Can Johnny Build a Protocol? Co-ordinating
developer and user intentions for privacy-enhanced
secure messaging protocols

Ksenia Ermoshina Harry Halpin Francesca Musiani
CNRS Inria CNRS
Paris, France Paris, France Paris, France
ksenia.ermoshina@cnrs.fr harry.halpin @inria.fr francesca.musiani @cnrs.fr

Abstract—As secure messaging protocols face increasingly
widespread deployment, differences between what developers
“believe” about user needs and the actual needs of real-existing
users could have an impact on the design of future technologies.
In the domain of secure messaging, the sometimes subtle choices
made by protocol designers tend to elude the understanding of
users, including high-risk activists. We’ll overview some common
protocol design questions facing developers of secure messaging
protocols and test the competing understandings of these ques-
tions using STS-inspired interviews with the designers of popular
secure messaging protocols ranging from older protocols like
PGP and XMPP+OTR to newer unstandardized protocols used
in Signal and Briar. Far from taking users as a homogeneous
and undifferentiated mass, we distinguish between the low-risk
users that appear in most usability studies (such as university
students in the USA and Europe) and high-risk activist user-
bases in countries such as Ukraine and Egypt where securing
messages can be a matter of life or death.

I. INTRODUCTION

In the wake of revelations of mass surveillance and in-
creased privacy concerns from the general public, many hope
that secure messaging applications can converge to be the
“default” option for communication, yet developers still are in
a state of flux about their security and privacy properties and
users have not converged on a single application. For example,
there is still debate on cryptographic properties such as forward
secrecy, group messaging, and repudiation. There is no clear
standard to adopt with all these properties, as older standards
like PGP not offer these properties. In terms of privacy, work
is much more immature than security properties; applications
such as Signal expose metadata via associating users with their
the phone number.

Due to this lack of agreement, next-generation secure
messaging is unstandardized and fragmented, leading to state
of play where secure messaging users currently exists in

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.

EuroUSEC ’17, 29 April 2017, Paris, France

Copyright 2017 Internet Society, ISBN 1-891562-48-7
http://dx.doi.org/10.14722/eurousec.2017.230016

dozens of “silos” that are completely unable to interoperate
with each other: WhatsApp users cannot chat with Signal
users, Cryptocat users cannot communicate with ChatSecure
users, and so on. This is in stark contrast to older federated,
standardized, and freely licensed technologies such as XMPP
with Off-the-Record (OTR) messaging or e-mail with PGP.
For example, any email service can openly communicate with
another (Gmail to Outlook, etc.) in a federated fashion. To
summarize, the properties for new protocols and applications
can be classified into six broad categories:

e Security Properties
e Group Support

e Privacy Properties
e Decentralization

e Standardization

e Licensing

Currently developers simply imagine what properties users
likely need, and these properties may or may not actually
satisfy the needs of end-users. In particular, high-risk users
may care about very different properties than low-risk users
in terms of their threat models. If developers themselves are
relatively low-risk users and building tools aimed at high-risk
users, then the tools may or may not match the needs of these
high-risk users.

Foundational papers in usable security studies call for end-
users to be helped [23], [2]. Recently, more papers have asked
for developers to be helped [14], [1]. Yet this is the first paper
to study the interaction between developers and users to our
knowledge. In this paper, we first state our initial theses in
Section 2, with background is given in Section 3 in terms of the
six aforementioned categories. Our qualitative methodology is
explained in Section 4, with the results from interviews being
delved into in Section 5, and conclusions in Section 6.

II. PROBLEM STATEMENT

Our first thesis is the Developer-User Disconnect: We
hypothesize that the properties of protocols are not understood
by users. The core of the problem is the methodology currently
used in the developer community to design protocols, where

developers of secure messaging applications hypothesize what
properties a protocol should have based on their beliefs about
users. These properties may or may not line up with the
expectations of users, and therefore the goal of our project
is to determine the properties developers believe are important
and see if these properties match the properties wanted by
users. Though some attempts are made to gather and analyze
user experience via online feedback forms and rare offline
workshops (observed at international events such as CCC, IFF
or RightsCon), contact between high-risk users and developers
seems minimal. Such feedback can be produced by tech-savvy
high-risk users willing to contribute in co-developing free and
open-source projects, although high-risk users are of course
often engaged in more pressing issues at hand. Users and
developers need to converge in order to harmonize the needs
of users with the concrete design decisions made by protocol
designers.

Our second thesis is the High-Risk User Problem: We
hypothesize that high-risk users have different needs and
behavior than low-risk users. Although seemingly obvious, in
most studies of end-to-end encrypted messaging, the features
and problems users encounter may not be representative of
actual end-users as the user base that is often studied in
usability experiments in the United States and Western Europe
are often a rather homogeneous selection of students from
a low-risk background. Although it can be claimed that all
users are to some extent “high-risk” potentially, we would
argue that it is sensible to divide users between those high-
risk users who can in the short-term suffer concrete physical
harms such as long-term imprisonment and torture as a result
of information security, and those low-risk users who do not
have immediate consequences due to failures in information
security. High-risk users tend to be in areas where information
security is important due to political instability, although well-
known activists and persecuted minorities in “stable” countries
would count as high-risk users. Most usability studies over
PGP, OTR, and Signal are still done with low-risk users such
as college students, despite the use of secure messaging being
considered to be important to high-risk users [22], [20], [19].
We would hypothesize that high-risk users have different threat
models and so different requirements for privacy and secure
messaging. As most protocol developers are not high-risk users
themselves, they imagine the threat model of high-risk users
as well as the feature set they may desire and what trade-offs
are reasonable, but these projections of the needs of high-risk
users could easily be inaccurate.

Our third thesis is that Security Trainings Differ by Risk:
We hypothesize that trainers in countries with high-risk users
(Ukraine, Iran, Egypt, Russia) will suggest different practices
and tools than trainers in low-risk countries. This is not self-
evident; it is also possible that trainers always train users the
same way to use the “best of breed” applications for secure
messaging and anonymity (“Use Signal, use Tor” as a popular
saying goes), regardless of the context of the training. Security
trainers can be defined as users who give public or private
trainings in using secure tools such as end-to-end encrypted
messaging to other users. The trainers themselves and their
audience may be either high-risk or low-risk. Trainers are
particularly interesting from methodological point of view as
they act as facilitators that translate between the technical
community and users, and have a (perhaps biased) view of

a large swathe of their local user-base. The trainers we have
interviewed either work at non-profits focused on human rights
(ISC Project, Tactical Tech, EFF, Privacy International, etc.)
or are involved in the informal “crypto-party” movement. !
Some of these trainers had studied information security or pro-
gramming, yet the majority were self-trained. STS considers
trainers to be “knowledge brokers” [17] and “‘experience-based
experts” [6] that have “interactional expertise” in the topic of
security but do not necessarily code. They can communicate
with developers by aggregating and translating user feedback
and help “translate” to developers in threat-models and a
nuanced analysis of users. They rapidly react to new technical
tools appearing in the field, test them personally, and then
decide whether or not to include in their trainings. Trainers
coin a specific “pidgin”[12], a situated language based on
metaphors and specific explanation schemes (often including
visual materials) that offer a translation of cryptographic
terms and information security jargon by embedding their
understanding of the field into the specific contexts of usage.

III. BACKGROUND

In this section, we discuss the history of secure messaging,
with properties and applications that we studied summarized
in Table 1. Developers from the listed applications were the
focus of interviews.

