicality.
Additionally, it is important to address the challenges that arise when total order is violated, and to
design a protocol that avoids the drawbacks associated with decentralised continuous group key
agreement (DCGKA) such as the need for multi-round communication [WKHB21]. Towards a more
concurrency-friendly Sender Keys protocol, an important direction is the design of a mechanism for
resolving ties in control messages that are sent concurrently.
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A Deferred Preliminaries

Definition 5 (Symmetric Encryption). A symmetric encryption scheme
SymEnc := (Gen,Enc,Dec) is defined as the following tuple of PPT algorithms.

k $← Gen(1λ): Given the security parameter 1λ (encoded in unary) the generation algorithm returns
a key k ∈ K.

c $← Enc(k,m): Given a key k and a message m, the encryption algorithm returns a ciphertext c.
m← Dec(k, c): Given a key k and a ciphertext c, the decryption algorithm returns a message m.

We say that SymEnc is correct if for any message m ∈M and any key k ∈ K it holds that,

Pr

[
Dec(k, c) = m

∣∣∣∣k $← Gen(1λ)
c $← Enc(k,m)

]
= 1,

where the probability is taken over the random coins of Enc, andM and K denote the message space
and key space respectively.

Definition 6 (IND-CPA security of SymEnc). Let SymEnc be a symmetric encryption scheme.
Chosen plaintext attack security, or IND-CPA security, for SymEnc is defined via the game
IND-CPAASymEnc,b depicted in Figure 14. We define the advantage of adversary A in

IND-CPAASymEnc,b as

Advind-cpaSymEnc (A) :=
∣∣Pr[IND-CPAASymEnc,1 ⇒ 1]− Pr[IND-CPAASymEnc,0 ⇒ 1]

∣∣ .
We say that SymEnc is (ϵ, qEnc)-IND-CPASymEnc if for all PPT adversaries A who make at most

qEnc queries to Enc, we have Advind-cpaSymEnc (A) ≤ ϵ.

Game IND-CPAA
SymEnc,b

01 k $← SymEnc.Gen(1λ)

02 m0,m1 ← ⊥
03 (m0,m1, st)← AEnc

04 require |m0| = |m1|
05 b $← {0, 1}
06 c∗ $← Enc(k,mb)

07 b′ ← A(c∗, st)
08 return Jb = b′K

Oracle Enc(m)

09 require m ̸∈ {m0,m1}
10 c $← Enc(k,m)

11 return c

Figure 14. IND-CPA security for SymEnc.

Definition 7 (PRG security of H). Let H be a function H : S → W ×K. PRG security for H
is defined via a game PRGAH depicted in Figure 15. Let AdvprgH (A) :=

∣∣Pr[PRGAH ⇒ 1]− 1
2

∣∣ be the

advantage of adversary A in PRGAH . We say that H is (ϵ, q)-PRGH if for all PPT adversaries A
who make at most q oracle queries, we have AdvprgH (A) ≤ ϵ.

Definition 8 (Message Authentication Code). A message authentication code
(MAC.Gen,MAC.Tag,MAC.Ver) is defined as the following tuple of PPT algorithms.
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Game PRGA
H

01 b $← {0, 1}
02 b′ ← ARoR

03 return Jb = b′K

Oracle RoR

04 if b = 0 :

05 (w, k) $← {0, 1}λ × {0, 1}λ

06 if b = 1 :

07 s $← {0, 1}λ

08 (w, k)← H(s) ∈ {0, 1}λ × {0, 1}λ

09 return (w, k)

Figure 15. Pseudorandom generator security for H.

k $← Gen(1λ): Given the security parameter 1λ (encoded in unary) the generation algorithm returns
a key k ∈ K.

τ $← Tag(k,m): Given a key k and a message m, the tag generation algorithm returns a tag τ .
m← Ver(k,m, τ): Given a key k, a message m and a tag τ , the verification algorithm returns a bit

b ∈ {0, 1}.

We say that MAC is correct if for any message m ∈M and any key k ∈ K it holds that,

Pr

[
Ver(k,m, τ) = 1

∣∣∣∣ k $← Gen(1λ)
τ $← Tag(k,m)

]
= 1,

where the probability is taken over the random coins of Tag, andM and K denote the message space
and key space respectively.

Definition 9 (SUF-CMA security of MAC). Let MAC be a message authentication scheme.
Strong existential unforgeability, or SUF-CMA security, for MAC is defined via the game
SUF-CMAAMAC depicted in Figure 16. We define the advantage of adversary A in SUF-CMAAMAC

as

Advsuf-cma
MAC (A) := Pr[SUF-CMAAMAC ⇒ 1].

We say that MAC is (ϵ, q)-SUF-CMAMAC if for all PPT adversaries A who make at most q oracle
queries we have Advsuf-cma

MAC (A) ≤ ϵ.

Game SUF-CMAA
MAC

01 k $← MAC.Gen(1λ)

02 Q← ∅
03 (m, t)← AMac

04 require (m, t) ̸∈ Q

05 return JMAC.Ver(k,m, t) = 1K

Oracle Mac(m)

06 τ $← MAC.Tag(k,m)

07 Q← Q ∪ {m, τ}
08 return τ

Figure 16. SUF-CMA security for MAC.

Definition 10 (Dual PRF F). Let F be a function F : K ×X → Y. PRF security for F is defined

via the game PRFAF depicted in Figure 17. Let AdvprfF (A) :=
∣∣Pr[PRFAF ⇒ 1]− 1

2

∣∣ be the advantage
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of adversary A in PRFAF . We say that F is (ϵ, q)-PRFF if for all PPT adversaries A who make at

most q oracle queries, we have AdvprfF (A) ≤ ϵ. We define a function FSwap(k, x) := F(x, k). The dual
PRF security of F is the PRF security of FSwap.

Advdual-prfF (A) := max{AdvprfF (A),AdvprfFSwap(A)}.

Game PRFA
F

01 b $← {0, 1}
02 k $← K
03 f $← Func[X ,Y]
04 b′ ← ARoR

05 return Jb = b′K

Oracle RoR(x)

06 if b = 0 :

07 return F(k, x)

08 if b = 1 :

09 return f(x)

Figure 17. Pseudorandom function security for G.

Definition 11 (Digital signature). A digital signature scheme Sig := (Gen,Sgn,Ver) is defined
as the following tuple of PPT algorithms.

(sk, pk) $← Gen: creates a public-private key pair.
σ $← Sgn(sk,m): generates a signature σ from a message m and the secret key sk.
b← Ver(pk, σ,m): outputs b ∈ {0, 1}, indicating acceptance or rejection, given a signature σ, a

message m and a public key pk.

We say that the signature scheme is correct if for any m ∈ P and all choices of randomness, if
(sk, pk) $← Gen and σ $← Sgn(sk,m), then Ver(pk, σ,m) = 1.

Definition 12 (SUF-CMA security of Sig). Let Sig be a signature scheme. Strong existential
unforgeability, or SUF-CMA security, for Sig is defined via the game SUF-CMAASig depicted

in Figure 18. We define the advantage of adversary A in SUF-CMAASig as

Advsuf-cma
Sig (A) := Pr[SUF-CMAASig ⇒ 1].

We say that Sig is (ϵ, q)-SUF-CMASig if for all PPT adversaries A who make at most q oracle
queries we have Advsuf-cma

Sig (A) ≤ ϵ.

B Sender Keys in Practice

We discuss different aspects of how our formalism compares to the implementation of Sender Keys
by WhatsApp and Signal in practice.

AEAD for encryption. Both WhatsApp [Wha20] and Signal10 use AES-256 in CBC mode, which
does not provide authentication guarantees.

10 https://github.com/signalapp/libsignal/blob/3b7f3173cc4431bc4c6e55f6182a37229b2db6fd/rust/

protocol/src/group_cipher.rs#L43C29-L43C29
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Game SUF-CMAA
Sig

01 (sk, pk) $← Sig.Gen(1λ)

02 Q← ∅
03 (m,σ)← ASign(pk)

04 require (m,σ) ̸∈ Q

05 return JSig.Ver(pk, σ,m) = 1K

Oracle Sign(m)

06 σ $← Sig.Sgn(sk,m)

07 Q← Q ∪ {(m,σ)}
08 return σ

Figure 18. SUF-CMA security for Sig.

