
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

Formal verification of the PQXDH Post-Quantum
key agreement protocol for end-to-end

secure messaging
Karthikeyan Bhargavan, Cryspen; Charlie Jacomme, Inria Nancy Grand-Est,

Université de Lorraine, LORIA, France; Franziskus Kiefer, Cryspen;
Rolfe Schmidt, Signal Messenger

https://www.usenix.org/conference/usenixsecurity24/presentation/bhargavan

Formal verification of the PQXDH Post-Quantum key agreement protocol for
end-to-end secure messaging

Karthikeyan Bhargavan1, Charlie Jacomme2, Franziskus Kiefer1, and Rolfe Schmidt3

1Cryspen
2Inria Nancy Grand-Est, Université de Lorraine, LORIA, France

3Signal Messenger

Abstract
The Signal Messenger recently introduced a new asyn-
chronous key agreement protocol called PQXDH (Post-
Quantum Extended Diffie-Hellman) that seeks to provide
post-quantum forward secrecy, in addition to the authentica-
tion and confidentiality guarantees already provided by the
previous X3DH (Extended Diffie-Hellman) protocol. More
precisely, PQXDH seeks to protect the confidentiality of mes-
sages against harvest-now-decrypt-later attacks.

In this work, we formally specify the PQXDH protocol
and analyze its security using two formal verification tools,
PROVERIF and CRYPTOVERIF. In particular, we ask whether
PQXDH preserves the guarantees of X3DH, whether it pro-
vides post-quantum forward secrecy, and whether it can be se-
curely deployed alongside X3DH. Our analysis identifies sev-
eral flaws and potential vulnerabilities in the PQXDH specifi-
cation, although these vulnerabilities are not exploitable in the
Signal application, thanks to specific implementation choices
which we describe in this paper. To prove the security of the
current implementation, our analysis notably highlighted the
need for an additional binding property of the KEM, which
we formally define and prove for Kyber.

We collaborated with the protocol designers to develop an
updated protocol specification based on our findings, where
each change was formally verified and validated with a se-
curity proof. This work identifies some pitfalls that the com-
munity should be aware of when upgrading protocols to be
post-quantum secure. It also demonstrates the utility of using
formal verification hand-in-hand with protocol design.

1 Introduction

The impending advent of large-scale quantum computers
poses an existential threat to the security of modern cryp-
tography. As quantum algorithms can efficiently break all
widely used asymmetric cryptographic schemes, a paradigm
shift towards post-quantum cryptography (PQC) is required
to ensure the confidentiality, integrity, and authenticity of sen-
sitive data and communications.

The Signal messenger uses two protocols: X3DH [32]
and Double Ratchet [33] (DR) to provide mutual authentica-
tion, forward secrecy, post-compromise security, and a form
of deniability. These protocols are widely considered as the
benchmark for end-to-end encrypted messaging and are also
used in other messengers like WhatsApp, Facebook Messen-
ger, and Skype. Both X3DH and DR rely heavily on the
Diffie-Hellman (DH) construction, instantiated in the imple-
mentation using the Curve25519 elliptic curve [31]. However,
this construction can be broken by a quantum computer that
uses Shor’s algorithm [36] to compute discrete logarithms.
Consequently, any message sent using Signal today could be
eventually decrypted using a quantum computer, significantly
reducing the expected forward secrecy threshold.

To mitigate this risk, Signal proposed a new protocol, called
PQXDH (Post-Quantum Extended Diffie-Hellman) as a first
step in the post-quantum transition of the Signal messenger.
The protocol uses a post-quantum key encapsulation mech-
anism (PQ-KEM) to fortify X3DH against future quantum
adversaries. In the Signal implementation, the PQ-KEM is
instantiated using Kyber [17], which is currently undergoing
standardization as ML-KEM [2]. The goal of the protocol is to
preserve the existing security of X3DH while also providing
forward secrecy against harvest-now-decrypt-later (HNDL)
adversaries who collect encrypted messages sent today with a
view to decrypting them later using a quantum computer.

PQXDH is already deployed, alongside X3DH, in the
Signal messenger and is used by tens of millions of users. It
is one of the first post-quantum secure channel protocols to
be deployed at this scale and serves as an early case study of
how to integrate post-quantum crypto in real-world systems.

In this paper, we formally specify and analyze the security
of the PQXDH protocol against both classical and quantum
adversaries. The security properties we consider are mutual
authentication and forward secrecy, but we do not analyze
deniability. We use the automated symbolic protocol analysis
tool PROVERIF [14] to find flaws and potential attacks in the
first version of PQXDH. We suggest fixes to the protocol
and then develop a security proof for the updated protocol

USENIX Association 33rd USENIX Security Symposium 469

using the CRYPTOVERIF prover [15]. In collaboration with
Signal developers and designers, we helped incorporate these
changes into the now published second version of PQXDH.

Contributions. We provide the first formal security analysis
of the PQXDH [29] protocol deployed in Signal, uncovering
a public key confusion attack, a KEM re-encapsulation attack,
and two additional weaknesses in the protocol. We propose
fixes for these attacks, resulting in a second version of the
PQXDH specification [30], and we present formal security
theorems for this updated version.

As a side contribution, our re-encapsulation attack also
brings additional light to the current discussion over the cor-
rect security definitions for KEMs [6, 22].To prove that the
instantiation of PQXDH in the current Signal implementation
is secure, we needed an extra security property for KEMs,
which we prove is met by Kyber, and under which PQXDH
is secure. This definition is of independent interest.

To the best of our knowledge, this paper provides the
first machine-checked security analysis for a real-world post-
quantum cryptographic protocol. Our work identifies pitfalls
in transitioning cryptographic protocols to post-quantum se-
cure versions, and demonstrates how they can be avoided by
the use of formal analysis tools during protocol design, and
by deeper collaborations between verification researchers in
academia and cryptographic developers in industry.

Models and reproducibility. Our formal models are avail-
able online at [12]. Standard versions of the CRYPTOVERIF
and PROVERIF tools are sufficient and not provided at [12].

2 PQXDH: Post-Quantum Extended Diffie-
Hellman Key Agreement Protocol

The classic Signal Protocol is the composition of the X3DH
handshake protocol [32] with the Double Ratchet proto-
col [33] for continuous key agreement. In 2023, the X3DH
protocol was replaced by PQXDH [29], which we detail in
this section, along with the security properties expected from
the protocol. Our description is based on the standalone spec-
ifications for X3DH and PQXDH.

2.1 X3DH: Extended Triple Diffie-Hellman
We begin with a brief description of the legacy X3DH proto-
col before detailing the changes made by PQXDH.

The Signal Protocol is designed for asynchronous commu-
nication between agents who upload their public keys to a
key distribution server. For simplicity, we present X3DH as
a synchronous key exchange between two agents Alex and
Blake, where Blake may be refered to as the initiator of the
exchange, even though in practice, it is the key distribution
server that prepares the initial protocol message.

Key Generation Each agent generates multiple key pairs:
• A long term identity key IK.
• A medium term key, called a “Signed PreKey”, SPK.

This key will be signed when used in the protocol and
will be regularly rotated, e.g. every two days.

• A short term “One Time Prekey”, OPK, that is deleted
after each use, and short term ephemeral keys, EK, used
within each session.

For each key pair K, we use Ksk to refer to the private key
and Kpk for the public key. For the agents Alex and Blake, let
IKA and IKB respectively denote their long term identity key
pairs; Similarly, for all other keys, the subscript A denotes
a key controlled by Alex and the subscript B denotes a key
controlled by Blake. We assume a public-key infrastructure
(PKI) so that all identity keys are known by all parties.1

Initiation To initiate the protocol, Blake prepares a Pre-key
bundle message containing SPKpk

B ,sign(SPKpk
B , IKsk

B) and op-
tionally some One-Time Prekey OPKpk

B .

Session Secret Generation After receiving those pre-keys,
Alex verifies the signatures, generates their own ephemeral
DH key pair EKA, and computes some DH shared secrets:

DH1 = (SPKpk
B)IKsk

A DH2 = (IKpk
B)EKsk

A

DH3 = (SPKpk
B)EKsk

A DH4 = (OPKpk
B)EKsk

A

DH4 is optional, and only computed if OPKpk
B was provided.

Intuitively, DH1 will authenticate Alex to Blake, and the rest
are for increasing levels of confidentiality towards Blake.
These three or four DH values are then concatenated and
used inside a Key Derivation Function (KDF) to obtain a
session key SKA, used to encrypt a first message with an Au-
thenticated Encryption with Additional Data (AEAD), where
the associated data includes an encoding of IKpk

A , IKpk
B . Alex

then sends their ephemeral DH public key EKpk
A , along with

the AEAD ciphertext, back to Blake.