A. What is Secure Messaging?

Previous studies in security and usability, are normally
based on looking at the usability of a single protocol such as
PGP or Signal, regardless of the properties of the underlying
protocol or how these protocols and their respective applica-
tions have evolved over time. Furthermore, although there has
been excellent technical work in systematizing the security
properties of secure messaging applications [21], there has
been little historical work on the underlying reasons for the
evolution of secure messaging from PGP-based applications to
more modern secure messaging applications. The term secure
messaging has been used increasingly in the technical literature
[21] and popularization such as EFF’s Secure Messaging
Scorecard” to only refer to “post e-mail protocols,” therefore
excluding older open standards such as PGP. In contrast, we
will take secure messaging in the broadest possible sense of the
term to refer to all protocols and applications that offer end-
to-end encryption, where any passive adversary cannot read
the cleartext of the message, including the service provider. In
other words, only the sender and intended recipient should
be able to read the cleartext of the message, and thus the
protocol must at least offer confidentiality. It may or may not
offer integrity and authentication, as well as any privacy or
anonymity properties. Since the space of possible active attacks
is so large, the active attacker is excluded from this definition
but defenses against certain classes of active attacks may be
security features of the protocol (for example, stripping mes-
sage signatures and forwarding messages [7]). This definition
of secure messaging includes both PGP and newer “secure
messaging” applications such as Telegram and Signal. We
will include synchronous messaging protocols that are able to
receive messages only when both users are online (these brands

Uhttps://www.cryptoparty.in/
Zhttps://www.eff.org/secure-messaging-scorecard

[Application [PGP (LEAP) [OTR | Signal | Conversations [Wire | Briar | Ricochet |
Repudiation (Security) no yes yes yes yes yes yes
Group Support yes no yes yes yes yes yes
No Metadata Collection (Privacy) no no no no no yes yes

Decentralization

yes

yes

no

yes

no

yes

yes

Standard

yes

yes

no

yes

no

no

no

Open Licensing

yes

yes

yes

yes

yes

yes

yes

TABLE L

of messaging applications are often called “instant messaging”
or “chat” applications) as well as asynchronous messaging
applications can receive messages when a user is offline, al-
though many “chat programs support such functionality. Group
support means that the application supports messages between
one to two or more users. Other terms will be introduced to
be defined later, such as “forward secrecy.”

B. The Evolution of Secure Messaging Protocols

1) Encrypted E-mail: SMTP, the protocol originally used
for transferring email, is one of the first messaging standards,
but SMTP has no confidentiality of content or even authen-
tication of headers for network-level routing. However, it is
one of the oldest and most widely deployed standards for
asynchronous messaging.> PGP (Pretty Good Privacy) was
created to add end-to-end encryption capabilities to e-mail in
1991 by Phil Zimmerman, with the OpenPGP set of standards
was finally defined years later in 1997 in IETF to allow
the open implementation of PGP without conflicts with RSA
patents or proprietary software.* OpenPGP is implemented
in both desktop and mobile e-mail apps, including Outlook,
Apple Mail, and Thunderbird through plug-ins. An alternative
standard for encrypted email called S/MIME was developed
that is also supported via plug-ins by most major e-mail
clients, where the main difference between OpenPGP and
S/MIME is that S/MIME requires the installation of certificates
provisioned by centralized certificate authorities.’ In contrast
to centralized approaches, OpenPGP offloads the key manage-
ment to the users via a decentralized “Web of Trust” model. In
general, PGP was considered to have poor usability as users
could not understand key management and judge the trust
relationships in keys, or even understand the interface [22].
OpenPGP and S/MIME also work on mobile devices, such
as the PGPMail for iOS and K-9 Mail (via plug-ins such
as Openkeychain) for Android, but as OpenPGP binds the
key to the particular device, there has often been concern
about how to securely transport any long-term private key
material between devices, and so mobile adoption of encrypted
email is considered to be low among users and problematic
in terms of security. Although these challenges of PGP on the
mobile platform are well-known [16], mobile PGP has not been
subject to usability studies in the same manner that PGP itself
has. S/MIME has had some usability studies and in general
shows better usability than PGP, insofar as key management
does not have to be maintained by the end-user, but users still
have trouble understanding the interface [13]. In terms of the
underlying protocol, there are a number of flaws. First, PGP
tends to allow all combinations of usages of encryption and

3https://tools.ietf.org/html/rfc821
“https://tools.ietf.org/html/rfc2440
Shttps://tools.ietf.org/html/rfc2633

PROPERTIES OF SECURE MESSAGING APPLICATIONS STUDIED

signatures based on the preference of the user, but does not
offer authentication of the headers (i.e. the “to” and “from”
fields), allowing messages to be surreptitiously forwarded
and otherwise redirected via signature stripping attacks [7].
Despite these problems being well-known, the IETF OpenPGP
Working Group did not address any of these concerns, and
so far has only re-convened in order to address upgrades in
the underlying primitives in order to support elliptic curve
cryptography and remove known-broken hash functions in
fingerprint verification from the standard.® In general, PGP has
been considered an open standard that has serious problems
both in terms of security and usability, and this provoked the
generation of competing technology such as Off the Record
Messaging [4].

C. Off the Record Messaging

Released in 2004, “Off the Record” (OTR) messaging
is a plug-in for synchronous instant messaging XMPP that
features a number of radical changes in contrast to PGP [4].
On the level of security, different keys are generated per
conversation when a conversation is started, so there is no long-
term key material that is vulnerable to compromise. However,
by virtue of this design choice OTR messaging limits itself to
synchronous messaging between only two participants. Key
management is much easier and verification of contacts is
still encouraged via a shared secret established offline rather
than key verification in PGP. Off the Record messaging also
enables forward secrecy, i.e. that a key compromise cannot
lead to the reading of past messages, by simply deriving a new
key for every message in the conversation. It has undergone
thorough academic analysis in terms of security, leading to
newer versions of OTR being produced in response to various
attacks [8]. Importantly messages can not be repudiated, i.e. it
can not be proven that a message was actually sent by the
sender. Furthermore, it could also not be proven that they
were not tampered with, as malleable encryption was used.
OTF was built as an extension to XMPP, an IETF standard
that “provides a technology for the asynchronous, end-to-end
exchange of structured data by means of direct, persistent XML
streams among a distributed network of globally addressable,
presence-aware clients and servers” that was mostly used for
synchronous chat.” Like SMTP, XMPP does not provide any
content confidentiality and so does not, by itself, count as se-
cure messaging without OTR. OTR has application support via
clients such as Adium and Pidgin that can be used on a number
of platforms, and could even be used on mobile platforms via
ChatSecure. While XMPP itself is standardized by the XMPP
Foundation and the various versions of OTR is authoritatively
described by its academic authors in a specification on their

Shttps://datatracker.ietf.org/doc/charter-ietf-openpgp/
"https://xmpp.org/rfcs/rfc3920.html

webpage,® OTR’s “current usage” is itself is clearly described
by the XMPP Foundation (a small standards body devoted
only to XMPP) as an XEP (XMPP Extension Protocol).’
Therefore, although not as authoritatively standardized as PGP,
XMPP+OTR is informally considered an open standard. A
usability study was done on OTR that demonstrated users
did not have trouble setting up keys but did not understand
the offline authentication process [20]. The usability and
user perception of more complex properties such as forward
secrecy and repudiation were not studied in usability studies.
Although academic work studied improving the authentication
process [3], the combination of the restriction of OTR to syn-
chronous messaging and the confusing authentication process —
as well as underlying dependencies on the increasingly unused
XML technology stack, unmaintained insecure clients, and
excessive extensibility — all led to a decline in usage of OTR
in the decade after its publication.