Control messages in WhatsApp. Add and remove operations are processed following [RMS18, Sec.
5.2.2, (p. 10)] via ‘modification messages’ which contain similar information to our control messages.
To our knowledge, dedicated sender key updates are not supported by WhatsApp, as the feature is
omitted in [Wha20].

Signal group management. At least on Android, Signal has since 2021 required the use of so-called
v2 groups, which encompasses Signal’s private group management system [CPZ20].11 Here, Sender
Keys is used whenever possible, although occasionally pairwise channels are used as a fallback12. The
state of the group membership is dictated by the central server; effectively, adds and removes are
totally ordered by it. Our control message abstraction captures this latter fact, but our formalism
does not capture the private group system. However, our signing of control messages in Sender
Keys+ provides more guarantees on group membership: a malicious Signal server can e.g. re-add
removed users without authorisation from group members [CPZ20, p. 45/46].

Updates in Signal. Every sender key must be updated by default every two weeks and a global
maximum of 90 days13; these are sent via two-party channels, and there is no central control
message sent. In this work, we opted to model update control messages following the CGKA line of
work, for clarity, and because they are particularly well-suited to our improved update mechanism
from Section 6.2.

C Security Model for Two-Party Channels

In this section, we outline the security model for the 2PC primitive introduced in Section 2.1. We
provide an in-depth explanation of channel epochs and indices, describe the security game and the
cleanness predicates, and discuss the potential extensions and limitations of our model.

Channel Epochs and Indices. Our notion of channel epochs is exactly the notion of epochs as
defined in [ACD19] used to model the Double Ratchet protocol [MP16a]. For a given two-party
channel, ID and ID ′ are each associated with a channel epoch e2pc, which corresponds to how many
times the direction of communication has changed, alongside an index i2pc, indicating how many

11 https://github.com/signalapp/Signal-Android/blob/0775fc7ead818a8380e7e374d15898cbabccaa9c/app/

src/main/java/org/thoughtcrime/securesms/jobs/PushGroupSendJob.java#L325C76-L325C76
12 See the ‘for’ loop at

https://github.com/signalapp/Signal-Android/blob/0775fc7ead818a8380e7e374d15898cbabccaa9c/app/

src/main/java/org/thoughtcrime/securesms/messages/GroupSendUtil.java#L249C1-L249C52
13 https://github.com/signalapp/Signal-Android/commit/35393fc33165e5b1417e7b1a7d6f85d0d7919c6f
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Send calls have been made by a sender or the latest message received by a receiver. Initially, the
sender (say ID) sets e2pc = 0 and the receiver ID ′ sets e2pc = −1. Thereafter, party ID (resp. ID ′)
is the sender in even (resp. odd) channel epochs, and the receiver in odd (resp. even) channel epochs.
When a party is a sender in channel epoch e2pc and receives a message from e2pc + 1, they advance
to e2pc + 1; likewise they advance channel epochs when they are a receiver and then send a message.
When a party sends as a sender, they increment their index i2pc, and as a receiver they set i2pc
to the message received with the highest index. Note that i2pc represents the number of messages
sent or received for a given channel epoch e2pc; i2pc is set to 0 whenever a party has just become a
sender again. Hence, we define a total ordering on channel epochs and indices (e2pc, i2pc) such that
(e2pc, i2pc) ≤ (e′2pc, i

′
2pc) when e2pc < e′2pc, or e2pc = e′2pc and i2pc < i′2pc.

Game 2PC-INDA
2PC,b,C2pc,∆

01 for all ID :

02 γ[ID ] $← Init(1λ, ID)

03 CH[·],M[·], EI[·]← ⊥
04 b′ ← AInitCh,...,Expose

05 require C

06 return b′

Oracle InitCh(ID , ID ′)

07 acc $← InitCh(ID ′, γ[ID ])

08 return acc

Oracle Send(ID , ID ′,m)

09 (C, e2pc, i2pc)
$← Send(m, ID ′, γ[ID ])

10 require C ̸= ⊥
11 M[ID , ID ′]

∪←− {(C, e2pc, i2pc)}
12 EI[ID , ID ′]← (e2pc, i2pc)

13 return (C, e2pc, i2pc)

Oracle Challenge(ID , ID ′,m0,m1)

14 require |m0| = |m1|
15 (C∗, e2pc, i2pc)

$← Send(mb, ID
′, γ[ID ])

16 require C∗ ̸= ⊥
17 CH[ID , ID ′]

∪←− {(C∗, e2pc, i2pc)}
18 M[ID , ID ′]

∪←− {(C∗, e2pc, i2pc)}
19 EI[ID , ID ′]← (e2pc, i2pc)

20 return (C∗, e, i)

Oracle Receive(ID , C)

21 (m, ID ′, e2pc, i2pc)← Recv(C, γ[ID ])

22 require m ̸= ⊥
23 if (C, e2pc, i2pc) ̸∈ M[ID ′, ID ] :

24 return (b, ID ′, e2pc, i2pc) //Forgery

25 CH[ID ′, ID ]
−←− {(C, e2pc, i2pc)}

26 if (e2pc, i2pc) > EI[ID ′, ID ] :

27 EI[ID ′, ID ]← (e2pc, i2pc)

28 return (⊥, ID ′, e2pc, i2pc)

Oracle Expose(ID)

29 require CH[ID ′, ID ] = ∅ ∀ ID ′

30 return γ[ID ]

Figure 19. 2PC-IND security for 2PC. Lines in teal correspond only to bookkeeping and state update operations.
Dictionaries CH,M and EI store challenged messages, sent messages, and channel epoch-index respectively.

Oracles for Correctness and Security. To capture both correctness and security we employ
several oracles that the adversary can query. We describe them briefly before diving into the detail
of the correctness and security notions.

InitCh(ID , ID ′): This oracle initializes the two-party channel between parties ID and ID ′.
Send(ID , ID ′,m): This oracle allows the sending of a message m (i.e., generating a ciphertext) from

party ID to party ID ′.
Challenge(ID , ID ′,m0,m1): This oracle generates a message challenge where the adversary A

provides two messages m0 and m1 of the same length, and party ID sends mb to party ID ′.
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Receive(ID , C): This oracle delivers the ciphertext C to party ID .

Expose(ID): This oracle leaks the state of party ID to the adversary.

Correctness. Now we provide an overview of a correctness game between a challenger and a
computationally unbounded adversary. Correctness in the 2PC scheme will follow a structure
similar to the security game but with specific adaptations. The adversary begins by invoking the
InitCh oracle to establish a secure channel between ID and ID ′. Subsequently, the adversary can
dynamically query the Send and Receive oracles to execute the protocol. Note that the Expose

oracle is permitted, providing the adversary with leaked state information. However, access to the
Challenge oracle is disallowed. It is worth noting that the adversary may only call Receive with
inputs that were output by Send.

The predicates used in the correctness analysis are modified accordingly. The challenge predicate
is no longer needed due to the absence of the Challenge oracle. Instead, a modified cleanness
predicate is employed that consists only of a injection predicate that only allows for honestly
generated ciphertexts. The game always returns 0, unless the reception of an honestly generated
message fails. The 2PC scheme accommodates out-of-order messages through immediate decryption,
allowing for efficient message processing. The attacker is limited to delivering compromised messages
pertaining to non-current epochs. If a user is exposed in channel epoch e2pc and acts as the sender,
they can decrypt a message from channel epoch e2pc+1. In summary, correctness of the 2PC scheme
ensures the faithful delivery of messages between sender and receiver, assuming no interference from
an active attacker.