Completing the Handshake Upon receiving Alex’s mes-
sage, Blake performs the symmetric DH computations, mu-
tatis mutandis, and passes the concatenated values to the KDF
to obtain the final secret, SKB. Blake then uses this to de-
crypt the AEAD ciphertext. This decryption is successful if
SKA = SKB, and the protocol session is complete.

2.2 PQXDH Design Rationale
The X3DH protocol becomes entirely insecure in the pres-
ence of an adversary with a quantum computer or an improved
classical algorithm capable of computing discrete logarithms
in the underlying group. Because of this, the engineers at Sig-
nal Messenger designed an update to X3DH, called PQXDH,
with the following design goals:

1In practice, this assumption is met if we either trust the server to distribute
correct identity keys, or if agents check key fingerprints out-of-band.

470 33rd USENIX Security Symposium USENIX Association

IKsk
B , IKpk

A
BLAKE

IKpk
B , IKsk

A
ALEX

SPKsk
B ,SPKpk

B
$←− DH.Keygen

PQSPKsk
B ,PQSPKpk

B
$←− KEM.Keygen

sign(SPKpk
B , IKsk

B), sign(PQSPKpk
B , IKsk

B)

Verify signatures

EKsk
A ,EKpk

A
$←− DH.Keygen

CT,SS
$←− KEM.encaps(PQSPKpk

B)

SKB = kdf((SPKpk
B)IKsk

A ∥(IKpk
B)EKsk

A ∥(SPKpk
B)EKsk

A ∥SS)

AD = IKpk
A ∥IKpk

B

EKpk
A , CT ,enc(”hello”,0,AD,SKB)

SS = KEM.decaps(CT,PQSPKsk
B)

SKA = kdf((IKpk
A)SPKsk

B ∥(EKpk
A)IKsk

B ∥(EKpk
A)SPKsk

B ∥SS)

Check ifAD = IKpk
A ∥IKpk

B
Decrypt and check aead

Figure 1: The PQXDH protocol (simplified).
It behaves like the X3DH protocol, with additional (PQ-)KEM computations, highlighted with a light gray background.

1. Passive quantum adversary. The protocol must provide
security against passive attackers capable of computing
discrete logarithms in the underlying group. In particular,
it must prevent HNDL attacks.

2. No security loss. The protocol must not remove any
security guarantees. In particular, the protocol must pro-
vide the same DH-based confidentiality and authenti-
cation guarantees as X3DH so that even if attacks are
found on post-quantum primitives in the protocol, Signal
users are no less secure.

3. Efficient. When the above security requirements are met,
a more efficient protocol for Signal Messenger’s usage
patterns is preferred. This is a soft design goal, since
when performance is reasonable, Signal will trade some
efficiency for a security level that exceeds the design
goals.

We emphasize that protection against active quantum adver-
saries is not a goal for PQXDH, although Signal engineers
intend to provide this in a future protocol version. Also, since
the Signal Protocol and Signal Messenger’s implementation
of it have seen extensive scrutiny they add to these a fourth, in-
formal guideline: the new protocol should minimize changes
to the existing X3DH protocol and its codebase.

Fully Post-quantum Handshake Protocols There is a
growing body of research into fully post-quantum replace-
ments for X3DH [19, 20, 25], but these protocols do both
more and less than what Signal Messenger requires. They
offer more by providing full post quantum security against
active quantum adversaries. They offer less since they rely

on entirely different cryptographic assumptions and lose all
DH-based security guarantees, so these protocols do not meet
the requirements without some modification.

Hybrid Protocols One way to reclaim the DH-based secu-
rity would be to design a hybrid protocol that mixes DH oper-
ations into a fully post-quantum handshake protocol. While
this is an interesting area of research, the costs of the post-
quantum handshake protocols are significant. Since security
against active quantum adversaries is not a requirement, any
protocol that gives this up in exchange for more lightweight
communication and computation will be preferred.

Post-quantum Primitive Selection As seen in Section 2.3,
PQXDH uses a PQ-KEM to add post-quantum secure entropy
into the classical protocol. While the specification does not
require a particular PQ-KEM, Signal selected Kyber1024 [17]
for deployment. The Kyber family of KEMs was selected be-
cause its standards-track status has both put it under extensive
scrutiny and leads them to expect high quality library support
in the future. In the Kyber family, the 1024-bit variant was
selected as the most conservative option. Since PQXDH is de-
signed to provide security decades into the future, they judged
that a marginal additional cost in message size and client com-
putation is a worthwhile hedge against future advances in
lattice algorithms.

USENIX Association 33rd USENIX Security Symposium 471

2.3 Protocol outline
Signal chose an approach that made minimal changes to the
X3DH protocol and to their existing codebase. At a high level,
PQXDH can be seen as injecting a post-quantum secure
shared key into the classical X3DH protocol using a PQ-
KEM. In Fig. 1 we present a simplified execution of PQXDH,
where we highlight the additions to X3DH. The changes are
as follows:

1. Agents also generate a KEM key pair, PQSPK.
2. In the initial message to Alex, Blake includes PQSPKpk

B
and sign(PQSPKpk

B , IKsk
B).

3. When computing the session secret, Alex also computes

CT,SS
$←− KEM.encaps(PQSPKpk

B) and concatenates
SS to the X3DH Key Derivation Function input.

4. Alex includes the KEM ciphertext, CT, in its message.
5. Blake uses their private key to compute SS =

KEM.decaps(CT,PQSPKsk
B) and also concatenates it

to the X3DH Key Derivation Function input.

Simplifications For clarity we made several simplifications
to our description of PQXDH. We provide a full version in
Appendix with Fig. 4. In particular, Fig. 1 omits:

• the asynchronous behaviour of the protocol and its un-
trusted key distribution server;

• the encoding functions for public keys;
• the key identifiers sent in Alex’s final message of the

asynchronous protocol;
• the DH4 computation based on the optional OPK;
• the distinction between short-term (or “one time”) KEM

keys PQOPK and medium-term (or “last resort”) KEM
keys PQSPK.

However, our formal models of PQXDH include all of the
above except the last, and we discuss their security impact.
For one-time KEM keys, we note that in the PQXDH specifi-
cation, Alex has no way to distinguish between a short-term
or medium-term KEM key, and an untrusted server can al-
ways choose to send medium-term keys and hold back the
short-term ones. Thus, in our models and analysis we assume
that all KEM keys are medium term.

2.4 Desired Security Properties
The specification does not formally define which security
guarantees are meant to be provided by the protocol. However,
it provides a high-level discussion on security considerations,
including authentication, secrecy, identity binding, deniability,
and post-quantum resistance.

We of course would like to prove resistance to harvest-now-
decrypt-later (HNDL) adversaries, as it is the main design goal
of PQXDH. However, since we expect that PQXDH must
attain the same level of security as X3DH against classical
adversaries, we also consider traditional authenticated key
exchange security properties in our analysis:

• Mutual Authentication: if a party completes the proto-
col with a given public key, it is indeed communicating
with the owner of this public key.

• Forward secrecy: keys computed between honest partic-
ipants are secret, unless the long term secrets of a party
were compromised before the exchange took place.

• Resistance to key compromise impersonation: even
if the long term keys of an agent are leaked, sessions
initiated by this agent are still secure.

• Session independence: the compromise of the short-
term material of a session does not affect the security
of other sessions and the compromise of medium-term
material does not affect the security of sessions using
different medium-term keys.

• HNDL protection: if an attacker suddenly has access
to a quantum computer, all previously completed key
exchange are still secure.

Note that we in fact consider a slightly stronger notion of
HNDL protection than the one discussed in the “passive quan-
tum adversaries” consideration of [29, Section 4.7]. Indeed,
rather than a fully passive quantum attacker, we consider the
security against an active attacker that at some point gets ac-
cess to a quantum computer, and can then try to break the
security of previously completed key-exchanges.

The PQXDH security considerations explicitly give some
compromise cases leading to insecurity, while stating incom-
pleteness. In our work, we will strive to capture precisely
under which conditions the security holds.

2.5 Threat Model and Crypto Assumptions

We consider an active attacker that can intercept and modify
all messages sent over the network. The security of PQXDH
is expected to hold under a set of standard cryptographic
assumptions about the algorithms used in the protocol:

1.A) Either gapDH is intractable for the elliptic curve X25519,
which typically implies that any of the DHx value com-
puted in X3DH cannot be computed if the attacker as
only seen the corresponding public shares;

1.B) Or the PQ-KEM (Kyber1024) is IND-CCA [16], which
means that only Alex and Blake can derive the shared
secret computed by the KEM;

2) And the signature Sig (XEdDSA), is EUF-CMA [18],
which means that signatures are unforgeable, and ensures
the authentication of the pre-key bundle, which in turn
ensures that Blake knows that only Alex will be able to
compute the same SK;

3) And the final AEAD (AES256 in CBC mode with
HMAC and Encrypt-Then-Mac) is IND-CPA (plaintexts
are secrets) and IND-CTXT (ciphertexts are integrity
protected) [35], which is of course needed to ensure the
secrecy of the first sent message, and is also used to
authenticate Alex and Blake together;

4) And the KDF function (HKDF) is a Random Oracle;

472 33rd USENIX Security Symposium USENIX Association

Figure 2: Protocol Verification Workflow

which ensures that if any part of the input is secret, the
final key is a strong secret that is indistinguishable from
a fresh random bitstring.