D. The Signal Protocol and beyond

As previous secure messaging around PGP and OTR started
showing their age in terms of security and usability, it was
not surprising that cryptographers wanted to derive new and
better protocols in the wake of the Snowden revelations.
Open-source developers started making strides in creating
a next-generation secure messaging protocol, with the most
advanced and popular protocol being the Signal Protocol used
by applications such as Signal (formerly TextSecure, from
whence the name of the protocol is derived) as well as
WhatsApp. In brief, Signal used per-conversation key material
in a similar manner to OTR, and thus unlike PGP did not
force complex key management on the users. Like OTR, it
maintained properties of repudiation and forward secrecy by
virtue of the Axolotl Diffie-Hellman key ratchet'® but added
“future secrecy” so that messages indefinitely in the future
cannot be read in the case of a key material compromise [5].
It solved the asynchronous messaging problem by virtue of
allowing longer-term pre-keys managed by the Signal server,
and offered group messaging implemented as point-to-point
messaging. This protocol then started to attract attention from
academic cryptographic community, and only minor flaws
were found [11]. Although alternative approaches were devel-
oped and widely-deployed like MTProto by Telegram, these
protocols developed their own cryptographic primitives and so
received less attention from the academic community, although
these protocols had a number of dangerous bugs [15]. With a
minor variant implemented in the vastly popular WhatsApp
messenger, the core Signal Protocol seems well on its way
to clearly replacing the use of XMPP+OTR and becoming
a competitive, if somewhat boutique, feature for mainstream
messaging services (as shown by the adoption of the Signal
Protocol as an optional feature by both Google Allo and
Facebook Messenger). E-mail stubbornly remains unencrypted,
due to a large part in problems with key management, and
although there are efforts to revive encrypted e-mail such as
the Google End-to-End project!! and LEAP,'? they have not
yet been finalized or reached widespread adoption. Encrypted

8https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html
9https://xmpp.org/extensions/xep-0364.html
10https://github.com/trevp/double_ratchet/wiki
https://github.com/e2email-org/e2email
2https://leap.se

messaging applications like WhatsApp, Telegram, and Signal
are now the default encrypted messaging application for users
that consider themselves to be high-risk. Usability studies
have shown that although Signal (similar to OTR) is easy to
setup and use, even highly-skilled users fail to use verification
correctly [19]. Currently, the Signal Protocol is centralized, as
a single server mediates the setup of the protocol in most wide-
spread deployments (Signal, WhatsApp, Google Allo, Face-
book Messenger, Wire). Open-source alternatives that claim to
use the Signal Protocol exist, such as centralized application
Wire that uses a fork called Proteus, and decentralized projects
such as XMPP-based Conversations use the Signal Protocol’s
double ratchet. While it seems that Signal is widely adopted
and considered an improvement over both OTR and PGP,
the core Signal Protocol remains officially unstandardized,
even though there is an informal draft by Trevor Perrin and
Moxie Marlinspike.!? This has led to copying parts of the
Signal Protocol by a draft XMPP Foundation standard called
OMEMO for use by applications such as Conversations.'*
There are a number of critiques as well based on privacy: the
Signal Protocol provides confidentiality but requires exposing
phone numbers to the server and so allows the server (although
the server of Signal currently minimizes logs) or a passive
adversary to capture all the metadata, including the social
graph of users. While some secure messaging solutions like
Ricochet use Tor to hide the IP address of their users, none of
the popular Signal Protocol-based messengers hide metadata.'

1V. METHODOLOGY
A. Science and Technology Studies

We combine the qualitative methodology of Science and
Technology Studies (STS) to analyze the interfaces of mes-
saging apps as “meeting points” between the intentional goals
of developers and the needs of users [18]. In complement
approaches such as traditional quantitative survey-based or
protocol-based security usability studies on particular software,
STS aim at providing a fieldwork-driven sense-making of
emerging systems, artifacts, communities of practice, doing
‘analytical thick descriptions’ of events, artifacts, organizations
— in particular, moments of crises, debates, controversies — to
try and understand the life of a technical artifact, from its
creation to its appropriation and reconfigurations by users, to
its becoming a subject of public debate, of governance, of
lobbying. A commonly-found term to describe this in STS
literature is “problematization.” Although it is clear that the
field of secure messaging is riddled with problems, does not
mean the production of new theoretical problems that would
be possibly irrelevant to developers and users. Instead, prob-
lematization refers to the process of inquiring into “how and
why certain things (behavior, phenomena, processes) became a
problem” [10]. The primary methodology to achieve this goal
is to observe, for relatively prolonged periods of time, specific
case-study groups or communities, conducting on the side in-
depth interviews with their members and reading appropriate
documentation such as release notes, accounts of working
sessions, etc. This generally requires to carefully select a
limited number of case studies, which will be covered in

Bhttps://signal.org/docs/specifications/x3dh
4https://xmpp.org/extensions/xep-0384 . html
https://ricochet.im/

depth, by making hypotheses on their meaningfulness. Ideally
these case studies should be representative of wider trends and
be cross-checked via multiple interviews or backed up with
quantitative studies. Thus, STS employs primarily qualitative
techniques from anthropology such as ethnography, but aimed
primarily at the role of technology in society, which can
provide insight that can form the foundation for quantitative
work and future development of the field.

We argue that secure messaging very much needs this
perspective at the present time, as an emerging field that is
increasingly becoming a matter of interest for the general
public. It is a moment in time when users cannot be taken as
a ‘separate sample’ from the rest of the ecosystem, including
developers themselves (and the different forms they choose to
give to their projects, their level of openness, etc.), alongside
a variety of trainers, regulators, the media, and so on. At the
current level of maturity of encryption as a public concern and
a concern of governance, this approach is very much needed
and would do well to precede with more systematic and quan-
titative endeavors. One possible outcome of this qualitative
approach from STS is that the very concepts and schemas
traditionally used in cryptography and usability themselves can
globally revised if needed. Due to the persistent presence of
usability and adoption problems in secure messaging, it makes
sense that some global revision of the conceptual schema used
by developers may be necessary in order to harmonize their
goals with that of users. Given that these developers differ
both wildly and in subtle ways, a quantitative survey by itself
would have difficulty summarizing the intentional structures of
those working on and using secure messaging. Also, the results
of such a work would likely not be statistically significant
given the small amount of developers. The same holds for
users: If user samples vary highly due to risk level and
geographical location, this biases samples rendering traditional
survey approaches problematic. Instead, we hope that these
interviews help crystallize the key positions of these developers
and users on issues, and that then larger-scale quantitative
surveys and in-person protocols with specific software can be
done to see if the developer intentions actually map to user
needs.

User needs are also not as simple as they appear: In
the tradition of “user studies” developed within STS, we
understand users not as a homogeneous and passive group,
but as active contributors participating in innovation and
co-shaping technologies [18], which is possible in software
development via routes such as bug reporting, pull requests
on code, mailing list comments, and in person contact of
users with developers. We distinguish users as high-risk or
low-risk, with respect being paid to their own analysis and
description of their situation. Our interviews include both tech-
savvy users (who become trainers and teach other users) as
well as low-knowledge users who are nonetheless possibly in
a very high-risk situation (i.e. a situation where the misuse
of secure messaging would likely lead to death or high
prison sentences). In our methodology, at first we focused on
interviewing users from western Europe who were not likely in
high-risk situations (in particular, in Germany, France, Austria)
as well as activists and journalists from Eastern Europe and
the Middle East in high-risk situations in Ukraine, Iran and
Egypt. The questions being used in our study are provided in
Appendix A.

B. Interview Selection Process

Interview subjects that were developers were selected due
to pre-existing personal relationships with the cryptographic
research community. Although this does provide bias, we
believe it can be countered by doing a large number of
interviews as well as also recognizing the relatively small size
of the global developer community. We also reached to some
developers via the GitLab and GitHub pages of the projects
without personal connections (e.g. Ricochet, Conversations).
In contrast, user studies were done with individuals that were
selected more by chance via their attendance at training events
in their local environments (both high-risk, in the case of
Ukraine, and low-risk in the case of France and the United
Kingdom) or conferences in pre-selected venues that were
determined to be likely to attract high-risk users that lived
in areas that, due to the level of repression, made it difficult if
not impossible to interview them in their native environment,
or would make it such that they could not speak openly
in their native environment due to repression. This was the
case for users from Egypt, Turkey, Kenya, Iran, where the
interviews took place in March 2017 at the Internet Freedom
Festival and at RightsCon. All interviews were made between
Fall 2016 and Spring 2017, for a total of 48 interviews. We
interviewed (15) developers, experts from NGOs focused on
privacy and security, such as EFF, Tactical Tech and Privacy
International (6) and everyday users (27), for a total of 33
user interviews. Developers from LEAP and Pixelated (PGP),
ChatSecure (OTR), Signal (including Wire and Conversations
(OMEMO) implementations) were interviewed, as well as
developers from Briar and Ricochet that use their own custom
protocols. Within user groups we distinguish between high-
risk users (12) and users (including researchers and students)
from low-risk countries (21). The developers were all from
the USA/Western Europe, and the high-risk users included
users from Ukraine, Russia, Egypt, and Iran. Some high-
risk users, due to the conditions in their country, had left
(4) or maintained dual residency (2) between their high-risk
environment and a low-risk environment. The “users” category
also includes a subset (18) of security trainers, e.g. users
involved in organizing seminars on security, disseminating
privacy-enhancing technologies, practices and knowledge. We
interviewed between trainers from high-risk (9) and low-risk
countries (9). All questions that we used, including those given
only to particular categories like trainers and developers, are
given in Appendix A.