Security Game. The security definition used for two-party channels relies on the
2PC-INDA2PC,b,C2pc,∆

game in Figure 19. The game starts by initializing the states of all parties
and initializing the dictionaries CH and M, which store challenge ciphertexts and all sent
(including challenge) ciphertexts, respectively. It also initializes EI as a variable that tracks the
channel epoch-index pair of a given channel [ID , ID ′]. Then, the adversary A can adaptively query
all the oracles listed above. Finally, A outputs a guess b′ of b given that the game execution has
been clean, i.e., that the cleanness predicate C2pc holds. A can win the game in two different ways.
Firstly, it can make a correct guess of the bit b; note that the only operation that depends on b is
the Challenge oracle. Ciphertexts C∗ generated by Challenge(ID , ID ′,m0,m1) are stored in CH,
and removed from CH once they are delivered. We use CH to prevent trivial forgeries, as if there is
any challenge C∗ that has not yet been delivered to ID ′ (and such that, by correctness, ID ′ must
be able to decrypt it), then A cannot leak the state of ID ′ via Expose(ID ′).

Secondly, A can directly obtain b by making a successful forgery that is accepted via
Receive(ID , C). To leak b to A, Receive checks that C does not correspond to a message sent by
the sender ID ′ in epoch (e2pc, i2pc), where (ID ′, e2pc, i2pc) are outputs of the internal Recv call.

We note that the challenge-and-send style of our game is analogous to the security game for
GM. This game is also multi-user as it captures all channels at once, extending other single-user
security models such as those in [ACD19, WKHB21]. Our modelling presents some similarities with
the modelling of two-party channels in [WKHB21], but differs from it in several aspects. Our Init
algorithm does not require the public key of the counterpart as opposed to theirs, and correctness is
captured as part of the security model. Most importantly, the adversary is not allowed to attempt
forgeries (the model only captures confidentiality of sent messages) or out of order delivery.
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Predicates. The game is parametrised by the two-party channels cleanness predicate C2pc, which
we divide into two sub-predicates as C2pc := C2pc-chal ∧ C2pc-inj. Both sub-predicates are additionally
parametrised by the PCS bound ∆. We follow the blueprint of [ACD19] for the predicate definition.

C2pc-chal : ∀(i, ID , ID ′, e2pc, i2pc) : qi = Expose(ID) ∧

(e2pc, i2pc) = max{EI[ID , ID ′; qi], EI[ID
′, ID ; qi]}, ̸ ∃ (e′2pc, i

′
2pc, j) : (i < j) ∧[

(qj = Challenge(ID ′, ID , ·, ·) ∧ (e′2pc, i
′
2pc) = EI[ID ′, ID ; qj ] ∧ e′2pc < e2pc +∆) ∨

(qj = Challenge(ID , ID ′, ·, ·) ∧ (e′2pc, i
′
2pc) = EI[ID , ID ′; qj ] ∧ e′2pc < e2pc +∆)

]
Figure 20. Predicate C2pc-chal where A makes oracle queries q1, . . . , qq.

Challenge (Figure 20). Suppose that A exposes a party ID and later makes a Challenge query
involving ID (either as a sender or as a receiver) and some other party ID ′. Essentially, the predicate
requires that the challenge message then must belong to a channel epoch e′2pc that is ∆ or more
epochs past the channel epoch e2pc, where e2pc corresponds to the largest epoch value between ID
and ID ′ at exposure time.

C2pc-inj : ∀(i, ID , ID ′, e2pc, i2pc) : qi = Expose(ID) ∧

(e2pc, i2pc) = max{EI[ID , ID ′; qi], EI[ID
′, ID ; qi]},

̸ ∃ (e′2pc, i
′
2pc, e

∗
2pc, i

∗
2pc, j, C) : (i < j) ∧ (min{e∗2pc, e′2pc} < e2pc +∆) ∧

(e′2pc, i
′
2pc) = min{EI[ID , ID ′; qj ], EI[ID

′, ID ; qj ]} ∧[
(qj = Receive(ID ′, C) = (·, ID , e∗2pc, i

∗
2pc) ∧ (C, e∗2pc, i

∗
2pc) ̸∈ M[ID , ID ′; qj ]) ∨

(qj = Receive(ID , C) = (·, ID ′, e∗2pc, i
∗
2pc) ∧ (C, e∗2pc, i

∗
2pc) ̸∈ M[ID ′, ID ; qj ])

]
Figure 21. Predicate C2pc-inj where A makes oracle queries q1, . . . , qq.

Injection (Figure 21). For an intuitive description, let C be a forged ciphertext that, when processed
by Recv by some ID ′, claims to be from sender ID and on epoch-index (e∗2pc, i

∗
2pc). Then, the

predicate requires that if A exposes ID and later attempts to inject C to some ID ′, both the epoch
e′2pc of the (ID , ID ′) channel at injection time and e∗2pc are ∆ or more epochs further from the
channel epoch e2pc at exposure time. Considering both epochs e2pc, e

∗
2pc prevents injections on

out-of-order messages. Self-injections (i.e., where ID = ID ′) are also restricted since the adversary
can trivially mount such an attack on the Double Ratchet [ACD19].

In order to model the injection predicate for our GM primitive, we abuse notation and refer
directly to C2pc-inj. In the context of GM, we parametrise the predicate by a ciphertext C2pc,
and simply replace the belonging to M by the equivalent condition in the GM security game
(·, C2pc) ̸∈ M[ID , ID ′; qj ].

Extensions. Our security model adopts the core requirements of the modelling in [ACD19]. Our
cleanness predicates are designed to suit a large class of two-party messaging protocols parametrized
by the PCS bound ∆. As a consequence, our analysis is not as fine-grained as possible, but we gain
in readability and modularity.
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The recent work of Blazy et al. [BBL+22] classifies different two-party messaging protocols based
on their resilience to different adversarial and the resulting PCS guarantees. Future work could
incorporate these factors into our modelling of two-party channels. Another direction would be to
parametrise the PCS bound based on whether a party is exposed while acting as a sender or receiver
on the channel (as opposed to considering a worst-case ∆), as done in One could take an even more
fine-grained approach in the style of [CCD+20] also. A bound of ∆ = 1 would be possible when only
considering receiver exposure.

We also note that if one replaces the Double Ratchet with another protocol, either keeping [ACD19,
CZ22, PP22] or dropping [JS18, PR18, DV19] support for out-of-order message delivery along the
way, it is possible to consider less restrictive injection predicates. For instance, by using signatures,
one no longer needs to restrict self-injections. We also restrict injections corresponding to out-of-
order delivery (all epochs < e2pc +∆ in C2pc-inj); notice that restricting winning injections only on
ciphertexts in-transit is sufficient as done in [ACD19].

D Theorem 1 Proof: Sender Keys Security

We here prove Theorem 1, i.e., the security of our Sender Keys protocol. Let A be an adversary
against the Sender Keys protocol that plays the GM message indistinguishability game
M-INDAGM,b,C (Figure 2) with respect to cleanness predicate C = C∆

sk (Figure 8), and let q1, . . . , qq
be the oracle queries of A in a given execution. The proof follows a series of hybrid games, where
Game 0 is the original game in Figure 2.

Exposed keys and key sequences. Before diving into the details, we characterise the set of exposed
chain keys ExpKeysck as those keys that can be (trivially) derived by the adversary following its
state exposure queries. To this end, we observe that all chain keys (and also message keys) generated
during protocol execution are uniquely identified by three parameters: the epoch number e, the
key index i, and the owner ID ; we label them as cke,iID and mke,iID . Given a user ID , its chain keys
form sequences such that the key in (e, i+ 1) is deterministically derived from the key in (e, i) as
cke,i+1

ID = H1(ck
e,i
ID) in the chain. Formally, let qi = Deliver(ID , (Tcore, C2pc)) where Tcore is either: a

remove message for ID ′ ̸= ID , a create message, a message that adds ID to the group, or an update
message for ID , and qj = Deliver(ID , (T ′core, C

′
2pc)) where T ′core is either the next remove message

for any ID ′ ∈ G for G from the perspective of ID before qi where j > i, or an update message for
ID ; otherwise, qj = qq+1 (where E [ID ; qq+1] denotes the state of E [ID ] after query qq) if no such
query was made. Let also e = E [ID ; qi] and ẽ = E [ID ; qj ]. Then,

cke,0ID , . . . , ck
e,ie
ID , cke+1,0

ID , . . . , ckẽ−1,iẽID

is the chain key sequence for ID in epochs e to ẽ. Note since cke,0ID is the first key generated after a

removal or update that cke,0ID is generated using fresh randomness and distributed to all parties via
two-party channels.