We also consider that the attacker may compromise some
short, medium and long term keys, depending on the scenario
and security property under consideration.

Assumptions 1.A) and 2) must hold against classical at-
tackers, while 1.B), 3) and 4) are also for quantum attack-
ers. Hence, the intuition behind the hybrid design is that
1.A+2+3+4 implies classical security today, and 1.B+2+3+4
implies long term security against future quantum attackers.

We choose the gapDH and ROM assumptions above fol-
lowing prior formal analyzes of X3DH [21]. However, in the
quantum setting, we will not rely on the ROM, but rather on
the simpler Pseudo Random Function (PRF) assumption.

3 Formal Verification Methodology

To formally analyze whether PQXDH meets its security
goals, we employ a multi-faceted approach using both a sym-
bolic protocol analysis tool and a computational proof frame-
work. Our workflow is depicted in Figure 2. We describe each
step of this workflow in sequence.

3.1 Modeling the Protocol

We begin by taking the English-language protocol specifica-
tion document [29] and formalizing it in a protocol description
language. Different verification tools accept different input
languages. For example, the PROVERIF and CRYPTOVERIF
tools accepts protocols specified in the applied pi calculus,
where each role of the protocol is specified as a process that
communicates with other protocol participants and the ad-
versary over public channels. CRYPTOVERIF also accepts
protocols specified using an oracle syntax that is more similar
to pen-and-paper cryptographic proofs.

For PQXDH, we model two roles (Alex and Blake) and
specify how they process and construct the two messages in
the protocol using a library of cryptographic constructions.
Once the protocol messages are modeled, we define the over-
all scenario including the public key infrastructure, and the
servers that hold the pre-keys. For PQXDH, we model:

• an arbitrary number of agents communicating together;
• a trusted PKI that provides the identity keys of clients to

each other (modeled as a public database with tables);
• each device uploads Curve and KEM keys to a server

which is fully untrusted (modeled as a public channel);
• each connection consists of one encrypted message from

the Alex to Blake (with no follow-up messages);
• each connection can optionally use an OPK;
• we consider that all KEM keys are medium-term keys.

3.2 Threat Model
We add processes to the model that allow for certain keys
to be compromised. In our model, identity keys IK may be
compromised (dynamically, adaptively) at any time, allowing
the adversary to then maliciously sign other keys like SPK and
PQSPK and upload them to servers. For certain security goals,
we also consider the compromise of short- and medium-term
secrets such as OPK, EK, PQSPK, and SPK.

We also model the quantum adversary, which is done by:
• explicitly giving the attacker the power to break the non

post-quantum secure primitives (i.e., allow it to compute
discrete logarithms and signatures);

• or equivalently, leaking the secrets used by non post-
quantum secure primitives;

• or even stronger, not making any cryptographic assump-
tion about the elliptic curve or signature at all.

Essentially, we mark the timestamp for each compromise
or quantum attack, and then consider the security for key
exchanges completed before this point in time.

Note that depending on the tool and the complexity of the
analysis, adding more compromise scenarios may make the
analysis infeasible. For example, in CRYPTOVERIF, we only
consider the dynamic compromise of the long term identity
keys. In PROVERIF, thanks to its high level of automation,
we are able to consider the dynamic compromise of any cryp-
tographic material of any agent.

3.3 Security Goals
To state the security goals of the protocol we annotate the
protocol model with events that indicate the current protocol
status of each participant. Events do not affect the concrete
execution of the trace and are only used to reason about it.
For instance the process for Blake triggers the event:

event(BlakeDone(A,B,spk,pqpk,sk))
to indicate that an agent B (playing the role of Blake) has
completed a PQXDH session with A (playing Alex), where it

USENIX Association 33rd USENIX Security Symposium 473

used the keys corresponding to the public keys spk (SPKpk
B)

and pqspk (PQSPKpk
B) to compute the session key sk (SKB).

Mutual Authentication For authentication, we state that
whenever Alex completes the protocol, Blake must also have
completed the protocol with matching parameters, which is
expressed in PROVERIF (simplified) as:

query A,B,spk,pqpk,sk,i,j;
event(BlakeDone(A,B,spk,pqpk,sk))@i

=⇒ event(AlexDone(A,B,spk,pqpk,sk))@j & j<i

This read as, for all values of the given variables, whenever
the event BlakeDone was raised with the corresponding values
at some point in time i, then another agent concluded with
the event AlexDone with the same parameters and at some
time point j before i. Note that in a query of this form,
the variables occurring before the implication are universally
quantified, and the other ones are existentially quantified. We
state a similar authentication goal in the reverse direction to
get mutual authentication.

Confidentiality We can state a range of confidentiality prop-
erties for PQXDH. The weakest property is that the attacker
should not be able to compute the session key. Since we
allow the compromise of long term keys, this query would
be trivially false on our models. We then typically write a
stronger query corresponding to forward secrecy, covering
the fact that the session key is secret unless we compromised
the long-term key before the session was completed. Then,
also taking into account the fact that the attacker may at some
point have access to a quantum computer, the post-quantum
forward secrecy query is written in PROVERIF as:

query A,B,spk,pqpk,sk,i,j;
event(BlakeDone(A,B,spk,pqpk,sk))@i

=⇒ not(attacker(sk))
| (event(LongTermComp(A))@j & j<i)
| (event(QuantumComp)@j & j<i)

Here, the time point j represents either the compromise of
the long term key of A, or the arrival of quantum computers.
And this read as, if any agent Blake completed a session and
computed key sk, then either the attacker cannot compute the
key, or the long term key of A was compromised before, or
the attacker had access to a quantum computer before. If the
query is true, it implies that at least one of the cases must
be true, which in turn implies forward secrecy, as all session
keys computed before the compromise at time j is secret.

We can also state an even stronger property that the session
key is indistinguishable from a freshly generated random key,
which is what we typically prove in CRYPTOVERIF.

3.4 Symbolic Verification using PROVERIF

PROVERIF is a fully automated tool in the symbolic model,
where after specifying a protocol and some security proper-
ties, it either gives back an attack or a security claim. The
attacker model is weaker than the computational model, as
the cryptography is assumed to be perfect. PROVERIF does
attack finding, and also allows the analyst to quickly explore
a set of possible scenarios or protocol variants, as well as
scale better to bigger protocols, or more complex compromise
scenarios.

Symbolic Cryptographic Model In the symbolic setting
for PROVERIF, cryptographic primitives are assumed to be
perfect by default. However, we can explicitly give additional
capabilities to the attacker. To model the arrival of a suffi-
ciently powerful quantum computer or major advances in
classical algorithms, we include in our models the fact that an
attacker may at some point be able to compute discrete loga-
rithms. Likewise, to model that advances in cryptanalysis may
render a KEM insecure, we include in our models the fact that
an attacker may at some point be able to decapsulate KEM
ciphertexts without access to the secret key. In PROVERIF,
we will thus have a single monolithic attacker model, that
may at some point have access to quantum computers, or
may at some point be able to compromise the KEM. We will
then prove security properties stating the security unless some
bad case happens, either a compromise of some keys, or the
compromise of one of the primitive.

Finding Attacks with PROVERIF Consider the post-
quantum forward secrecy confidentiality query we stated
above. If we drop the second and third cases in the disjunction,
it just models a basic form of confidentiality.

In our models, this property is of course false: typically, the
identity of A may be compromised, and in fact fully controlled
by the attacker. That is, if we ask PROVERIF to prove this
query, it will come up with an attack trace against it where A

was compromised. As this is a normal and expected insecure
case, we then adapt and fix the property we are trying to prove
by adding this normal case to the insecure case disjunctions.

Our methodology is to rely on the high automation level of
PROVERIF to iteratively do this process, and add the possible
compromises that are “normal” cases, until we reach a point
where either PROVERIF proves the security by validating the
query, or we find an attack that does not correspond to a
normal compromise case, and in fact invalidate the security.