C. Ethical Guidelines

A specific protocol was developed in order to protect
privacy of our respondents. We let users and developers suggest
us a tool of communication of their choice if they wish to do
the interview online. These tools ranged from PGP to Signal,
meet.jitsi, Wire or WhatsApp. If an “in person” interview was
preferred, the interview was recorded with an audio recorder
isolated from the Internet. We use a dedicated encrypted hard-
drive to store the interviews. Before the interview we asked our
respondents to carefully read two user-consent forms related to
the study and ask all the questions regarding their privacy, their
rights and our methodology. The two forms were written in
collaboration with UCL usability researchers and based on the
European General Data Protection Regulation. The documents
included an Information Sheet and an Informed Consent Form.

The first document, (Information Sheet) explained the purpose
of the interview, described the research project and clearly
mentioned the sources of funding for the project; provided
information on the length of the interview, but also information
about the researcher, including her email, full name, academic
affiliation and the address of the research institution. The
second form (Informed Consent) described the procedures
regarding data processing methods, the period and conditions
of data storage; it emphasized the right of the interviewees
to demand, at any moment, to withdraw their data from the
research. A copy of each document was given to the inter-
viewee. Different forms were used for users and developers.
These forms were given as a link here.'® Additional measures
have been taken to ensure better privacy for our interviewees.
Thus, the name of the interviewee was not mentioned during
the recording. We also adapted some questions to withdraw any
elements of context (such as the country or the city, the precise
social movement or affinity group a user was involved in and
so on), if interviewees asked for this. We respected the right
of our interviewees to refuse answering a specific question.
However, our questions were specifically designed in order
to focus on the tools, with no biographical questions. In this
report, user names are used when the user gave permission,
but are otherwise kept anonymized.

V. INTERVIEWS

The results of the interviews are presented in this section.
For each category of questions, representative quotes have been
chosen. The results of the interviews are summarized on a
high-level in Table II where ‘low’ means that the topic was
mentioned as a topic the user didn’t care about or mentioned
negatively by a majority of those interviewed and ‘high’ means
it was mentioned positively. Note that we did not to statistical
tests as our sample size was too small, and in future research
we will increase the sample size so that such testing can be
done.

A. Developer Motivation

Developer motivation was quite wide-ranging, but largely
could be divided between those who wanted to start privacy-
enhanced businesses that would serve both low and high-risk
users to those who were primarily motivated by protecting
high-risk users due to human rights concerns that are more
traditionally dealt with by the NGO sector. In the case of Wire,
the developers felt that they were addressing issues that they
had neglected in the original design of Skype, as “after Skype
was sold to Microsoft [they] had an idea of how to build a new
Skype...or what Skype should look like 15 years after. One of
the biggest gaps that was missing on the market was related
to privacy and security.” Nonetheless, they had very limited
contact with high-risk activists and stated that the application
was developed “mainly for private usage,” leading to some
technical limitations such as group chat only supporting up to
128 users that made it unusable for mass social movement
organizational purposes. On the other hand, although Briar
has very little use from high-risk activists, the entire concept
was inspired by inquires from high-risk activists asking “if
LimeWire would be suitable for communication” and that
although the developer of Briar (who worked at Limewire

16http://www.ibiblio.org/hhalpin/homepage/forms.zip

at the time) felt “that it may be suitable ... we can build
something suitable on a more social basis,” which in turn led
to the development of Briar. Some developers, such as those of
ChatSecure, are surprised by the amount of downloads from
high-risk activists (approximately twice as many downloads
from the Russia as from the USA), “our Russian translation
is pretty good and appstore description is good, and theres
an XMPP server in Russia that recommends our clients ... I
don’t think it explains that much downloads.” As discovered
via interviews, a large existing user-base of XMPP+OTR users
in the Russian anti-fascist movement looking for a mobile
version of their desktop clients ended up being the root cause
of the popularity of ChatSecure amongst Russian activists.
Strangely, it appears that developers are motivated by high-
risk activists, but have little actual contact with high-risk users
in their systems.

B. High-risk vs. Low-risk Users

Developers tended to distinguish between low-risk users
who are “privacy-aware” and high-risk users such as human
rights activists in war-zones, and further distinguish these
two groups explicitly from the “high-knowledge” expert (but
usually “low risk™) users, e.g. researchers and tech-savvy users
who install the software to test out their capabilities. The
division between high-risk and low-risk users held up in the in-
terviews. High-risk users, unlike low-risk users, focus on active
attacks and have a well-defined threat model. However, low-
risk users had an implicit threat-model with a focus on passive
threat models, such as server seizure. High-risk users worried
about active attacks ranging from device compromise to active
man-in-the-middle attacks but were not certain to what extent
they were protected by secure messaging applications.

Due to these difference in threat models, high-risk users
often try to verify keys (after they receive a notification that
the key has been changed in Signal, WhatsApp, Wire or
other applications) while low-risk users with a “passive” threat
model did not. High-risk users tend to check the authenticity
of a person if the key material changes, but may check for
authenticity informally using context rather than using only
cryptographic verification: “I verify keys in PGP, but...I verify
the person by other means... we speak about same things. In
Jabber also I often just do it manually, without shared secret.
But I always check if I receive something warnings about the
persons device” (K., trainer). High-risk users are afraid that
the devices of their friends have been physically accessed,
stolen or otherwise taken away by powerful adversaries willing
to use physical force and subterfuge to access contacts lists.
Some high-risk users tend to confound device seizure with
keys being changed, and do not realize that if a device was
seized an adversary could continue communicating using the
seized key material. Some do realize this possibility but then
try to ascertain the identity of their contacts using out-of-
band channels: “If I get a message from Signal for example,
saying that my contacts device has changed or his fingerprints
changed ... I normally try to get in touch with the person ... I
need to hear the voice” (Ukraine, trainer).

As has been observed among our interviews, in more
high-risk situations such as Ukraine, the choice of secure
messaging application can be due to the politics of its country
of origin. These high-risk activists exclude applications and

[Interview [Developers [Low-risk Users | High-risk Users |
Number 15 18 15
Repudiation (Security) high low low
Group Support high high high
Metadata Collection (Privacy) high low high
Decentralization high low low
Standard high low low
Open Licensing high low low

TABLE II. IMPORTANCE OF PROPERTIES OF SECURE MESSAGING INTERVIEWS

online services that have servers on the territory of Russian
Federation or Ukraine and prefer American-based services,
with even trainers advocating usages of Gmail and Facebook.
Similar dynamics were observed in Iran (with no adoption
of GPG and strong preference for Gmail with two-factor
authentication), and Egypt (where WhatsApp is popular as the
United States is considered as not being part of the threat
model). For example, “Iranians use Google and Gmail a lot,
they do not care about NSA spying on them, they care about
Iranian government not having access to the data. We use
Google Drive to upload our personal photos for example.
For us the entire motto of ‘Use Signal, Use Tor’ does not
make sense. As soon as the servers are inaccessible for the
[Iranian] government, it can be used” (M., female, Iranian
high-risk user and journalist). This is similar to the response
given by high-risk Ukrainian and Russian users, although they
note the configuration of trusted jurisdictions changes: “The
most important thing for us is to convince people to stop
using Russian services like mail.ru or yandex.ru. It is a direct
backdoor to FSB office. We recommend also to switch from
Telegram to WhatsApp. We recommend Gmail with two-factor
authentication over PGP. It is easier to explain and people
are already used to the interface [...] I don’t think US will
give out data on Ukrainians to Russians. [...] However, after
Trump everything may change” (V., trainer, Ukraine). The
high-risk users interviewed so far had similar well-conceived
threat models but these could easily vary in a country-specific
manner in terms of application preference.