For every qj = Expose(IDj) query such that (ej , ij)← m-ep(IDj , ID
′, qj), all the chain keys of

ID ′ that are exposed are exactly those in the chain key sequence of ID ′ starting from epoch (ej , ij).

If we denote this set by EpCK
(j)

ID ′ , then we have that

ExpKeysck =
k⋃

j=1

{
cke,i

ID ′ : ID
′ ∈ G[IDj ; qij ] ∧ (e, i) ∈ EpCK

(j)

ID ′

}
.
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where G[IDj ; qij ] = IDj .γ.G represents the view of the group of IDj at the time of query qij . Note
that, for any group member, if one of its keys in a chain key sequence is in ExpKeysck, all the
subsequent keys until either a removal or update for IDj is processed are also in ExpKeysck.

Hybrid games. We define the main sequence of games below. We then bound the corresponding
advantages by a series of lemmas.

Game 0 This is the original M-INDAGM,b,C game, parameterised by a cleanness predicate C.

Game 1 In this game, we remove the return b conditions whenever Deliver(ID , (Tcore, C2pc)) or
Receive(ID , (Ccore, C2pc)) are called such that C2pc was not previously output in some previous
oracle query that outputs a ciphertext or control message.

Game 2 In this game, we remove the return b condition in the Receive and Deliver oracles, so
that they always returns nothing. Hence, the adversary cannot win the game by injecting.

Game 3 In this game, we allow a single call to the Challenge oracle, as opposed to arbitrarily
many calls.

Game 4 In this game, all chain keys and corresponding message keys in ID ’s key sequence that
includes ck such that H2(ck) = mk, where mk is the message key used in the underlying Send
call in the Challenge(ID , ·, ·) query (if it exists), are all replaced by uniformly random values. In
addition, all 2PC ciphertexts that transmit the chain key ck or keys earlier in the key sequence
leading to ck are replaced with encryptions of 0ℓ where ℓ is the length of the message encrypted.

To complete the proof, Game 4 is simulated by an IND-CPA SymEnc adversary. In the lemmas
hereafter, we assume that an adversary B simulating a hybrid for A can efficiently determine whether
A has violated the cleanness predicate, and aborts execution since B can no longer win.

Lemma 1. There exists an adversary B1 with similar running time to A such that

Advg0GM,C(A) ≤ Advg1GM,C(A) + 2 · Adv2pc-ind2PC,C2pc,∆
(B1).

Proof. We proceed by constructing B1,b′ , a 2PC-IND2PC,b,C2pc,∆ adversary that simulates Game

0/Game 1 for adversary A depending on 2PC-IND2PC,b,C2pc,∆ bit b and M-INDAGM,b′,C bit b′. At

a high level, B1,b′ simulates all M-INDAGM,b,C oracle queries using its own oracles and otherwise
simulating locally, except every Challenge(ID ,m0,m1) is simulated as if the challenger’s bit is b′.
In more detail, B1,b′ replaces all:

– 2PC.InitCh(ID ′) calls from ID by the output of query InitCh(ID , ID ′).

– 2PC.Send(m, ID ′) calls from ID by the output of Send(ID , ID ′,m).

– 2PC.Recv(C) calls from ID as follows: B1,b′ first calls Receive(ID , C), which outputs
(b, ID ′, e2pc, i2pc). If b ̸= ⊥, B1,b′ returns b to its challenger and stops simulating. Otherwise, by
cleanness and construction of Recv (argued below), C must have been previously output by a
Send(ID , ID ′,m) call. In this case, B1,b′ thus replaces the Recv call with (m, ID ′, e2pc, i2pc).

In addition:

– If A calls Expose(ID), B1,b′ uses the output of its own Expose(ID) call and its state from locally
simulating to respond to A’s query.

– Finally, B1,b′ outputs the same bit as A.

41



Note that by construction of Sender Keys, after 2PC.Recv is called in Recv and Proc calls, the output
is checked so it is “appropriate” for the context it is called in (i.e. it is consistent with the received
Ccore or Tcore (e.g., by checking ID and epoch matches with the input C). In addition, in a given
Sender Keys Recv/Proc call that does not invoke 2PC.Recv, C2pc = ⊥ is enforced, preventing GM
forgeries that include an arbitrary C2pc value that is simply ignored. Thus, if B1,b′ outputs (b, . . . )
from Receive such that b ̸= ⊥, it must be that a valid 2PC forgery was made. In addition, by the
concurrency cleanness predicate which disallows forgeries on Deliver, the return b condition in
Deliver call is never reached.

Using the triangle inequality, we have

Advg0GM,C(A) =
∣∣Pr[G1

0 ⇒ 1]− Pr[G0
0 ⇒ 1]

∣∣
≤

∣∣Pr[G1
0 ⇒ 1]− Pr[G1

1 ⇒ 1]
∣∣+ ∣∣Pr[G0

0 ⇒ 1]− Pr[G0
1 ⇒ 1]

∣∣
+
∣∣Pr[G1

1 ⇒ 1]− Pr[G0
1 ⇒ 1]

∣∣
≤ Adv2pc-ind2PC,C2pc,∆

(B1,1) + Adv2pc-ind2PC,C2pc,∆
(B1,0) + Advg1GM,C(A)

where the inequality
∣∣∣Pr[Gb′

0 ⇒ 1]− Pr[Gb′
1 ⇒ 1]

∣∣∣ ≤ Adv2pc-ind2PC,C2pc,∆
(B1,b′) holds because the simulation

is perfect given Receive never outputs (b, . . . ) with b ̸= ⊥, and when Receive does output such a
(b, . . . ), B1,b′ ’s advantage is at least as large as A’s since B1,b′ always outputs the correct bit. The
result follows. ⊓⊔

Lemma 2. There exists an adversary B2 with similar running time to A such that

Advg1GM,C(A) ≤ Advg2GM,C(A) + q · Advsuf-cma
Sig (B2).

Proof. Let E be the event that A in a clean execution of Game 1 (i.e., when cleanness predicate
C evaluates to true) calls Receive(ID , (Ccore, C2pc)) that outputs m ̸= ⊥ for some ID such that
(Ccore,C) was not previously output by Send, where C2pc is some (correct) 2PC ciphertext by
definition of Game 1. Observe first that Game 1 and Game 2 are identical given ¬E. Note that at
most q signature keys are sampled and sent over the two-party channels during the game’s execution:
the first Send call in an epoch and the (single) Exec(crt, IDs, ·) call result in one signature key
being sampled in each call.

Then, let Ei be the event that that A’s first call to Receive with argument (ID , (Ccore, C2pc))
satisfying the conditions above is such that internal Recv call outputs ID ′ corresponding to the i-th
signature key sampled by the challenger.

We define SUF-CMA adversary BID ′,e who simulates for Game 1 adversary A given Ei holds. Bi
simulates as follows. Bi locally simulates for A and responds to all of A’s queries except queries
involving the i-th sender key sampled: let ID be the key holder. For these queries, ID sets spk in
variable SK to the SUF-CMA public key pk. Bi generates all signatures associated with spk via
SUF-CMA oracle Sign.

Finally, consider when A makes their first query of the form Receive(ID , C) that returns
m ̸= ⊥ that was not previously output by Send. Observe that C = (Ccore = (M,σ), C2pc) and M =
(c, (e, i), kc′, ick

′, ID) where σ is a signature on (c, (e, i), ick, ID). As forgeries on C2pc are disallowed,
only Ccore can possibly be the source of the forgery. By construction of Recv, (c, (e, i), kc′, ick

′, ID)
must be different from values previously input to Recv for a non-bottom value to be output, and,
by definition of event Ei, Ccore must differ from values previously output by Send. Moreover, by
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cleanness, A must not have been able to make a state exposure that enables it to access signature
secret key ssk. Thus, the simulation is well-defined and signature σ is a valid forgery, and so Bi
extracts σ from C and returns (m,σ) with m = M as above to its SUF-CMA challenger.