By following this informal methodology, one can obtain
a query where the disjunction of compromise cases are all
independent, and where removing a single one of the cases
falsifies the query. When such a query is true, it can be seen
as a correct and maximal formulation of the security property:
it is correct in the sense that it is met by the protocol, and
maximal in the sense that removing any part of the security

474 33rd USENIX Security Symposium USENIX Association

property yields an attack and it thus captures that maximal
variant of this security property. Note that in our methodol-
ogy, one has to indeed manually check that all the cases in
the disjunction are indeed independent, and that removing a
single one leads to an attack. This maximality notion is not a
notion of completeness with respect to the real world or the
computational model, but it is one with respect to our models
and the Dolev-Yao attacker. As our models do include the
possible dynamic compromise of any cryptographic material
used by any party, this gives us a high level of confidence
in the analysis, and in the end we obtain security properties
that give us an exhaustive understanding of in which cases
security holds.

Interestingly, formulating this kind of property captures at
once multiple flavours of the previously mentioned classical
security properties for key exchanged. We typically cover in
a single query the forward secrecy, session independence and
HNDL resistance.

We will detail attacks found when doing this iterative pro-
cess of query definition, as well as the final queries we proved
on the fixed version of the protocol, in the next sections.

3.5 Cryptographic Proofs in CRYPTOVERIF

CRYPTOVERIF is used to make cryptographic proofs of pro-
tocols in the computational model. Such proofs are closer to
the reasoning used by cryptographers, and model attackers
more precisely by considering that they can be any computer
running in a reasonable time. It thus gives guarantees simi-
lar to cryptographic proofs under common assumptions such
as gapDH, IND-CCA or EUF-CMA. It allows an analyst to
specify the original protocol as a cryptographic game as well
as security properties, and then tries to automatically apply a
set of valid game transformations in order to obtain a proof. It
supports manual guidance of the proof, which is often needed
in complex applications. Importantly, CRYPTOVERIF was
recently updated to be post-quantum sound [15], and we can
use it to provide valid computational guarantees for post-
quantum attackers. Overall, CRYPTOVERIF has a stronger
attacker model than PROVERIF, it is less automated and does
not do attack finding. Further, while the security guaran-
tees of CRYPTOVERIF are stronger, as they correspond to the
computational model, making proofs in this model is more
difficult. We sometimes have to consider fewer compromise
scenarios than is possible in the highly automated PROVERIF.
All those elements highlight the value of combining the two
approaches.

Cryptographic Assumptions In CRYPTOVERIF, the goal
is to carry out the proofs under the cryptographic assumptions
from Section 2.5, one in the classical setting and another in
the post-quantum one. Importantly, in the post-quantum proof,
we simply do not make any assumption over the curve which

is thus completely insecure, and conversely for the classical
proof, no assumption is made over the KEM.

The first proof under the classical security assumptions
of gapDH for the curve, EUF-CMA for Sig, IND-CPA+INT-
CTXT for the AEAD and the ROM for the KDF should ensure
that PQXDH is as secure as X3DH was.

The second proof, this time under classical EUF-CMA for
Sig, and post-quantum IND-CCA for the KEM, and post-
quantum PRF for the KDF, ensures that PQXDH does bring
a new post-quantum resistance. We rely on the PRF assump-
tion for the KDF, both because the post-quantum soundness
of CRYPTOVERIF does not capture the quantum ROM, and
second because the PRF assumption is in fact more canonical
and we can use it thanks to the new KEM shared secret.

Security Proofs For authentication goals, CRYPTOVERIF
follows a similar syntax to PROVERIF. Consider Alex’s au-
thentication query. If we can prove this, it means that when-
ever Alex accepts in the cryptographic game, then with over-
whelming probability Blake did accept and agrees on the
given SK. A core difference with PROVERIF is that we cannot
consider whether some agents are compromised inside the
query. Instead, we modify the protocol so that we only raise
the corresponding events when the other party is honest and
not yet compromised.

For secrecy, CRYPTOVERIF enables us to check that a set
of variables will always contain strongly secret values, we
then similarly only set these variables in the protocol with
a derived key when the two parties are honest and not yet
corrupted.

Note that those approaches are more rigid than PROVERIF,
and in addition coming up with a proof is significantly harder
in CRYPTOVERIF, we thus focus on a smaller set of simpler
properties, trying to prove the core data authentication and
forward secrecy properties.

3.6 Using both PROVERIF and CRYPTOVERIF

To summarize, our global approach is twofold:
• in PROVERIF we iteratively derive precise and exhaus-

tive security properties, but in a slightly weaker attacker
model than classical cryptographic proofs;

• in CRYPTOVERIF we obtain strong guarantees in the
computational model , but on a subset of the properties
and possible compromises considered in PROVERIF.

Our final methodology is then to use both tools in parallel.
As we shall see in the following sections, each part of the
analysis provided some feedback that could be used for the
other part, and using both tools in combination allowed us to
discover strictly more weaknesses than using then individu-
ally.

USENIX Association 33rd USENIX Security Symposium 475

4 Protocol Flaws in the PQXDH version 1

The revision 1 of PQXDH [29] allowed for a number of
implementations which would have suffered from attacks.

We classify our attacks into two categories, one for the
concrete and immediate issues that developers working on
post-quantum protocol migration should always have in mind,
and one for the more generic design considerations and pit-
falls. The immediate issues are two main attacks on the design
that we uncovered, along with the justification of why it is
avoided on the concrete Signal implementation. The more
generic design considerations are made of additional feed-
back on weaknesses of the specification, which do not directly
translate as attacks on one of our target security properties,
but impact the overall resistance of the design.

The models used to find those attacks are available at [12].
All experiments were executed on a common laptop with
32Gb of RAM and an 11th Gen Intel(R) Core(TM) i7-1165G7
@ 2.80GHz CPU. All attacks are found in a few minutes so
we do not detail more the runtimes here. Expected runtimes
are provided in each corresponding modeling file.

4.1 Attacks on the design

4.1.1 Public Key Confusion Attack

We discovered that nothing in the specification ensures that
it is possible to distinguish between a KEM and a X25519
public key. This in turn leads to an attack where computations
with one algorithm are made with public keys of another
algorithm, thus falling outside its secure usages.

Attack description This theoretical attack runs as follows:
1. An attacker swaps the two signatures from Blake before

forwarding them to Alex;

2. Alex computes CT,SS
$←− KEM.encaps(SPKpk

B), using
an elliptic curve public key, and then computes multiple
DH exponentiation over a KEM public key.

3. Given CT and EK, the attacker can recompute all the se-
cret values, are they all stem from insecure computations
over invalid public keys for the given algorithm.

This is a theoretical attack over the design of the proto-
col, as it makes it impossible to prove its security under the
classical IND-CCA or gapDH assumptions. Indeed, those
assumptions do not explicitly specify what happens when
invalid public keys are used, and in fact they imply that there
is no security guarantees in such a case.

Discovery methodology Trying to prove the secrecy of the
key in CRYPTOVERIF led to a failure, where we were in fact
unable to carry out the proof under the standard assumptions.
We were thus forced to add a domain separation between the
public-key signatures to carry out the proof. Note at this point

that no attack is confirmed, as failing to do a proof does not
imply that this proof cannot be made.

To fully confirm the attack, we then explicitly stated in
PROVERIF that KEM and DH public keys could be con-
fused together and lead to the insecurity of the encapsulations.
PROVERIF then produced a concrete attack trace, where the
attacker was able to compute the KEM shared secret and thus
break the post-quantum security guarantees.

Practical consequences In the Signal implementation, this
attack is prevented, since the key sizes of Kyber1024 and
X25519 do not match, and in addition each key is prefixed by
a byte identifying the algorithm. Adding this format disjoint-
edness as an explicit condition to the specification prevents
any future problems with other KEM/DH combinations, or
for other independent implementations.

Interestingly, this issue illustrates how adding an extra,
provably-secure component to an already-secure protocol
may in fact downgrade the guarantees of the protocol. This
serves as a cautionary tale for other protocols seeking to use
hybrid constructions for post-quantum security.

4.1.2 KEM Re-Encapsulation Attack

The attack is based on the fact that under the classical IND-
CCA assumption for KEMs, it is possible to perform so-called
re-encapsulations. Consider an honest KEM encapsulation
result (SS,CT) for some key pair (sk,pk), and an additional
key pair (sk′,pk′). If the first key pair was compromised and
the attacker knows (CT,sk,pk′), it may in fact be able to com-
pute CT′ such that decaps(CT′,sk′) = SS, that is, produce
a valid encapsulation for pk′ of the same shared secret SS.
This scenario is compatible with the IND-CCA assumption,
and typically arises when we use IND-CCA secure public key
encryption scheme to build an IND-CCA secure KEM. This
class of attacks was introduced in [22], which we find a new
variant here.

Attack description Consider the following execution, fully
described in Fig. 3:

1. An attacker is able to compromise some PQSPKB of
some Blake, while another PQSPK′B of the same agent
is uncompromised.

2. The attacker makes Alex use PQSPKB, and obtain a ci-
phertext CT, from which it can learn the shared secret
SS, as PQSPKB was compromised.