C. Security Properties

The main advantage of OTR and Signal-style protocols
is that key management is no longer a barrier to entry, and
this appeals even to high-risk users. Trainers often found it
too difficult to teach even high-risk users the precise security
properties of key management, noting that “some trainers think
there should be no key discovery at all, it is better to have
opportunistic or automatic key discovery as it is happening
with Signal. Different encrypted messaging apps have popped
up that made it a lot easier to have just an app that will
pass on your communication, and the encryption part will be
transparent to the user. Having encryption as a default mode is
the key part in making encryption popular.”” The vast majority
of users preferred not having to do key management. Yet
many high-risk users wanted some form of key verification
and out-of-band authentication, even if it was hard to use
in practice. Both high-risk and low-risk users insisted on the
importance to “see encryption happening” in the interface, a
desire also explored in earlier work on encrypting Facebook
conversations [9].

All secure messaging applications offered confidentiality
and integrity. The most controversial of security properties

is authentication, in particular the idea of repudiation. The
security of end-to-end encryption definitely includes confi-
dentiality, but often surprisingly (post-PGP) protocols like
Signal and OTR are defined not to include authentication using
traditional cryptographic signatures, but instead include some
other authentication code or shared secret. Repudiation is when
it can not be proven that any given message cryptographically
came from a particular user or by a unknown third-party. OTR
even went as far as to use malleable encryption to enforce this
property. Yet it is unclear if such a cryptographic technical
construction would ever lead to plea of plausible deniability
being socially accepted in court. This may lead to unnecessary
complexity in protocols like OTR and Signal. In order to
achieve plausible deniablility and “future secrecy,” the use
of Diffie-Hellman key ratchets leads to a plethora of keys,
and this makes the protocol more difficult to understand and
formally verify than a protocol that would be based on simpler
mechanisms such as non-repudiable signatures [5]. Users were
not aware of any cases where cryptographic deniability was
used in actual court cases, as usually the social context and
other circumstantial evidence was enough to determine if a
user was involved in a conversation. Ukrainian users mentioned
social networks (namely, Vkontakte and Facebook) as the
main source for deanonymizing users and their connections
and insisted on a need of changing privacy settings to close
friend lists. For all high-risk users device seizures were
mentioned as more important and more frequent threats than
“man in the middle” (MiTM) attacks. It was generally viewed
that ephemeral messages as such were more important than
cryptographic deniability. In order to achieve ‘“real-world”
repudiation and deniability users tend to develop their own
practices and combine usage of several tools. For example,
Russian high-risk claimed to use so-called “one-time secrets”
to share information via accessing specific websites via Tor
as this offered a possibility to send and receive unique self-
destroying messages (similar to, but not using, Ricochet).
Therefore, it seems repudiation via cryptographic deniability
ends up being an interesting design choice, but one much less
important than preventing metadata collection.

D. Group Support

Developers of secure messaging apps perceive group sup-
port as one of the main challenges, and both high-risk and
low-risk users we interviewed wanted some form of group
chat. Developing group chats in peer-to-peer systems “is both
an important usability feature and a scientific problem,” a
developer pointed out. Among the questions developers are
working on in relation to the group chat are: Who has the
right to invite and ban participants of a group chat? While
Signal, Wire and Telegram offer a possibility to all members to
invite new participants, Briar suggests a specific architecture

for the group chat. Briar lead developer Michael, compared
the group chat architecture of Briar with a “star”: For a better
metadata protection and anonymity, only the creator of the
group has a right to invite and ban participants. “It leads to
a certain centralization within a distributed system” remarked
another Briar developer. Another open research and practical
challenge is hiding the social graph of participants of the
group chat. Projects we studied propose different solutions
to this problem: For example in Briar every new member
of a group chat is only connected with the creator of the
group, but the links between members of the group do not
exist, preserving users’ contact networks. In contrast, Wire
opted for a solution to analyze contact networks of users
and, based on this analysis, to suggest new contacts to users.
This function was criticized by both trainers and the security
community as revealing metadata, which would be dangerous
to high-risk users. Both high-risk and low-risk users also used
different applications for different group purposes, using group
chat on Facebook Messenger for their work, while preferring
WhatsApp or Signal group chat for communications that they
considered private.

High-risk users in Ukraine emphasized their usage of
Cryptocat group chats during Maidan revolution, thanks to
the relative anonymity (understood by them as absence of
any connection a telephone number) that would not reveal the
metadata of high-risk users in a group chat. As security trainers
point out, Telegram group chats are also popular among high-
risk users despite the fact that encryption for group chat offered
in Telegram is very basic, defaulting to simple TLS rather than
the more advanced M-PROTO protocol for group chat. We’ve
observed several groups of activists and researchers working
in Russia and Ukraine in a high-risk context (namely covering
the events in the east of Ukraine) that trusted Telegram group
chats over their secret group communications. Trainers explain
the popularity of Telegram because of the self-representation
of the app on the market: “They [Telegram] managed to
present themselves as a secure messaging app, from the very
beginning. It’s like their main selling argument [...] People
believe Durov [Telegram founder] because he left Russia” [V.,
trainer, Ukraine]. Thus, motivations for adoption of privacy-
enhancing tools are also dependent on the reputation of their
creators, as well as shifting geo-political alliances that may
effect the reach of government agencies. The fear of Google
and the NSA storing large amounts of data in the long-term is
viewed as more of a problem by low-risk users, as this problem
does not have immediate consequences for many high-risk
users.

E. Privacy Properties

Many developers found increasing privacy through mini-
mizing metadata collection to be the second most important
feature after the development of end-to-end encryption: “End-
to-end encryption is a first step. But besides there is a whole
new dynamics that needs to happen that’s related to all of the
metadata and what is it used for.” Yet many developers con-
fused whether or not a third-party adversary could be passively
monitoring the communication and so collect metadata with
whether or not they as developers personally collected data, as
exemplified by one developer that stated simply “I do not have
anything in my code that would let me know how many people
are watching the app right now.” However, many developers

also believed they would have to collect some metadata in
order to interoperate with features such as push notifications
of arriving messages, but they try to limit the harm: “With
introducing the push messaging it’s the first time were exposed
to possible metadata. But we don’t log anything, we don’t
know who is talking to who, we don’t log any information.”
Most developers who were aware of third-party data collection
of metadata were supportive of using Tor and on disabling
the collection of phone numbers in particular, but lacked a
comprehensive plan to minimize the collection of data as such.
High-risk and low-risk users generally supported reducing data
collection and increasing privacy, although often the encryption
of data was assumed to hide metadata by non-trained users.

Developers and information security trainers underlined the
urgency to find a reliable solution to the metadata collec-
tion problem and state that nothing in the field of end-to-
end encrypted instant messaging apps offers good metadata
protection: “Metadata connects you weirdly with other people,
and there’s more sense in the metadata than in the data itself
for technological reasons [...] No one from the messaging
apps is trying to solve that. Instead they suggest to sync your
address books so they know exactly who you’re talking to
even though you trust them to somehow make it into hashes or
whatever. That’s the issue we are not solving with the apps, we
make it worse. We now have centralized servers that become
honeypots, and it’s not about the data, it’s about the metadata”
(Peter S., Heml.is). Developers and trainers associated the
leaking of metadata with centralization.