Finally, we have

Advg1GM,C(A) =
∣∣Pr[G1

1 ⇒ 1 ∧ ¬E]− Pr[G0
1 ⇒ 1 ∧ ¬E]

+ Pr[G1
1 ⇒ 1 ∧ E]− Pr[G0

1 ⇒ 1 ∧ E]
∣∣

≤ Advg2GM,C(A) +
∣∣Pr[G1

1 ⇒ 1 ∧ E]− Pr[G0
1 ⇒ 1 ∧ E]

∣∣
≤ Advg2GM,C(A) + Pr[E]

≤ Advg2GM,C(A) +
∑
i

Pr[Ei]

≤ Advg2GM,C(A) +
∑
i

Advsuf-cma
Sig (Bi)

≤ Advg2GM,C(A) + q · Advsuf-cma
Sig (B2),

where the last step holds by combining each Bi into B2. ⊓⊔

Lemma 3. There exists an adversary B3 with similar running time to A such that

Advg2GM,C(A) ≤ qchal · Advg3GM,C(B3)

where qchal ≤ q denotes the number of Challenge oracle queries made by A.

Proof. We adopt the same high-level strategy as the proof of Lemma 6 in [ACDT20]. Let H0

be exactly Game 2 with b = 0. For i ∈ [1, qchal], let Hi be exactly Hi−1 except the i-th query
Challenge(ID ,m0,m1) uses m1 (i.e., acts as if the challenge bit is b = 1). Observe first that we
have Advg2GM,C(A) = |Pr[H0 ⇒ 1]− Pr[Hqchal ⇒ 1]|. We will show, for i ∈ [1, qchal], that there exists

adversary B3,i playing Game 2 such that |Pr[Hi ⇒ 1]−Pr[Hi−1 ⇒ 1]| = Advg3GM,C(B3,i). The claimed
result then follows by applying the sequence of hybrids and the triangle inequality.
B3,i simulates as follows. For A’s first i− 1 Challenge(ID ,m0,m1) calls, B3,i calls Send(ID ,m1)

and returns the result. For A’s ith Challenge(ID ,m0,m1) call, B3,i calls Challenge(ID ,m0,m1)
and returns the result. For A’s subsequent Challenge(ID ,m0,m1) calls, B3,i calls Send(ID ,m0) and
returns the result. If A ever makes an Expose query that would trivially allow for them to decrypt
any challenge ciphertext, or has previously called Expose such that the resulting Challenge query
would be trivially decryptable, B3,i aborts. Note that this condition can be efficiently determined
based on A’s oracle queries. B3,i processes all other queries using its own oracles.

Note that if A’s (multi-challenge) execution satisfies the cleanness predicate, then so too does
B3,i’s. To see this, note that B3,i and A make the same queries to all oracles except for Challenge
and Send. In particular, since B3,i makes the same Expose queries as A (given B3,i does not abort)
and less Challenge queries, there are the same or possibly less opportunities for the challenge
predicate to fail in B3,i’s execution as compared to A’s. Moreover, the additional Send queries
that B3,i makes do not affect any predicates. Thus, if B3,i’s challenge bit b is 0, then B3,i perfectly
simulates Hi−1, and similarly B3,i perfectly simulates Hi given b = 1. The result follows. ⊓⊔

Lemma 4. There exists an adversary B4 with similar running time to A such that

Advg3GM,C(A) ≤ q · (Advg4GM,C(A) + Adv2pc-ind2PC,C2pc,∆
(B4) + q · AdvprgH (B4))
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Proof. The proof of this lemma proceeds via hybrid sub-games. Consider the (restricted) chain key
sequence in an execution of Game 3 starting from epoch e until key epoch (ID , e′, i′) corresponding
to the output of Send in the Challenge(ID , ·, ·) call, if it exists. If it does not exist, then Game 3
adversary A has no advantage as their execution is independent of the challenge bit. Otherwise, we
replace all chain keys and their corresponding message keys in this sequence by uniformly random
values. Note that, in the protocol in Figure 22, we model H1 and H2 as a PRG H : {0, 1}λ → {0, 1}2λ.
Namely, H(cki) = (cki+1,mki) outputs an updated chain key and a new message key.

Let Eck be the event where call Challenge(ID , ·, ·) is made such that the underlying Send call
uses message key mk iteratively derived from some ck, where ck = cke,0ID , for some e, is the start
of ID ’s corresponding chain key sequence. Observe that at most q such chain key sequences are
possible at the start of an execution of Game 3 where A makes q oracle queries, and each such
ck is associated with a corresponding ID (the user who sampled ck). Denote for simplicity this

chain key sequence by ck1, . . . , ckm (where ck1 := cke,0ID , ckm := cke
′,i′

ID and m ≤ q). For each Eck,
we can construct a sequence of hybrids Hi for i = −1, 0, . . . ,m as follows. Game H−1 is as in the
original Game 3. Game H0 differs from game H−1 in that all two-party ciphertexts encrypting ck or
ancestors in its key sequence are replaced with encryptions of dummy message 0ℓ for messages of
length ℓ. For i ≥ 1, game Hi−1 differs from game Hi in that, in the latter, we replace both mki−1
and cki by uniformly random ri−1

$← K and si
$←W , respectively. Finally, game Hm is Game 4; all

non-exposed keys are independent.

We first construct 2PC-INDA2PC,b,C2pc,∆
adversary B that simulates for adversary A playing (as

we will argue) game H−1 or H0 depending on its challenger’s bit. B simulates similarly to B1 in
the proof of Lemma 1 except when simulating 2PC.Send(m, ID ′) calls. Here, instead of replacing all
such calls with the output of Send(ID , ID ′,m), B replaces calls that encrypt ck or its key sequence
ancestors in m with the output of Challenge(ID , ID ′,m, 0|m|). B otherwise simulates identically.
Observe that in a clean execution of H−1, chain key ck1 must not be exposed, and that B, who is
parametrised by ck, can deduce exactly which 2PC.Send calls to replace with an Challenge call. It
follows that B simulates H−1 given the challenge bit is 0 and H0 given it is 1.

Note in a clean execution of H0 that the starting key in the chain cke,0ID ̸∈ ExpKeysck is generated

by ID from fresh randomness. Besides, cke,0ID is only sent over two-party channels that contains no
information about the key due to the previous hop (noting in a clean execution that the channels
must have healed if previously compromised), so it is hidden from A. Now, let A be an adversary
that interpolates between any two games Hi−1 and Hi. Then, we can create an adversary B against
PRG indistinguishability from A as follows. Since by induction that in Hi−1 the seed cki−1 of the
PRG is a uniformly random value, B simply embeds a PRG challenge in mki−1 and cki (recall
that we consider a PRG with an expansion factor of 2 such that H(cki−1) = (cki,mki−1). Then, B
simulates the rest of the game locally and returns the guess of A.

It follows that the simulation is perfect. By considering all events Eck and the union bound, it
follows that there exists B4 so that:

Advg3GM,C(A) ≤ q · (Advg4GM,C(A) + Adv2pc-ind2PC,C2pc,∆
(B4) + q · AdvprgH (B4))

⊓⊔

Lemma 5. There exists an adversary B with similar running time to A such that

Advg4GM,C(A) ≤ Advind-cpaSymEnc (B)
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Proof. We reduce to the security of the encryption scheme. Let A be an adversary against Game 4.
Then, we can build an adversary B against the IND-CPA security of the encryption scheme. Let
b∗ be the (hidden) bit that parameterises the IND-CPA game of B. Then, B simulates Game 4 for
A except for the challenge query q∗ = Challenge(ID∗,m0,m1), where it proceeds as follows. B
receives m0,m1 from A and forwards them to the IND-CPA challenger, who outputs a ciphertext
c∗. Then, B crafts a ciphertext C∗ as if it originated from ID∗ and sends it to A. The simulation
continues until the game finishes, and B returns the same guess b′ as A.

As the message key mk used to encrypt the challenge message in the original Game 4 is a
uniformly random key, as we argued above, the simulation is perfect. Hence, the lemma follows. ⊓⊔

Finally, Theorem 1 follows by combining the sequence of hybrids above.