3. Now, the attacker, not violating IND-CCA of the KEM,
comes up with a new ciphertext CT, valid for PQSPK′B,
such that the decapsulation of CT′ is also SS

4. The attacker then forwards to Blake the message from
Alex, but swaps CT by CT′, and the key identifier of
PQSPKB by PQSPK′B.

5. Blake succeeds in computing the key using PQSPK′B.

476 33rd USENIX Security Symposium USENIX Association

IKsk
B , IKpk

A
BLAKE CHARLIE

IKpk
B , IKsk

A
ALEX

SPKsk
B ,SPKpk

B
$←− DH.Keygen

PQSPKsk
B ,PQSPKpk

B
$←− KEM.Keygen

Ephemeral Compromise

sign(PQSPKpk
B , IKsk

B),PQSPKsk
B

SPK′skB ,SPK′pkB
$←− DH.Keygen

PQSPK′skB ,PQSPK′pkB
$←− KEM.Keygen

sign(SPK′pkB , IKsk
B),sign(PQSPK′pkB , IKsk

B) sign(SPK′pkB , IKsk
B), sign(PQSPKpk

B , IKsk
B)

Verify signatures

EKsk
A ,EKpk

A
$←− DH.Keygen

CT,SS
$←− KEM.encaps(PQSPKpk

B)

SKB = kdf((SPK′pkB)IKsk
A ∥(IKpk

B)EKsk
A ∥(SPK′pkB)EKsk

A ∥SS)

AD = IKpk
A ∥IKpk

B

EKpk
A , CT ,aead

CT′ = KEM.AEnc(KEM.decaps(CT,PQSPKsk
B),PQSPK′pkB)

EKpk
A ,CT′,aead

SS = KEM.decaps(CT,PQSPK′skB)

SKA = kdf((IKpk
A)SPK′skB ∥(EKpk

A)IKsk
B ∥(EKpk

A)SPK′skB ∥SS)
Check if AD = IKpk

A ∥IKpk
B

Decrypt and check aead

Figure 3: Re-encapsulation attack
Elements not following the standard execution are highlighted with a light gray background.

USENIX Association 33rd USENIX Security Symposium 477

The main issue here is that the compromise of a single
PQSPKB enables an attacker to compromise all future KEM
shared secrets of Blake, and this even after Blake deleted its
compromised PQSPKB. Formally, it is an attack on the ses-
sion independence, and also imply that there is no mutual
agreement on the KEM public key used.

Discovery As stated previously, our CRYPTOVERIF models
do not include possible compromise of ephemeral values (this
is a limitation to be lifted). We were thus able to complete the
proof of the protocol under the classical hypotheses. However,
by using PROVERIF, where in fact the basic way to model a
KEM is to use an asymmetric encryption to encrypt a fresh
shared secret, we could find this attack automatically. It is
a surprising corner case, where the classical way to model
something in the symbolic model already captures a non-
trivial potential attacker capability.

Practical consequences We checked whether Kyber al-
lowed for such re-encapsulations, which turns out not to be
the case. So, while it was only formally proven to be IND-
CCA secure, Kyber in fact guarantees an additional security
assumptions, where the secret is tied to the corresponding
public key and ciphertext.

To verify the current implementation, we had to define this
additional security property, prove that it is met by Kyber, and
prove that there is under this assumption agreement on the
public key used in a session, effectively disabling our attack.
This is detailed in Section 5.3.

Importantly, implementations of the specification that
would have used a IND-CCA asymmetric encryption to build
the KEM would have suffered from this. In addition, there
are schemes for which the security is unclear: both BIKE and
HQC do not directly tie the shared secret to the public key, but
only to the ciphertext. Finally, the McEliece KEM is such that
“modifying one bit in a public key has a significant chance of
not affecting any particular ciphertext” [1, Section 3], and its
designer conclude that “Application designers are encouraged
to assume solely the standard IND-CCA2 property”.

4.2 Design Considerations

4.2.1 KDF Input Confusion

At first glance, it may appear that PQXDH also has an en-
coding ambiguity in the format of keys used in various calls
to the key derivation function (KDF) in the protocol. In fact,
the ‘info‘ field contains enough information though to disam-
biguate these KDF calls.

In our first PROVERIF model, we ignored the ‘info‘ field
and the tool found several cross-protocol attacks. Ignoring
such seeming low-level details when modeling a protocol can
sometimes miss attacks, and at other times yield false attacks.

Even after accounting for the ‘info‘ field, there remains a
concern that the format of the KDF input key material be-
tween X3DH and PQXDH can be confused with each other.
For example, X3DH may use 3 or 4 DH shared secrets con-
catenated with each other as the KDF input, while PQXDH
concatenates either 3 DH and 1 KEM secret, or 4 DH and 1
KEM secret. Within PQXDH, the ‘info‘ field prevents con-
fusions, but there could still theoretically be a cross-protocol
attack between PQXDH (3DH+SS) and X3DH (4DH) de-
pending on what info field the application chooses in X3DH,
since the X3DH specification does not mandate the contents
of its ‘info‘ fields.

This is another interesting instance where the composition
of two protocols can potentially result in attacks even if both
protocols are individually secure.

4.2.2 Weak Post-Quantum Forward Secrecy

A part of the post-quantum forward secrecy guarantees of
PQXDH relies on Alex receiving a signed one-time KEM
public key PQOPK and the corresponding Blake deleting
the corresponding private key after receiving the PQXDH
message. However, since both the PQOPK and the signed
last-resort KEM key PQSPK are signed with the same key,
and both have the same encoded format, it is impossible for
Alex to know whether they are using a last resort or one-time
key.

As a consequence, PQXDH offers a weaker forward se-
crecy guarantee than Alex may expect, since Alex cannot
know if the decryption key will be immediately deleted. In
practice, however, the last-resort key PQSPK is a medium-
term secret, and will be deleted by Blake after some time.

5 Formal Verification of PQXDH version 2

We detail here our provably secure update of the revision
that was published by Signal. As the existing implementation
does not directly follow some of our recommendations, we
also verified that the existing implementation is secure by
introducing a dedicated KEM assumption. Looking ahead,
we also reflect on the limitations of our model, as well as
propose a few possible protocol changes for a revision 3 to
improve its future resilience.

The models used to obtain the proofs are also available
at [12]. Similarly to the attack finding case, all proofs are
completed in a few minutes.

5.1 Protocol Changes in version 2

To address all the previous points, we recommended multiple
fixes that were integrated inside a new revision [30]. We
provide a diff between revision 1 and revision 2 at [28] for
ease of reading, with the following updates:

478 33rd USENIX Security Symposium USENIX Association

• To address the key-encapsulation attack, we mentioned
that the PQSPK should be included inside the Authenti-
cated Data of the AEAD, or the KEM should in fact meet
an additional security property and bind together the se-
cret and the public key ([30, Section 3.3]). As the exact
security definition needed for the KEM does not have
for the moment a clear consensus, we did not put any
clear definition in the draft. We however in this work de-
fine our own sufficient security property, see Section 5.3.
This is also detailed in the revision ([30, Section 4.12]).

• To address the key confusion attacks, we now explicitly
state that the range of the encoding functions for public
keys must be pairwise disjoint ([30, Section 2.1]).

• As an intermediate step (as we do not provide guarantees
over this in the untrusted server setting), We added key
identifiers for the PQSPK and PQOPK that enables Alex
to know whether it is a one time or not pre shared key
([30, Section 2.5]).

• Our security theorems are integrated at the beginning of
the Security Considerations ([30, Section 4]).

• We made explicit the missing hypothesis that the AEAD
must be IND-CPA+INT-CTXT even against quantum
attackers ([30, Section 4.7]).

• We added a discussion on key identifiers, not included
in our presentation of the protocols, but that are used by
Alex to tell Blake which key is used. Including them in
our models highlighted that they are in fact not security
relevant ([30, Section 4.13]).

5.2 Security Theorems proved with PROVERIF
and CRYPTOVERIF

The previous modifications of the revision were proposed
only after we tried them in our models. In particular, on the
version where we explicitly assume that signatures of SPK
and PQSPK cannot be confused and that the PQSPKB is in-
cluded inside the AD, we were able to obtain a number of
security theorems.

The iterative process described previously in order for us to
obtain the most precise possible security queries in PROVERIF
yields complicated queries, with many possible disjunctions.
Recall that such queries are correct in the sense that PQXDH
does satisfy it, and it is complete in the sense that removing a
single case of the disjunction leads to an attack trace, which
is however a normal insecurity case. This means that this
query does capture precisely the full security guarantees of
PQXDH in presence of many possible compromises.

For ease of reading and clarity, we only provide a high-
level theorem for all our symbolic results here. The detailed
queries and corresponding exhaustive theorems are provided
in Appendix A.

Theorem 1. PQXDH in the symbolic model provides peer-
authentication, forward secrecy, resistance to key compromise

impersonation, session independence and resistance to “har-
vest now decrypt later” attacks in case of a DH break down.