F. Decentralization

While centralized projects such as Telegram, Signal, or
Wire prevail on the market and have larger user-base, most
developers were more enthusiastic about decentralization. Even
though they agree on the fact that decentralized systems are
harder to design, their motivation to work on decentralized
systems was grounded in both the political and technical
aspects of decentralization. Politically, decentralization offers
‘empowerment’ to the user, as it gives users a means to
‘control’ their own data and developers believe it enables
better metadata protection: “You’re still not owning your data,
all the metadata is controlled by a centralized system, they
know all your contacts, who youre messaging at what time. [
want people to run their own infrastructure.” Some developers
believed the choice of decentralization is inherently connected
to not collecting metadata, and felt that models existed which
were usable and decentralized: “With Signal it’s impossible to
create a decentralized system because phone numbers aren’t
decentralized. With XMPP it’s like an email address. Even
users who aren’t technologically savvy can understand this
is my user ID, and this is my server.” Developers involved
into production of decentralized protocols noticed that the
market reality of secure messaging makes both federated
and distributed projects less privileged in terms of financial
investments than centralized projects: “It is more challenging
to build federated systems because you have to coordinate with
other implementers, but also the real problem is the funding!
People work on XMPP clients in their free time, so it is not
as perfect as a centralized system with proper funding.”

Unlike developers, many high-risk users did not bring
up the need for decentralization explicitly, but they brought

it up implicitly in how they formed trust relationships. De-
centralization is seen both as technical challenge and social
experiment, as it provides infrastructure for specific communi-
ties to organize with less dependency on intermediaries. In
this sense, developers, high-risk users, and trainers tend to
build associations between political organization and technical
infrastructure. For example, some developers and trainers
justified decentralization as mirroring the organization of anti-
authoritarian social movements. In terms of choice, there was
a preference for systems that were considered trustworthy po-
litically by high-risk users, and decentralization was generally
viewed as a positive in this regard by the minority of high-
risk users that wanted decentralization. These high-risk users
expressed concerns about centralized systems collecting their
metadata, although few realized this would be possible in most
decentralized systems as well, albeit in a distributed form.

G. Standardization

Users tended not to care about standards and the topic was
rarely mentioned or brought up, including by high-risk users.
In stark contrast, developers care deeply about standards, as
they felt standards were “something they would eventually
be working on.” Yet there was widespread discontent with
existing standards bodies, as the “XMPP community is very
conservative” and “the IETF is not the same beast it was in the
early days.” Instead, most developers shared the philosophy
that they would build the application first, and then focus
on standardization and decentralization via the use of open
standards. In the case of secure messaging, it was still felt
that more development was needed on the code, and standard-
ization would only slow down existing development efforts.
Developers adopted Axolotl (the Diffie-Hellman ratchet) be-
cause they felt it was the best design available, even if it was
not fully standardized and they had to re-code it from scratch.

Tensions between centralization and decentralization go
hand-in-hand with debates over standards in online debates
within developer community. A well-known argument in favor
of centralization and against standards was published by Moxie
Marlinspike (Signal Developer) in his blog.!” This blog-post
called “The eco-system is moving” has attracted considerable
attention is widely quoted by developers as a reason not to
use standards, as centralization offers a better control while
federation can be “dangerous” in terms of security, as it is
hard to audit all the different implementations of the protocol
and ensure correct updates. Developers from the PGP, XMPP,
and other protocols (Briar, Richochet, etc.) strongly oppose
to this critique from Signal in their own blog-posts.'® For
example, one XMPP developer working on encryption states
that the “extensibility of XMPP is not a danger in itself. A good
extension will spread naturally. Moreover, there’s a permanent
incentive to innovate in XMPP.” This has led developers in
certain communities to try to standardize a version of the
Signal Protocol, the OMEMO standard, in the XMPP Foun-
dation. Signal developers are concerned about the technical
competence of having third-party developers standardize their
protocol, as well the likely situation where the standard is not
be updated rapidly enough in response to research and bugs.
In terms of PGP, developers from encrypted e-mail providers

7https://whispersystems.org/blog/the-ecosystem-is-moving/
18https://gultsch.de/objection.html

such as LEAP are still trying to implement the PGP standards
correctly, and hope in the future that the PGP standards can be
extended to have properties such as future secrecy and easier
key management like Signal, but they see fixing the standards
as a far-off long-term goal. In contrast, Signal developers
believe these older protocols like PGP and XMPP actually
harm user security and should be abandoned.

H. Licensing

Viewpoints on licensing varied between developers and
users, although most preferred open-source licensing, albeit for
different reasons. GPL usage was viewed as a lifestyle choice
by low-risk users: “If I dont like mainstream in media, if I
dont like mainstream in music — why would I like mainstream
on my computer?” (Austrian user). High-risk users were con-
cerned over metadata leaking by having to pay for applications
and many did not have funds to purchase proprietary appli-
cations, while some low-risk users preferred closed-source
commercial platforms like Threema with a commitment to
privacy and were happy to have to pay for services. Developers
found the GPL frustrating in terms of the Signal Protocol and
it’s lack of a standard, as it prevented the integration of their
application with platforms like the Apple Appstore, and hoped
to use the same basic protocol but under a more permissive
license. As stated by a Wire developer, “The Signal Protocol
is open source under the GPL that means you can’t integrate
it into a commercial product and thats why Whisper Systems
were getting large licensing agreements from Facebook and
Google and WhatsApp to integrate without opening up all of
their source code.”

High-risk users tended to understand that open-source was
necessary for trust, as their friends who were security trainers
said this to them: “All security experts whom I trust all use
Signal, and we must use something that is secure and easy-
going and that we can use all together so we decided to use
that and we just hope it is safe. I think they looked at the
source code, I did not but I have to trust them.” Yet high-risk
trainers recognized that an easy-to-use interface with cutting-
edge features (including new emojis) mattered: “You can say
OK we verified this application, it’s legit, it does what it says.
But the user interface part is key in reaching the audience.
Features, looking nice, be easy to use. This is what you need to
have success with users.” Rather than look at code themselves,
high-risk relied on ‘word-of-mouth’ from other high-risk users
in terms of code quality.

VI. CONCLUSIONS

In order to design protocols appropriately, the intentions
and needs of users need to be brought into greater co-
ordination with that of developers. However, this is not as
trivial as there are distinct classes of users, ranging from high-
risk and low-risk users. In addition, a subset of both high-
risk and low-risk users end up being trainers that train other
users. Although we did not have time to thoroughly explore the
entire space of possible levels of risks and levels of expertise
as our interview process is still underway, it does appear
high-risk and low-risk users have very different threat models,
with high-risk users generally being concerned over physical
device compromise and other active attacks with low-risk

users being more concerned over passive attacks and server-
seizures. High-risk users defined their threat model against
a local active adversary, often the police or secret agencies
of their government or a nearby hostile government, rather
than a global passive adversary such as the NSA. In contrast,
developers usually view their threat model as the NSA, a
global powerful adversary, despite the lack of attention to
privacy properties like metadata collection in secure messaging
protocols. While developers created their applications for high-
risk users, they were in general concerned mostly with the
particulars of messaging protocols, and not threats such as
device seizures, although the move to ephemeral messaging
in Signal shows growing awareness of this threat model.

As for our first initial thesis (Developer-user disconnect),
that the properties of protocols, particularly in terms of cutting-
edge design choices, are not understood by users is correct
but subtle. Users do want confidentiality and group messag-
ing. Yet in other properties there is a disconnect, as users
also want privacy protection, do not need repudiation, and
do not care about decentralization and licensing. While key
management is important to keep simple, no users needed
cryptographic repudiability of a conversation. Instead, they are
more interested in privacy and even anonymization to resist
metadata collection. Still, the problems are subtle in points
where the application does not line up with user expectations.
For example, users often believe Signal protects metadata
and keeps their conversations anonymous. For example, even
though Signal does not log metadata (outside the last time a
user installed the application and the time of last connection),
a real-world adversary could simply watch the encrypted
messages going in and out of the Signal server in order to
capture the social graph of users. More easily, a captured
device would reveal the phone numbers of all other Signal
contacts. Although some applications such as Ricochet do
achieve protection against this kind of adversary that high-
risk users worry about, high-risk users are in general much
more aware of Signal and find it easy to use, while the
anonymized Ricochet application was unknown amongst the
users we interviewed. Some issues that are important for
developers, such as standards or decentralization, are not in
general important to users. Licensing (and having code open-
source) is equally important to developers. Low-risk users tend
not to care, but high-risk users do prefer open-source code,
although they do not inspect it themselves.