Proof strategy for Corollary 1. The hybrids are defined similarly except that they differ in the
definition of Game 1 and Game 4. Let the resulting sequence of games be denoted Game 1’, . . . ,
Game 4’. In Game 1’, all two-party channel ciphertexts that cannot be trivially decrypted by the
adversary are replaced with encryptions of dummy strings of the form 0ℓ. Game 4’ differs as in
Game 4 except that 2PC ciphertexts are not changed. We can then essentially directly use the above
lemmas except for Lemmas 1 and 4:

– For Game 1’, note that since 2PC-IND2PC,b,C2pc,∆ adversary B1,b′ is given all of A’s queries in
advance, it can efficiently deduce which 2PC.Send queries to replace with Challenge and Send

depending on which ciphertexts can be trivially exposed by A or not. It then follows that

Advg0GM,C(A) ≤ Advg1’GM,C(A) + 2 · Adv2pc-ind2PC,C2pc,∆
(B1)

– For Game 4’, the reduction no longer needs to guess ck, since this information can be efficiently
derived from the sequence of queries q1, . . . , qq initially given to A. A sequence of hybrids Hi for
i ≥ 0 can then be directly constructed; note we can ignore the hop between H−1 and H0 since
Game 1 already handles this. It then follows that

Advg3’GM,C(A) ≤ Advg4’GM,C(A) + q · AdvprgH (B4)

The result follows.

E Theorem 2 Proof: Sender Keys+ Security

In this section, we prove Theorem 2.

From our Sender Keys+ protocol, we model H1,H2,H3 as a PRG H : {0, 1}λ → {0, 1}3λ, and the
KDF F used for the update operation as a dual PRF. Note the proof would still work with respect
to the Sender Keys predicate C∆

sk (Figure 8) as the new predicate C∆
sk+ (Figure 13) is strictly less

restrictive. Towards the proof, we re-define the notion of key sequences introduced in Appendix D.
We now consider chain key sequences for ID starting with cke,0ID where zero or more update operations

from ID ′ ≠ ID are applied to a chain key of the form cke
′,i′

ID . In addition, updates from parties
ID ̸= ID ′ now result in a new key sequence.
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Hybrid games. We define the main sequence of games below.

Game 0 This is the original M-INDAGM,b,C game, parameterised by a cleanness predicate C.

Game 1 In this game, we remove the return b conditions whenever Deliver(ID , (Tcore, C2pc)) or
Receive(ID , (Ccore, C2pc)) are called such that C2pc was not previously output in some previous
oracle query that outputs a ciphertext or control message.

Game 2 In this game, we completely remove the return b condition in the Deliver oracle and in
the Receive oracle for forgeries that occur when predicate C∆

sk-inj-core(Ccore) is true for ciphertexts
of the form Ccore.

Game 3 In this game, we allow a single call to the Challenge oracle, as opposed to arbitrarily
many calls.

Game 4 In this game, all chain keys and corresponding message and MAC keys in ID ’s key
sequence that includes ck such that H2(ck) = mk and H3(ck) = τk, where mk (resp. τk) is the
message key (resp. MAC key) used in the underlying Send call in the Challenge(ID , ·, ·) query
(if it exists), are all replaced by uniformly random values. In addition, all 2PC ciphertexts that
transmit the chain key ck or keys earlier in the key sequence leading to ck are replaced with
encryptions of 0ℓ where ℓ is the length of the message encrypted.

Game 5 In this game, we completely remove the return b condition in the Receive oracles. Hence,
the adversary cannot win the game by injecting.

To complete the proof, Game 5 is simulated by an IND-CPA SymEnc adversary.

Lemma 6. There exists an adversary B1 with similar running time to A such that

Advg0GM,C(A) ≤ Advg1GM,C(A) + 2 · Adv2pc-ind2PC,C2pc,∆
(B1).

Proof. The proof is essentially identical to that of Lemma 1 so we omit it. ⊓⊔

Lemma 7. There exists an adversary B2 with similar running time to A such that

Advg1GM,C(A) ≤ Advg2GM,C(A) + q · Advsuf-cma
Sig (B2).

Proof. The proof follows the same high-level idea as for Lemma 2. That is, we consider events Ei

for i ∈ [1, q′] for some q ≤ q such that the first successful forgery is made using the i-th signature
key pair sampled. For this proof, we consider forgeries now over both Receive and Deliver rather
than just Receive. By construction of Sender Keys+, Deliver forgeries given C∆

sk-inj-core(Ccore) is
true only occur as a result of a signature forgery. Thus, by a very similar reduction to Lemma 2, the
result follows. Note that unlike in the proof for Section 5, we have not yet completely disallowed
injections on Receive: we still allow forgeries that are permitted by C∆

sk+ but disallowed by C∆
sk. ⊓⊔

Lemma 8. There exists an adversary B3 with similar running time to A such that

Advg2GM,C(A) ≤ qchal · Advg3GM,C(B3)

where qchal ≤ q denotes the number of Challenge oracle queries made by A.

Proof. The proof is identical to that of Lemma 3 so we omit it. ⊓⊔
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Lemma 9. There exists an adversary B4 with similar running time to A such that

Advg3GM,C(A) ≤ q2 ·
(
Advg4GM,C(A) + Adv2pc-ind2PC,C2pc,∆

(B4) +

q · AdvprgH (B4) +N · q · Advdual-prfF (B4)
)

where N is the concurrency bound (c.f. Section 6.2).

Proof. The proof diverges from the proof of Lemma 4 in order to handle the new update mechanism.
As in Lemma 4, we consider the event Eck where the Challenge(ID , ·, ·) call invokes Send with key
mk in the key sequence starting from ck. Lemma 4 then constructs hybrids H−1, H0, . . . ,Hm given
Eck.

Observe that, fixing ck, mk could have been derived from zero or more update operations initiated
by ID ′ ̸= ID . Now, by cleanness, after invoking the security of the two-party channels, mk is hidden
from the adversary. If no update operations were made, then it must be that ck is not exposed. If
there was one update operation, then by cleanness, either the update secret r or ck are hidden (or
possibly both).

Let i be the i-th last update operation applied to form mk, where i ∈ [0, q′] for some q′ < q. Let
Eck,i be the event that the i-th last update operation is hidden from the adversary for i ≥ 1, and
i = 0 where ck itself is secure. Observe that Eck = ∪i∈[0,q′]Ei,q for some q′ < q.

Our proof strategy then is as follows. For each Eck,i, we first hop by invoking the security of the
two-party channels to replace all two-party ciphertexts that communicate ‘safe’ value r or ck (or a
descendent in the key sequence) with encryptions of dummy messages (hopping between H−1 and
H0). The simulation proceeds analogously to that in Lemma 4. Then (hopping to Hm):

– For i = 0, we hop by iteratively replacing all relevant Hj calls using the PRG assumption; there
are at most N · q such queries. We replace each F call (of which there are at most q) along the
way with a uniform value by the dual PRF assumption, keying F with ck′.

– For i ≥ 1, we first hop by replacing the first call to F made by the challenger with r with a
uniform value using the dual PRF assumption and keying F with r. We then hop using the PRG
assumption on Hj and keying PRF F thereafter with ck′; note there are at most N · i ≤ N · q
such calls.

By a similar argument to Lemma 4, the hop with the two-party channels and the hops with the
PRG and dual PRF are sound. The result follows by combining the sequence of hybrids.

Lemma 10. There exists an adversary B5 with similar running time to A such that

Advg4GM,C(A) ≤ Advg5GM,C(A) + q · Advsuf-cma
MAC (B5).

Proof. Let E be the event that a successful forgery to Receive is made in a clean execution of
Game 4. Note Game 4 and 5 are identical given ¬E. Let Ei be the event that A’s first forgery with
Receive is with respect to the i-th key sequence starting from ck; note E = ∪i∈[1,q′]Ei for some
q′ ≤ q. Observe by the previous game hop that the corresponding MAC key τk is uniform. We
construct a SUF-CMAMAC adversary B that simulates for Game 4 adversary A given Ei holds.
B locally simulates all calls except MAC query using τk on message m during the simulation is
replaced with the output of query Mac. Finally, when A makes a successful forgery using τk, B
extracts the tag t from the message and returns it to its challenger. The simulation is perfect and
so the result follows by a similar derivation as in Lemma 2. ⊓⊔
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Lemma 11. There exists an adversary B with similar running time to A such that

Advg5GM,C(A) ≤ Advind-cpaSymEnc (B)

Proof. The proof is essentially identical to that of Lemma 5 so we omit it. ⊓⊔

F Sender Keys and Sender Keys+ Protocol Description

We introduce the full Sender Keys and Sender Keys+ protocols in Figures Figures 22 to 24, extending
the descriptions in Section 4 and Section 6. In Table 1 we describe the variables and dictionaries
used throughout the paper.