In addition, it also provides data agreement over the shared
pre-key used.

Using the exhaustive analysis approach, we have an exhaus-
tive list of compromise cases that break the security of the
protocol, which leads to a couple of interesting observations:

1. The OPK does not increase the security of the key de-
rived by Blake as much as might be expected. This is
a consequence of it being unauthenticated, the attacker
can then always send a malicious one instead, or more
importantly never send one. Developing a way to detect
if when the server does not provide an OPK there are in-
deed no more OPK available is an interesting challenge.

2. Compromising the SPKB of some agent Blake allows an
attacker to impersonate Blake for any other agent that
could want to talk to Blake. It arises from the fact that
Alex only authenticates to Blake by using a long term
DH share IKA combined with the SPKB, an attacker com-
promising SPKB can then compute the corresponding
DH secret and impersonate Alex. In practice, it means
that PQXDH does not meet what could be called an
Ephemeral Key Compromise Impersonation.

We also obtained security theorems providing computa-
tional guarantees on the protocol with CRYPTOVERIF.

Theorem 2 (PQXDH classical computational security). If
X25519 satisfies the gapDH assumption, the KDF is a Ran-
dom Oracle, if the AEAD is IND-CPA+INT-CTXT and if
the signature scheme is EUF-CMA, then PQXDH guaran-
tees both the secrecy of the sent message, as-well-as peer-
authentication with agreement over identities, OPK and SPK
used, modulo the subgroup elements of X25519, as well as
agreement over the PQSPK used provided it was included in
the AD.

Importantly, compared to revision 1, we do have authenti-
cation of the KEM public key used, as soon as it is in the AD.
Importantly, we stress that Signal does not do this, but Kyber
meets an additional property ensuring this, which we discuss
in Section 5.3.

Theorem 3 (PQXDH post-quantum computational security).
Under IND-CCA for the KEM, if the KDF is a PRF and the
final AEAD is IND-CPA+INT-CTXT, as long as the signa-
ture scheme was unforgeable when some key exchange was
completed, secrecy of the derived key still holds in the future.

Importantly, recall that we do get guarantees against a post-
quantum attacker, as CRYPTOVERIF was recently updated in
order to be able to provide such guarantees [15].

5.3 KEM Public Key Agreement for PQXDH
As the re-encapsulating attack can be carried out without
violating the IND-CCA assumption, it turns out that the IND-

USENIX Association 33rd USENIX Security Symposium 479

CCA security of the KEM scheme is not enough to show the
full security of PQXDH. As mentioned in our modification
for revision 2, we either need that the PQSPKB KEM public
key is tied inside the AD of the AEAD, or that the KEM secret
is in fact bound in some way to the used public key.

The difficulty is that this binding between the secret and
public key is not covered by classical cryptographic defini-
tions. It is of course typically not covered by IND-CCA, but
it is also not covered by the main previous definitions, as
surveyed e.g. in [39, Fig. 2]. In all those definitions, the at-
tacker is trying to come up with an attack against the KEM
for honestly generated keys that are never compromised.

Crucially, in our setting and for re-encapsulation attacks, as
outlined in [22], the attacker may know the key. We describe
in the following a tailored KEM security assumption that en-
abled us to prove the security of PQXDH under this assump-
tion, and also provide a proof that Kyber does in fact meet this
assumption. Thus, we demonstrate that the re-encapsulation
attack is not practical for Kyber, and we prove the security of
the existing implementation which does not include the KEM
in the AD, as required by Theorem 2.

5.3.1 Tailored KEM definition

The core issue of the re-encapsulation attack is that we don’t
have authentication over the PQSPKB used by Alex. In the
PQXDH setting, we can define a semi-honest collision re-
sistance property over the KEM that enables us to prove this
authentication.

Definition 1 (SH-CR). We define the advantage of an adver-
sary A against a KEM (keygen,encaps,decaps) semi-
honest collision resistance as:

AdvSH-CR
A ,KEM =

Pr

 decaps(ct ′,sk) = ss∧
(ct ̸= ct ′∨pk ̸= pk′)

|

sk,pk
$←− keygen()

pk′
$←− A(sk)

ss,ct $←− encaps(pk′)
ct ′ $←− A(sk,ss,ct)

Here,we have one agent that will decapsulate for its own

honestly generated but compromised sk an attacker chosen
ciphertext, another agent that will encapsulate against an at-
tacker chosen key, and the attacker wins if both computes the
same secret, while either not using the same public key or the
same ciphertext. Intuitively, this corresponds to the minimal
security property needed to prove KEM ciphertext and public
key agreements in PQXDH.

Notice that this is logically independent of the CCR defi-
nition from [6], where the attacker tries to come up with two
arbitrary ciphertexts that decapsulate to the same value for a
given honestly generated but compromised secret key. The
separations between the two can be proven as follows.

Theorem 4. We have the following separations:

1. CCR ̸⇒ SH-CR
2. SH-CR ̸⇒CCR

Proof. The proof are direct constructions, though probably
not practical.

For 1), consider a CCR secure KEM scheme
(keygen,encaps,decaps). We generate from it KEM’,
where keygen′ appends 0 to all public keys, and encaps′

simply ignores the last bit of the public key and runs encaps.
This is still a CCR secure scheme, but it is clearly not SH-CR
as the attacker can simply set pk′ to be pk but swapping the
last bit from 0 to 1, and then win the game.

For 2) consider a SH-CR secure KEM scheme, and such
that, without loss of generality, encaps returns with at most
negligible probability for any input a ciphertext equal to just
0 and 1. We set decaps′ to be decaps, expect on input 0
and 1, where it arbitrarily returns 0. That is, for any key,
decaps′(0,sk) = decaps′(1,sk). This means that KEM’ is
clearly not CCR secure. However, it is still SH-CR, because
0 and 1 may never be returned by the honest encapsulation
yielding ct in the SH-CR definition.

We cannot directly find our notion in [22] either, as they
consider for all the definitions either two honestly generated
keys (e.g. in HON-BIND-K-CT), two leaked keys (e.g. in
LEAK-BIND-K-CT), or two maliciously generated keys (e.g.
in MAL-BIND-K-CT), but not our semi-honest setting.

However, similarly to the fact that MAL-Bind-K-CT⇒
CCR as discussed in [6], we trivially have on our side that
MAL-Bind-K,CT-PK⇒ SH-CR.

More generally, we do not claim that SH-CR is the ideal
security definition that KEMs should target, but it is the ideal
one for our setting and for use in CRYPTOVERIF, enabling us
to carry out all our proofs.

5.3.2 KEM public key agreement

Using CRYPTOVERIF, we proved the following two theorems
based on SH-CR.

Theorem 5 (Kyber is SH-CR). If the hash functions used in
the Kyber design are modeled as Random Oracles, Kyber is
SH-CR.

For the reasons mentioned previously in the practical impli-
cations of the re-encapsulation attack, it is clear that McEliece
does not meet SH-CR, and the situation is unclear for BIKE
and HQC.

However, as Signal specifically uses Kyber, we can obtain
guarantees over the current implementation.

Theorem 6 (PQXDH KEM public key agreement). Under
similar hypothesis as Theorem 2, PQXDH also guarantees
the agreement over the PQSPK used provided the KEM is
SH-CR.

480 33rd USENIX Security Symposium USENIX Association

5.4 Toward PQXDH version 3
Our analysis also suggest further improvements towards a
future revision 3 of the protocol, which would also require
changes to the implementation. While these changes do not
thwart any known attack, we believe they would increase the
trust in the overall design, as well as simplify the proofs. The
envisioned changes are:

• to add a tag under the signature of the PQSPK, so that
Alex can know whether it is using a one time or a last
resort PQSPK. While this does not prevent a malicious
server to only provide last resort PQSPK to the attacker,
it would at least ensure that Alex knows the correspond-
ing security level;

• to add all the public keys used inside the KDF input, in
order to strengthen the data agreement and avoid relying
on SH-CR.

5.5 Limitations of our Proofs
We note that our proofs only hold for our models, which do
not capture all the details of how the protocol is deployed.

The first limitation is that Signal uses the long term identity
keys IK for both curve operations using X25519 as-well-as sig-
nature operations XEdDSA. This is a joint key reuse between
algorithms, where one would in fact need a joint security hy-
pothesis on both primitives, in the vein of [37]. This issue
was completely ignored in the pen-and-paper Signal analy-
sis [21], where the signatures were simply dropped and the
data assumed to be pre-authenticated. We take a more precise
approach, by still including the signatures, but assuming that
IK contains two key pairs, one for curve computations and one
for signatures. Coming up with a precise model to capture this
key reuse is still an open question, even without considering
a formal CRYPTOVERIF proof.