In terms of our second initial thesis (High-Risk User Prob-
lem), high-risk users have different properties they want and
behavior than low-risk users. High-risk users have well-defined
(if implicit) threat models, prefer open-source, are concerned
over device seizure, and are concerned over privacy, including
not just metadata collection but having phone numbers from
secure messaging applications such as Signal being leaked or
captured. Therefore, we are left with the curious situation of
high-risk users in Ukraine preferring Cryptocat, which suffered
from serious security vulnerabilities in early versions but did
not require phone numbers like Signal. However, high-risk
users are not homogeneous, as the social and geopolitical
differences between high-risk users lead to vastly different
eco-systems of applications. Therefore, for future work we
need to explore the differences between different high-risk
groups of users across a wider variety of countries to see
what generalizable patterns emerge. Note that the same likely

10

holds for low-risk users, as low-risk technological enthusiasts
are likely very different than business users, and further work
needs to be done studying the variety of low-risk users as well.

As for the third thesis (Security Trainings Differ by Risk),
training formats vary due to local context, and the geopo-
litical dimension will play an important part for trainers’
choice of tools. Trainings in low-risk and high-risk contexts
will have different organizational formats. While low-risk
trainings devote time to focus on privacy (e.g. suggesting
privacy-respecting search-engines, open-source and decentral-
ized alternatives to mainstream services, and focus on ad
blocking), high-risk trainings are more security-oriented and
include a long component on operational security in addition
to secure messaging: Two-factor authentication, passphrase
requirements, password managers, phishing attacks, and hard-
disk encryption.

Open-source and licensing choices are less covered in high-
risk trainings, as high-risk users do not always associate open-
source with security. Open-source is seen as a less important
criteria in the context of an immediate physical threat, as when
a proprietary but “efficient” and “easy to explain” solution
exists, trainers will give priority to it. For example, in Ukraine
WhatsApp is the most recommended application, because it is
considered to be easy to install. Trainers consider WhatsApp’s
proprietary license and collaboration with Facebook in terms of
metadata less important than the immediate security it can give
to the users. The primary task in high-risk contexts with low-
knowledge users is to help them quickly abandon unencrypted
tools as well as tools that collaborate with their adversaries.

In contrast, low-risk trainings address the topic of decen-
tralization and technical choices of architectures in general,
training users in Signal but also Jabber and PGP. High-risk
trainers pointed out to the inherent complexity of decentral-
ized solutions, and their “experimental” character that makes
them “unreliable” in high-risk contexts. High-risk trainers who
recommend PGP and Jabber (XMPP) are not hopeful they will
be used. Low-risk trainers eschew more proprietary solutions
such as WhatsApp and VPNs, preferring instead that people
use open source tools like Tor and Signal.

For future work, we plan to at least double the number
of interviews, including more high-risk users in different
locations (such as the Middle East and South America, as
most of the high-risk users in this study is concentrated in
Ukraine and Russia). We will continue to test to see how
various security and privacy properties such as the collection
of geolocation via IP addresses, deniability, and various post-
compromise security situations around forward secrecy lead
users to react, and therefore if user beliefs align with the reality
of the protocol and its implementation. Further interviews will
focus on the history of protocol design choices by developers,
the authenticity of software updates, and transcript consistency
in group messaging. The number of application developers
will increase in particular, and we will focus more on high-
risk users from areas outside Ukraine and Russia like the
Middle East, and have more low-risk and non-trainer users
to assure enough contrast with high-risk users and trainers
to achieve possibly clear statistical significance in inter-group
differences. We hope to further develop more work around the
social construction of trust in secure messaging, looking at the
possible biases of trainers, as well as the influence of social

pressure and social media on adoption of specific tools (e.g.
influence of press articles regarding various secure IM and
email clients on the usages of these tools). The next “post e-
mail” protocol for secure messaging needs to be aligned with
real high-risk user needs, and cryptographic protocols need to
be designed with real-world threat models.

Addressing this disconnect will require both more com-
munication between developers and users, as well as more
protocol development to reflect user expectations. One devel-
oper, Elijah from LEAP, put it this way: “My hope for the
future is that the people, the users, humans imagine the same
thing that the machines are imagining. I don’t want people to
dream in binary, but what I mean is that trust relationships
that we are imagining match the actual trust relationship that
actually exist. [...] When people are installing the app they
are trusting their device, and I want to make it clear on what
things they are trusting their providers, and on what things
they’re trusting people who make the application. When people
are downloading the app, I want to foreground these issues,
to make it clear. That is my goal.” However, most developers
are still far from this goal, and much work has to be done to
make explicit the threat models of users, in particular high-risk
users, to developers, and so to adequately prioritize features for
development for secure messaging.

ACKNOWLEDGMENT

This work was funded by the European Unions Horizon
2020 Framework Programme for Research and Innovation
(H2020-ICT-2015, ICT-10-2015) under grant agreement num-
ber 688722.

REFERENCES
[1] Yasemin Acar, Sascha Fahl, and Michelle L Mazurek. You are not your
developer, either: A research agenda for usable security and privacy
research beyond end users. In Cybersecurity Development (SecDev),
IEEE, pages 3-8. IEEE, 2016.

Anne Adams and Angela Sasse. Users are not the enemy. Communi-
cations of the ACM, 42(12):40-46, 1999.

Chris Alexander and Ian Goldberg. Improved user authentication in Off-
The-Record messaging. In Proceedings of the Workshop on Privacy in
Electronic Society, pages 41-47. ACM, 2007.

Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-The-Record com-
munication, or, why not to use PGP. In Proceedings of the Workshop
on Privacy in the Electronic Society, pages 77-84. ACM, 2004.

Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. On post-
compromise security. In Computer Security Foundations Symposium
(CSF), 2016 IEEE 29th, pages 164—178. IEEE, 2016.

Harry Collins and Robert Evans. The third wave of science stud-
ies: Studies of expertise and experience. Social Studies of Science,
32(2):235-296, 2002.

Don Davis. Defective Sign & Encrypt in S/MIME, PKCS# 7, MOSS,
PEM, PGP, and XML. In USENIX Annual Technical Conference, pages
65-78, 2001.

Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. Secure
off-the-record messaging. In Proceedings of the Workshop on Privacy
in the Electronic Society, pages 81-89. ACM, 2005.

Sascha Fahl, Marian Harbach, Thomas Muders, Matthew Smith, and
Uwe Sander. Helping Johnny 2.0 to encrypt his Facebook conversations.
In Proceedings of the Eighth Symposium on Usable Privacy and
Security, page 11. ACM, 2012.

M. Foucault and J. Pearson. Fearless Speech. Semiotexte, distributed
by MIT Press, Cambridge, MA, 2001.

[2]

[3]

[5]

[6]

[8]

[9]

[10]

11

[11] Tilman Frosch, Christian Mainka, Christoph Bader, Florian Bergsma,
Jorg Schwenk, and Thorsten Holz. How secure is TextSecure? In
European Symposium on Security and Privacy (EuroS&P), pages 457—

472. IEEE, 2016.

Peter Galison. [Image and logic: A material culture of microphysics.
The University of Chicago Press, Chicago, United States, 1997.

Simson L Garfinkel and Robert C Miller. Johnny 2: a user test of
key continuity management with S/MIME and Outlook express. In
Proceedings of the Symposium on Usable Privacy and Security, pages
13-24. ACM, 2005.

Matthew Green and Matthew Smith. Developers are Not the Enemy!:
The Need for Usable Security APIs. IEEE Security & Privacy,
14(5):40-46, 2016.

Jakob Jakobsen and Claudio Orlandi. On the CCA (in)security of
MTProto. In Proceedings of the Workshop on Security and Privacy
in Smartphones and Mobile Devices, pages 113-116. ACM, 2016.

Audun Jgsang and Gunnar Sanderud. Security in mobile communica-
tions: Challenges and opportunities. In Proceedings of the Australasian
Information Security Workshop, pages 43-48. Australian Computer
Society, Inc., 2003.