Below, we also make some additional remarks intended to help the reader to parse the pseudocode,
which is inherently complex, not least due to the additional variables and logic that is required by
our modifications.

Sent and unsent sender keys. When a new user ID joins and a member ME processes the message
via Proc(T = (add, ·), ·), ID does not receive the sender key of ME until ID speaks again. Hence,
ME needs to keep track of this newly added user; it does so via the no-SK[·] dictionary. Namely,
no-SK[ID ] = true in the view of ME if ME has not sent his sender key to ID yet. This functionality
is captured in the SendToMissing algorithm.

Sending control messages without a sender key. A different scenario is that ME calls Exec and
generates a control message T which, in Sender Keys+, needs to be signed. In the event that ME
does not have a working sender key yet (e.g., due to a recent removal), then ME generates an
ephemeral sender key containing only a signature key spk. The key is immediately distributed over
the two-party channels via OneTimeSpk. We remark that whenever both SendToMissing and
OneTimeSpk are executed in the same algorithm (such as in Exec), only one of them will output a
non-blank ciphertext, depending on whether the caller’s signature key SK[ME , kc[ME ]].spk exists or
not.

Index updates. Most of the protocol logic behind our new update mechanism is explained in Section 6.
Due to the synchronization issues mentioned there, the update initiator sends his view (message
epoch) of everyone else’s sender key. This information is stored in the Upd-Ind[·] dictionary, which is
sent as part of the control message.

Additional state variables. The state variables max-ick[·] and last-kc were omitted in Figure 4.
Essentially, these variables keep track of the maximum index max-ick[ID , kc], corresponding to the
sender key SK[ID , kc], for which a message was sent. This is critical to determine what skipped
message keys (if any) should be stored in MK so that chain keys can eventually be deleted for
forward security. This synchronisation mechanism occurs in the Recv algorithm via the two-party
channels, where last-kc specifies the last key counter the bound max-ick refers to.
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Variable Description

General

G sender keys group
γ state
ID user
ME caller
m application message
T control message
(e, i) message epoch counter
H random oracle

Keys

SK sender key
spk public signature key
ssk secret signature key
ck symmetric chain key
mk message key
τk MAC key

Game Dictionaries

M ciphertexts
CH challenged ciphertexts
T control messages
E message epochs
I message indices
SM skipped messages

Variable Description

Protocol

add add command
crt create command
rem remove command
upd update command
acc acceptance bit
welcome welcome ciphertext
ep current epoch
ick current index of user’s chain key
iME current epoch-specific index of caller’s chain key
last-kc last chain key
max-ick maximum index of chain key
kc chain key counter
no-SK boolean indicator of whether sender key exists
rs self-sampled randomness (for updates)
r randomness sent (for updates)
C ciphertext vector
M message
τ MAC tag
σ signature
C ciphertext
γ2pc two-party channel state
C2pc two-party channel ciphertext
Upd-Ind view of update initiator

Table 1. Summary of variables used throughout the paper.
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Init(ID , 1λ)

01 γ.ME ← ID

02 γ.(ssk,G, ep, iME , last-kc)← ⊥
03 γ.SK[·, ·]← ⊥ // (ID , ck)→ (spkID , ckID , ick)

04 γ.MK[·, ·]← ⊥ // (ID , (kc, ick))→ (mk, τk)

05 γ.no-SK[·]← false // ID → bool

06 γ.max-ick[·, ·]← ⊥ // kc→ ick
07 γ.kc[·]← ⊥ // ID → kc

08 γ.rs[·]← ⊥ // kc→ random coin

09 γ.γ2pc ← 2PC.Init(ID)

10 return γ

Send(m, γ)

11 require ME ∈ G

12 C[·]← ⊥
13 if SK[ME , kc[ME ]].ick = ⊥ :

14 // Sample sender key if needed

15 C ← PreSendFirst()

16 if iME = 0 :

17 C ← (C,SendToMissing())

18 (mk, τk)← (H1,H3)(SK[ME , kc[ME ]].ck)

19 c $← Enc(mk,m)

20 UpdateCK(ME , kc[ME ])

21 M ← (c, (ep, iME ), kc[ME ], ick,ME)

22 τ ← MAC.Tag(τk,M)

23 σ $← Sig.Sgn(ssk,M, τ)

24 return C := ((M, τ, σ),C)

Recv(C = ((M, τ, σ), C2pc), γ)

25 parse M as (c, (e, i), kc′, ick
′, ID)

26 require ID ∈ G

27 if SK[ID , kc′] = ⊥ :

28 //Receive ID ’s sender key via 2PC if needed

29 ((SK[ID , kc′], kc∗, ep′,max-ick
′, last-kc′), ID∗, ·, ·)←

2PC.Recv(C2pc)

30 require ID∗ = ID ∧ ep′ = e ∧ kc∗ = kc

31 DeleteOldCK(ID ,max-ick
′, last-kc′)

32 else require C2pc = ⊥
33 require e ≤ ep

34 require Sig.Ver(SK[ID , kc′].spk, σ,M, τ)

35 (mk, τk)← UpdateKeysRecv()

36 require MAC.Ver(τk,M, τ)

37 m← Dec(mk, c)

38 return (m, ID , e, i)

UpdateKeysRecv()

39 ick ← SK[ID , kc′]

40 // Store skipped keys inMK given out-of-order delivery

41 while ick < ick
′ :

42 (mk, τk)← (H1,H3)(SK[ID , kc′].ck)

43 MK[ID , (kc′, ick
′)]← (mk, τk)

44 UpdateCK(ID , kc′)

45 ick
′++

46 if ick > ick
′ :

47 require MK[ID , (kc′, ick
′)] ̸= ⊥

48 (mk, τk)←MK[ID , (kc′, ick
′)]

49 //Delete stored key for forward security

50 MK[ID , (kc′, ick
′)]← ⊥

51 else :

52 (mk, τk)← (H1,H3)(SK[ID
′, kc′].ck)

53 UpdateCK(ID , kc′)

54 return (mk, τk)

Figure 22. Sender Keys and Sender Keys+ protocol description (part 1 of 3). Text in black colour corresponds to
standard Sender Keys. Coloured text corresponds to the modifications in Sender Keys+ from Section 6.2: blue text
corresponds to securing control messages via signatures, teal text corresponds to MACing for forward security and
violet text corresponds to PCS updates.
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Exec(cmd = crt, IDs, γ)

55 G← IDs

56 C[·]← ⊥
57 T ← (crt,ME , IDs)

58 C ← OneTimeSpk()

59 return (T , σ := Sig.Sgn(ssk, T ),C)

Proc((T = (crt, ID , IDs), σ, C2pc), γ)

60 if SK[ID , kc[ID ]].spk = ⊥ :

61 ((SK[ID , kc[ID ]], kc∗, ep∗, ·, ·), ID∗, ·, ·) ←
2PC.Recv(C2pc)

62 require ID∗ = ID

63 require ep∗ = kc∗ = ⊥
64 else require C2pc = ⊥
65 require Sig.Ver(SK[ID , kc[ID ]].spk, σ, T )

66 require ep = ⊥
67 G← IDs

68 for all ID ′ ∈ G :

69 acc← 2PC.InitCh(ID ′)

70 require acc

71 kc[ID ′]← 0

72 ep, iME ← 0

73 return true

Exec(cmd = rem, ID , γ)

74 require ID ∈ G

75 C[·]← ⊥
76 T ← (rem,ME , ID , ep+ 1)

77 C ← (SendToMissing(),OneTimeSpk())

78 return (T , σ := Sig.Sgn(ssk, T ),C)

Proc((T = (rem, ID , ID ′, ep′), σ, C2pc), γ)