A second limitation is that the CRYPTOVERIF model only
considers the compromise of the long term keys, and not
of the ephemeral keys. The difficulty here is that each new
compromise implies to completely redo the proof, and notably
also redefine variants of the cryptographic axioms that allow
for those compromises.

A third limitation is that we do not model or prove anything
about deniability, which we leave as an open question.

A fourth and final limitation, of both the CRYPTOVERIF
and PROVERIF models, is that we only consider PQXDH,
and not the full eco-system. Lifting this limitation however
represents a major challenge for our tools.

6 Lessons learned

Our formal analysis in collaboration with Signal’s protocol de-
signers and developers highlighted several interesting points,
both with respect to the design of future hybrid schemes,
as-well-as how to carry out such formal verifications.

6.1 Designing Hybrid schemes
The core issues we identify that one should consider when
updating a protocol to a post-quantum variant are:

• The added KEM public key and ciphertext should be
mutually authenticated, otherwise IND-CCA is probably
not enough to prove the protocol secure, and the pro-
tocol may in fact be insecure for some specific KEM
instantiations.

• Domain separation within the protocol between DH pub-
lic keys and KEM public keys is crucial, as confusion
may lead to a downgrade of security.

• Domain separation between distinct protocols is impor-
tant. This is a typical case where both the old classical
version of the protocol and it’s post-quantum version
will exist in parallel, so derived keys and other materials
should not be confused between the two.

6.2 Formal verification
Our approach highlighted the interest of using both PROVERIF
and CRYPTOVERIF in combination to analyze protocols:

• The lack of domain separation makes it impossible to
get a CRYPTOVERIF proof, so we can quickly suspect
the presence of a confusion attack. These attacks are
not caught by default in PROVERIF, since the standard
definitions of cryptographic primitives in PROVERIF em-
bed domain separation. But once we suspect an attack,
we can model it explicitly and then use PROVERIF to
confirm a concrete attack on the protocol.

• We can model more compromises in PROVERIF, and
thus catch some attacks not covered by a CRYPTOVERIF
proof. One such attack is found, we can fix the proto-
col, and then go back to the CRYPTOVERIF model and
formally prove that the attack is indeed removed.

• Our exhaustive methodology in PROVERIF allows us to
capture as many attacks as the tool can find. One should
always first try to include all possible compromises in
the model, and then refine the security queries until they
can be proved.

7 Related Work

This work is the first to analyze PQXDH and led to an update
of the specification within months of its release. As such,
there is no previous related work precisely on PQXDH. In
the following, we discuss closely related work.

Our work follows in the line of previous formal analysis
of protocol standards using the same or similar verification
tools, e.g. of TLS 1.3 [11], 5G-AKA [8], EMV [9, 34] or
EDHOC [26], where those analyzes often led to updates of
the protocol specifications and implementations.

A variant of X3DH was previously studied in [27]. Our
CRYPTOVERIF models were inspired by them but heavily

USENIX Association 33rd USENIX Security Symposium 481

adapted, both to match the X3DH version as-well-as the
PQXDH model. Our PROVERIF models were, on the other
hand, rewritten from scratch.

The Signal application eco-system is wider than X3DH,
as the derived key is used in combination with the Double-
Ratchet (DR) protocol, and an additional layer is introduced
by the Sesame multiple session management protocol. X3DH
composed with the subsequent DR protocol was analyzed
with a pen-and-paper computational proof in [21], but they
made rather strong assumptions over the way public keys are
authenticated, whereas we model the signatures over those
keys, which are crucial to some of the weaknesses we found.
More pen-and-paper proofs of the composed X3DH +DR
protocol can be found in [3,13]. In our work, we prove strong
formal guarantees for the new PQXDH protocol in isolation.

Implementations of X3DH and DR were also analyzed
using DY* [10], and their integration within Sesame was
analyzed using the Tamarin prover [24]. Both these works are
only inside the symbolic model and use less precise models
and cryptographic assumptions for X3DH than our work.

Importantly, none of the results of the previous analyzes of
X3DH carry over to PQXDH, as extending a secure protocol
with new elements can break its security, even if all these
elements are individually secure. Indeed, our work uncovers
a potential attack on X3DH because of new key confusions
introduced by PQXDH version 1.

A few other tools support post-quantum computational
guarantees, such as Squirrel [4, 23] and EasyCrypt [5, 7, 38],
but they have not yet been applied to protocols like PQXDH.
For us, it was natural to rely on CRYPTOVERIF by building
on the previously developed models of X3DH.

We also uncover an attack based on subtle definitions of
KEMs, similar to the re-encapsulations attacks discussed
in [22]. We discuss the actual KEM security assumption
needed for our setting, and link it with recent works [6, 22].

8 Conclusion

We performed an extensive analysis of the recent PQXDH
proposal, finding design flaws, contributing concrete updates
to the protocol specification, and developing machine-checked
security proofs for the fixed version.

This work was performed in collaboration with the Signal
design team and demonstrates how formal methods can be
efficiently used in a short time frame to improve the design
of post-quantum hybrid protocols.

It also highlights the interesting synergy of using multiple
tools, as the analysis results from both CRYPTOVERIF and
PROVERIF mutually improved each other.

Much work remains to be done around the formal analysis
of Signal and of post-quantum secure messaging in general.
Important future goals include precisely modeling the full
Signal eco-system, developing computational analyzes that
can capture the long term identity key reuse for signatures

and curve computations, and designing and analyzing a post-
quantum secure Double Ratchet protocol.

Acknowledgments

This work was partly done while Charlie Jacomme was at In-
ria, Paris, France. This work benefited from funding managed
by the French National Research Agency under the France
2030 programme with the references ANR-22-PECY-0006
(PEPR Cybersecurity SVP) and ANR- 22-PETQ-0008 (PEPR
Quantic PQ-TLS).

References

[1] Classic mceliece. conservative code-based cryptogra-
phy: design rationale. online, 2022. https://classi
c.mceliece.org/mceliece-rationale-20221023.
pdf.

[2] Module-lattice-based key-encapsulation mechanism
standard. Technical report, Gaithersburg, MD, 2023.

[3] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The
double ratchet: security notions, proofs, and modular-
ization for the signal protocol. In Annual International
Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 129–158. Springer, 2019.

[4] David Baelde, Stéphanie Delaune, Adrien Koutsos,
Charlie Jacomme, and Solène Moreau. An interactive
prover for protocol verification in the computational
model. In 42nd IEEE Symposium on Security and Pri-
vacy (S&P’21),, pages 537–554, Los Alamitos, CA, May
2021. IEEE Computer Society Press.

[5] Manuel Barbosa, Gilles Barthe, Xiong Fan, Benjamin
Grégoire, Shih-Han Hung, Jonathan Katz, Pierre-Yves
Strub, Xiaodi Wu, and Li Zhou. Easypqc: Verifying post-
quantum cryptography. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications
Security, pages 2564–2586, 2021.

[6] Manuel Barbosa, Deirdre Connolly, João Diogo Duarte,
Aaron Kaiser, Peter Schwabe, Karoline Varner, and Bas
Westerbaan. X-wing: The hybrid kem you’ve been
looking for. Cryptology ePrint Archive, February 2024.
https://eprint.iacr.org/archive/2024/039/1
707692113.pdf.

[7] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and
Santiago Zanella Béguelin. Computer-aided security
proofs for the working cryptographer. In Phillip Rog-
away, editor, Advances in Cryptology – CRYPTO 2011,
volume 6841 of Lecture Notes in Computer Science,
pages 71–90, Berlin, Heidelberg, August 2011. Springer.

482 33rd USENIX Security Symposium USENIX Association

https://classic.mceliece.org/mceliece-rationale-20221023.pdf
https://classic.mceliece.org/mceliece-rationale-20221023.pdf
https://classic.mceliece.org/mceliece-rationale-20221023.pdf
https://eprint.iacr.org/archive/2024/039/1707692113.pdf
https://eprint.iacr.org/archive/2024/039/1707692113.pdf

[8] David Basin, Jannik Dreier, Lucca Hirschi, Saša
Radomirovic, Ralf Sasse, and Vincent Stettler. A for-
mal analysis of 5g authentication. In Proceedings of
the 2018 ACM SIGSAC conference on computer and
communications security, pages 1383–1396, 2018.

[9] David Basin, Ralf Sasse, and Jorge Toro-Pozo. The emv
standard: Break, fix, verify. In 2021 IEEE Symposium
on Security and Privacy (SP), pages 1766–1781. IEEE,
2021.

[10] Karthikeyan Bhargavan, Abhishek Bichhawat,
Quoc Huy Do, Pedram Hosseyni, Ralf Küsters, Guido
Schmitz, and Tim Würtele. Dy*: A modular symbolic
verification framework for executable cryptographic
protocol code. In 2021 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 523–542. IEEE,
2021.