Morgan Meyer. The rise of the knowledge broker. Science Communi-
cation, 31(1):118-127, 2010.

Nelly Oudshoorn and Trevor Pinch. How users matter: The co-
construction of users and technology. MIT Press, Cambridge, United
States, 2005.

Svenja Schroder, Markus Huber, David Wind, and Christoph Rotter-
manner. When Signal hits the Fan: On the Usability and Security of
State-of-the-Art Secure Mobile Messaging. In European Workshop on
Usable Security. IEEE, 2016.

Ryan Stedman, Kayo Yoshida, and Ian Goldberg. A user study of Off-
The-Record messaging. In Proceedings of the Symposium on Usable
Privacy and Security, pages 95-104. ACM, 2008.

Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning
Perl, Ian Goldberg, and Matthew Smith. SoK: Secure Messaging. In
IEEE Symposium on Security and Privacy (SP), pages 232-249. IEEE,
2015.

Alma Whitten and J Doug Tygar. Why Johnny Can’t Encrypt: A
Usability Evaluation of PGP 5.0. In Usenix Security, 1999.

Mary Ellen Zurko and Richard Simon. User-centered security. In

Proceedings of the Workshop on New Security Paradigms, pages 27-33.
ACM, 1996.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

VII. APPENDIX A: QUESTIONNAIRE

All interviews were semi-structured, with open questions.
In every case, a set of context-specific questions may also be
added. For developers, based on our preliminary reading of the
documentation and analysis of the website and UI of the tool,
we formulated specific questions regarding the tool. For users,
country-specific questions were added. The questions asked to
all those interviewed were:

e How have you chosen the name?
e How have you come up with the technical solution?

e Were you inspired by some other projects or was it
created from scratch?

e Do you have a threat model? List of properties?

e How do you come to decide what components of the
software secured using a cryptographic or privacy-
enhancing protocol and whats not?

e How do you come to decide what kinds of user data
you need to store or use?

e Have you chosen centralized architecture, and are you
thinking of moving towards decentralization?

Do you support the transfer of large files?

Do you support repudiation? Do you let users archive
or search their messages?

What kinds of groups does your protocol support?

What kinds of metadata do you collect, and why?
Do you use tools (ranging from programming lan-
guages and cryptographic libraries to development
environments) in the same field as the one you are
developing? Which ones and why?

Every developer is also a user. You, as a user, what
kind of difficulties do you experience with technolo-
gies you depend on, for example, with cryptographic
libraries?

We also ask a number of social questions to developers:

How many people are in your team?
How do you share responsibilities and tasks?
Whos allowed to make changes?

In addition to software development, is there an oper-
ational component to your work that includes security
(such as hosting servers)?

Whats your choice of licensing? Is the protocol you
use standardized, working towards a standardization
or do you prefer not to standardize the protocol?

How do you sustain yourself financially?

What is your business model of running the any
infrastructure, such as servers?

Which other projects from the field are you collabo-
rating with?

How do you communicate with these projects?

Has your protocols ever been reimplemented by other
projects?

What is your opinion on the existing academic work
in the field?

Do you collaborate with researchers?
If you use research, what do you read? Blogs, papers?

What conferences or gatherings do you organize or
convene with developers and/or users in the field?

How do you explain your politics (such as data
collection) to your users?

Do you get in touch with your users or information
security trainers? If yes, how do you gather feedback?
Do you know who your users are?

For users, the following questions were asked:

Can you tell us about the moment when you installed
your first encrypting tool?

What was this tool? Why have you decided to use it?

Were you satisfied with this tool? Has it helped?

12

Did you install it by yourself or did someone helped
you?

Was it easy to use? Since then, which other privacy-
enhancing technologies have you tried, if any?

If you stopped using some of these tools, can you
explain when and why have you abandoned them?

Have you tried PGP? If yes, have you installed it by
yourself or has someone helped you? Was it easy to
install? Where did you learn to install it?

What is your “privacy kit” for today? Describe it, of
which tools it consists?

Why have you chosen these tools?
How do you use it in your profession/activism?
Can you define “who is your enemy”?

What would happen to you if your enemy got your
messages?

Do you worry about any data these tools store, and
what data?

Do you know if these tools store your list of contacts
on their servers? Do you worry these servers could be
monitored, or seized?

What do you worry about more, your device being
seized or the server?

Do you want the ability to be able to move your data
between servers?

Are you more concerned over your old messages being
read or new messages being read?

Do you want to search through or archive your old
messages?

How often do you send large files as attachments?

Do you want your messages to disappear? Do you
know if they disappear on your device or on the
server?

What features are missing on secure messaging appli-
cation?

Also, there is an evaluation of frequency of use of secure
messaging as well as (GPG or S/MIME) encrypted mail.

A number of questions attempting to evaluate the under-
standing of users around cryptography:

Do you know what an end-to-end encryption?
How could you explain it?

What is a key, what is a private and a public key?
How do you usually get someones public key?

Does it seem to be some third party does it for you,
and if so, who exactly finds the other users for you?

If you find another person’s key, do you do it in person
or searching on a server or do you mail them your key

(and if so, through a different application or the same
one you are using? Do you verify keys?

What do you do when your software tells you some-
thing is wrong with a key?

What is, according to you, the most secure and trusted
way to exchange and update keys?

Do you know if [application they use] is centralized or
decentralized? Does being centralized change some-
thing for you?

Do you trust the centralized server?

Do you trust the people behind it? What is the worse
thing that could happen to them?

What is decentralization? How can you explain it?

Can you please make a schematic drawing to explain
me how, according to you, an encrypted message goes
to its destination?

How does it get decrypted?

We tell users to, if they want, draw the scheme for the tools
you use (Signal, PGP, other...)?

The current usage of users is captured as well via questions:

Do you use encryption for all of your communications
online?

If not, what kinds of communication are unencrypted?

Do you use secure messaging both for mobile and
desktop?

Do you also use it for audio and video?

Do you encounter any difficulties in shifting from one
support to another (mobile to desktop and vice versa)?

If multiple secure messaging applications are used,
how do you coordinate and shift among the various
messengers that you have?

What is the mail client that you use in your everyday
life? Is it encrypted?

If not, do you think you need to encrypt it and do you
know solutions for doing so?

Do you use Facebook? Do you think you need to
protect your communications on Facebook? Have you
tried to protect them?

Do you use Twitter?

Do you use encrypted cloud or storage? If not, do you
think you need this kind of solution?

Do you use any means to protect your IP address? Do
you know the existing solutions?

Do your family members use encryption? If yes, for
what kinds of communication? (mails, instant messag-
ing?)

Do your close friends use encryption? If yes, for what
kinds of communication?

13

How do you contact your family members or friends
who do not use encryption?

Is it a problem for you? Have you tried to speak
to your family and friends something about privacy?
How did you explain the problem? Did they under-
stand?

in which ways does the fact of using secure messaging
impact your online identity?

Do you feel that different parts of your online identity
are linked to cryptographic keys?

If you have to, how do you manage these keys?

For trainers, a number of additional questions are asked in
addition to the ones asked users:

How did you become familiar with encryption?

Do you believe there is a difference between security
and privacy?

Can you tell me a little bit about the first security
seminar you have been to?

Where was it held, who organized it? What did you
think of it?

What is the first event you organized or participated
at as a coach? Why did you decide to organize it or
participate in it?

Who is the audience of your events? (journalists,
activists, students, lay people, tech experts)

How do you inform people about your events? Are
the events public or private?

What do you usually do at the seminar (or cryptoparty,
workshop, etc.)?

If your event turns around showing and explaining
different tools, which tools do you normally promote?

Why do you choose these tools? (What are your
criteria for a “good” and a “bad” secure messaging
application?

What are your criteria for a “good” and a “bad”
encrypted mail client?

Do you have any experience of being disappointed by
a tool or abandoning a tool? Why has it happened?

Do you think that people understand your explanations
of security, encryption, privacy, and the like?

If not everyone understands, what are, according to
you, the most difficult points to explain?

How do you explain public and private keys to the
public?

How do you explain centralization and decentraliza-
tion to the public?