79 require ID ∈ G

80 if SK[ID , kc[ID ]].spk = ⊥ :

81 ((SK[ID , kc[ID ]], kc∗, ep∗,
max-ick

′, last-kc′), ID∗, ·, ·)← 2PC.Recv(C2pc)

82 require ID∗ = ID

83 require ep′ = ep∗ + 1

84 require kc∗ = kc[ID ]

85 DeleteOldCK(ID ,max-ick
′, last-kc′)

86 else require C2pc = ⊥
87 require Sig.Ver(SK[ID , kc[ID ]].spk, σ, T )

88 require ep′ = ep+ 1

89 G← G \ {ID ′}
90 ep← ep+ 1; iME ← 0

91 for all ID ′ ∈ G :

92 kc[ID ′]← kc[ID ′] + 1

93 SK[ID ′, ·]← ⊥
94 if ID = ME : γ ← ⊥
95 return true

Exec(cmd = add, ID , γ)

96 require ID ̸∈ G

97 C[·]← ⊥
98 T ← (add,ME , ID , ep+ 1)

99 C ← (SendToMissing(),OneTimeSpk())

100 welcome← (G, kc, ep, spk)

101 (C[ID ], ·, ·) $← 2PC.Send(ID ,welcome)

102 return (T , σ := Sig.Sgn(ssk, T ),C)

Proc((T = (add, ID , ID ′ ̸= ME , ep′), σ, C2pc), γ)

103 require ID ∈ G

104 if SK[ID , kc[ID ]].spk = ⊥ :

105 ((SK[ID , kc[ID ]], kc∗, ep∗,max-ick
′, last-kc′),

ID∗, ·, ·)← 2PC.Recv(C2pc)

106 require ID∗ = ID

107 require ep′ = ep∗ + 1

108 require kc∗ = kc[ID ]

109 DeleteOldCK(ID ,max-ick
′, last-kc′)

110 else require C2pc = ⊥
111 require Sig.Ver(SK[ID ].spk, σ, T )

112 require ep′ = ep+ 1

113 G← G ∪ {ID ′}
114 ep← ep+ 1; iME ← 0

115 acc← 2PC.InitCh(ID ′)

116 require acc

117 no-SK[ID ′]← true

118 kc[ID ′]← 0

119 return true

Proc((T = (add, ID ,ME , ep′), σ, C2pc), γ)

120 ((G′, kc′, ep∗, spk), ID∗, ·, ·)← 2PC.Recv(C2pc)

121 require ID∗ = ID

122 SK[ID , kc′[ID ]].spk← spk

123 require Sig.Ver(SK[ID , kc′[ID ]].spk, σ, T )

124 require ep∗ + 1 = ep′

125 (G, kc, ep)← (G′, kc′, ep′)

126 for all ID ′ ∈ G \ {ME} :
127 acc← 2PC.InitCh(ID ′)

128 require acc

129 kc[ME ], iME ← 0

130 return true

Figure 23. Sender Keys and Sender Keys+ protocol description (part 2 of 3).
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UpdateCK(ID , kc′)

131 SK[ID , kc′].ck← H2(SK[ID , kc′].ck)

132 SK[ID , kc′].ick ← SK[ID , kc′].ick + 1

133 if ID = ME : iME ← iME + 1

SendToMissing()

134 // Send my sender key to new parties

135 if SK[ME , kc[ME ]].spk = ⊥ : return

136 m← (SK[ME , kc[ME ]], kc[ME ]
ep,max-ick[last-kc], last-kc)

137 C[·]← ⊥
138 for all ID ∈ G \ {ME} :
139 if no-SK[ID ] :

140 (C[ID ], ·, ·) $← 2PC.Send(ID ,m)

141 no-SK[ID ]← false

142 return C

PreSendFirst()

143 (spk, ssk) $← Sig.Gen

144 ck $← {0, 1}λ

145 max-ick[last-kc]← SK[ME , last-kc].ick
146 SK[ME , kc[ME ]]← (ck, spk, 0)

147 m← (SK[ME , kc[ME ]], kc[ME ],
ep,max-ick[last-kc], last-kc)

148 C[·]← ⊥
149 for all ID ′ ∈ G \ {ME} :
150 (C[ID ′], ·, ·) $← 2PC.Send(ID ′,m)

151 no-SK[ID ′]← false

152 last-kc← kc[ME ]

153 return C

OneTimeSpk()

154 C[·]← ⊥
155 if SK[ME , kc[ME ]].spk = ⊥ :

156 (spk, ssk) $← Sig.Gen

157 SK[ME , kc[ME ]]← (spk,⊥,⊥)
158 m← (SK[ME , kc[ME ]], kc[ME ],
ep,max-ick[last-kc], last-kc)

159 for all ID ∈ G \ {ME} :
160 (C[ID ], ·, ·) $← 2PC.Send(ID ,m)

161 last-kc← kc[ME ]

162 return C

DeleteOldCK(ID ,max-ick
′, last-kc′)

163 if SK[ID , last-kc′].ck = ⊥ : return

164 while SK[ID , last-kc′].ick < max-ick
′ :

165 (mk, τk)← (H1,H3)(SK[ID , last-kc′].ck)

166 MK[ID , (last-kc′, SK[ID , last-kc′].ick)]← (mk, τk)

167 UpdateCK(ID , last-kc′)

168 SK[ID , last-kc′].ck← ⊥

Exec(cmd = upd,ME , γ)

169 require ME ∈ G

170 Upd-Ind[·]← ⊥
171 (spk, ssk) $← Sig.Gen

172 r $← {0, 1}λ

173 Upd-Ind[ME ]← SK[ME , kc[ME ]].ick
174 ck $← {0, 1}λ

175 SK[ME , kc[ME ] + 1]← (spk, ck, ick)

176 m← (SK[ME , kc[ME ] + 1], kc[ME ] + 1, ep,
max-ick[last-kc], last-kc, r)

177 C[·]← ⊥
178 for all ID ∈ G \ {ME} :
179 (C[ID ], ·, ·) $← 2PC.Send(ID ,m)

180 Upd-Ind[ID ]← SK[ID ′, kc[ID ]].ick
181 rs[kc[ME ]]← r

182 T ← (upd,ME , kc[ME ] + 1, ep+ 1,Upd-Ind)

183 return (T , σ := Sig.Sgn(ssk, T ),C)

Proc((T = (upd, ID , kc′, ep′,Upd-Ind), σ, C2pc), γ)

184 require Sig.Ver(SK[ME ].spk, σ, T )

185 if ID = ME :

186 require C2pc = ⊥
187 r ← rs[kc′]; rs[kc′]← ⊥
188 else :

189 ((SK[ID , kc[ID ] + 1], kc∗, ep∗,
max-ick

′, last-kc′, r), ID∗, ·, ·)← 2PC.Recv(C2pc)

190 require ID∗ = ID

191 require ep′ = ep∗ + 1

192 require kc∗ = kc[ID ] + 1

193 require ep′ = ep+ 1

194 ep← ep′; iME ← 0

195 kc[ID ]← kc[ID ] + 1

196 DeleteOldCK(ID ,max-ick
′, last-kc′)

197 //Hash forward N times before hashing with r

198 for all ID ′ ∈ G \ {ID} :
199 if SK[ID ′, kc[ID ′]].ck = ⊥:
200 continue (line 198)

201 while SK[ID ′, kc[ID ′]].ick < Upd-Ind[ID ′] :

202 (mk, τk)← (H1,H3)(SK[ID
′, kc[ID ′]].ck)

203 MK[ID ′, (kc[ID ′],SK[ID ′, kc[ID ′]].ick)] ←
(mk, τk)

204 UpdateCK(ID ′, kc[ID ′])

205 ℓ← SK[ID ′, kc[ID ′]].ick − Upd-Ind[ID ′]

206 require ℓ < N

207 ck′ ← SK[ID ′, kc[ID ′]].ck

208 do N − ℓ times : ck′ ← H2(ck
′)

209 SK[ID ′, kc[ID ′]].ck← F(ck′, r)

210 return true

Figure 24. Sender Keys and Sender Keys+ protocol description (part 3 of 3).
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