[11] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim
Kobeissi. Verified models and reference implemen-
tations for the TLS 1.3 standard candidate. In IEEE
Symposium on Security and Privacy (S&P’17), pages
483–503, Los Alamitos, CA, May 2017. IEEE Computer
Society Press.

[12] Karthikeyan Bhargavan, Charlie Jacomme, Franziskus
Kiefer, and Rolfe Schmidt. Cryptoverif and proverif
models, 2024. https://github.com/Inria-Prose
cco/pqxdh-analysis/tree/2e676a009471f370d
bbfad3ac7ab5d7d9518ab57.

[13] Alexander Bienstock, Jaiden Fairoze, Sanjam Garg,
Pratyay Mukherjee, and Srinivasan Raghuraman. A
more complete analysis of the signal double ratchet algo-
rithm. In Annual International Cryptology Conference,
pages 784–813. Springer, 2022.

[14] Bruno Blanchet. Modeling and verifying security pro-
tocols with the applied pi calculus and proverif. Foun-
dations and Trends® in Privacy and Security, 1(1-2):1–
135, 2016.

[15] Bruno Blanchet and Charlie Jacomme. Post-quantum
sound CryptoVerif and verification of hybrid TLS and
SSH key-exchanges. In Proceedings of the 37th IEEE
Computer Security Foundations Symposium (CSF’24).
IEEE Computer Society Press, 2024.

[16] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M Schanck, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. Crystals-kyber: a
cca-secure module-lattice-based kem. In 2018 IEEE Eu-
ropean Symposium on Security and Privacy (EuroS&P),
pages 353–367. IEEE, 2018.

[17] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS - Ky-
ber: A CCA-Secure Module-Lattice-Based KEM. In
EuroS&P, pages 353–367. IEEE, 2018.

[18] Jacqueline Brendel, Cas Cremers, Dennis Jackson, and
Mang Zhao. The provable security of ed25519: theory
and practice. In 2021 IEEE Symposium on Security and
Privacy (SP), pages 1659–1676. IEEE, 2021.

[19] Jacqueline Brendel, Rune Fiedler, Felix Günther, Chris-
tian Janson, and Douglas Stebila. Post-quantum asyn-
chronous deniable key exchange and the signal hand-
shake. In Goichiro Hanaoka, Junji Shikata, and Yohei
Watanabe, editors, Public-Key Cryptography - PKC
2022 - 25th IACR International Conference on Prac-
tice and Theory of Public-Key Cryptography, Virtual
Event, March 8-11, 2022, Proceedings, Part II, volume
13178 of Lecture Notes in Computer Science, pages 3–
34. Springer, 2022.

[20] Jacqueline Brendel, Marc Fischlin, Felix Günther, Chris-
tian Janson, and Douglas Stebila. Towards post-quantum
security for signal’s X3DH handshake. In Orr Dunkel-
man, Michael J. Jacobson Jr., and Colin O’Flynn, editors,
Selected Areas in Cryptography - SAC 2020 - 27th In-
ternational Conference, Halifax, NS, Canada (Virtual
Event), October 21-23, 2020, Revised Selected Papers,
volume 12804 of Lecture Notes in Computer Science,
pages 404–430. Springer, 2020.

[21] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling,
Luke Garratt, and Douglas Stebila. A formal security
analysis of the signal messaging protocol. Journal of
Cryptology, 33:1914–1983, 2020.

[22] Cas Cremers, Alexander Dax, and Niklas Medinger.
Keeping up with the kems: Stronger security notions
for kems. Cryptology ePrint Archive, 2023.

[23] Cas Cremers, Caroline Fontaine, and Charlie Jacomme.
A logic and an interactive prover for the computational
post-quantum security of protocols. In 2022 IEEE Sym-
posium on Security and Privacy (SP), pages 125–141.
IEEE, 2022.

[24] Cas Cremers, Charlie Jacomme, and Aurora Naska. For-
mal analysis of session-handling in secure messaging:
Lifting security from sessions to conversations. In
Usenix Security, 2023.

[25] Keitaro Hashimoto, Shuichi Katsumata, Kris
Kwiatkowski, and Thomas Prest. An efficient
and generic construction for signal’s handshake
(X3DH): post-quantum, state leakage secure, and
deniable. J. Cryptol., 35(3):17, 2022.

USENIX Association 33rd USENIX Security Symposium 483

https://github.com/Inria-Prosecco/pqxdh-analysis/tree/2e676a009471f370dbbfad3ac7ab5d7d9518ab57
https://github.com/Inria-Prosecco/pqxdh-analysis/tree/2e676a009471f370dbbfad3ac7ab5d7d9518ab57
https://github.com/Inria-Prosecco/pqxdh-analysis/tree/2e676a009471f370dbbfad3ac7ab5d7d9518ab57

[26] Charlie Jacomme, Elise Klein, Steve Kremer, and
Maïwenn Racouchot. A comprehensive, formal and
automated analysis of the edhoc protocol. In USENIX
Security’23-32nd USENIX Security Symposium, 2023.

[27] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno
Blanchet. Automated verification for secure messag-
ing protocols and their implementations: A symbolic
and computational approach. In 2017 IEEE European
symposium on security and privacy (EuroS&P), pages
435–450. IEEE, 2017.

[28] Ehren Kret and Rolfe Schmidt. The pqxdh key agree-
ment protocol - diff between rev 1 and 2, September
2023. https://github.com/Inria-Prosecco/pq
xdh-analysis/blob/main/revision2/pqxdh-dif
f-rev-1-to-2.pdf.

[29] Ehren Kret and Rolfe Schmidt. The pqxdh key agree-
ment protocol - revision 1, September 2023. Archive:
https://github.com/Inria-Prosecco/pqxdh-a
nalysis/blob/main/revision1/pqxdh-rev1.pdf.

[30] Ehren Kret and Rolfe Schmidt. The pqxdh key agree-
ment protocol - revision 2, September 2023. Archive:
https://github.com/Inria-Prosecco/pqxdh-a
nalysis/blob/main/revision2/pqxdh-rev2.pdf.

[31] A. Langley, M. Hamburg, and S. Turner. Elliptic curves
for security. RFC 7748, RFC Editor, January 2016.

[32] Moxie Marlinspike and Trevor Perrin. The X3DH Key
Agreement Protocol, 2016.

[33] Trevor Perrin and Moxie Marlinspike. The Double
Ratchet Algorithm, 2016.

[34] Andreea-Ina Radu, Tom Chothia, Christopher JP New-
ton, Ioana Boureanu, and Liqun Chen. Practical emv
relay protection. In 2022 IEEE Symposium on Security
and Privacy (SP), pages 1737–1756. IEEE, 2022.

[35] Phillip Rogaway. Authenticated-encryption with
associated-data. In Proceedings of the 9th ACM Confer-
ence on Computer and Communications Security, pages
98–107, 2002.

[36] P.W. Shor. Algorithms for quantum computation: dis-
crete logarithms and factoring. In Proceedings 35th
Annual Symposium on Foundations of Computer Sci-
ence, pages 124–134, 1994.

[37] Erik Thormarker. On using the same key pair for
ed25519 and an x25519 based kem. Cryptology ePrint
Archive, 2021.

[38] Dominique Unruh. Quantum relational hoare logic.
Proceedings of the ACM on Programming Languages,
3(POPL):1–31, 2019.

[39] Keita Xagawa. Anonymity of nist pqc round 3 kems.
In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 551–
581, 2022.

A Formal Symbolic security Theorems

We proved in PROVERIF a set of three queries, modeling:
1. the exhaustive case disjunction under which the key com-

puted by the responder Alex is secret;
2. the exhaustive case disjunction under which the key com-

puted by the initiator Blake is secret;
3. the exhaustive case disjunction under which there is

authentication.
In PROVERIF, the final correct and complete query we were

able to prove for the secrecy of the responder key is:

query A,B:client, spk:point, pqpk:kempub, sk:symkey,
i,j:time;

event(AlexOK(A,B,spk,pqpk,ts))@i
=⇒ not(attacker(sk))
| (CompromisedIK(B)@j

& (j<i
| (event(CompromiseSPK(B,spk))

& (event(CompromisePQPK(B,pqpk))
| event(BrokenKEM))

)
)

)
| (event(BrokenDH())@j

& (j < i
| event(CompromisePQPK(B,pqpk))

| event(BrokenKEM)
)

)

This can be translated as a security theorem detailing the
possible cases.

Theorem 7 (Symbolic Responder Secrecy). The key SKA
computed by the responder Alex is secret, unless:

1. IKB was compromised before the completion of the key
exchange (this is to be expected, this is essentially a
malicious A case).

2. IKB was compromised after the key exchange, as well as
some SPKb, and either KEMs are broken or the corre-
sponding PQSPKB has been compromised (the attacker
just need to send a malicious OPK here to be able to
compute all the values).

3. DH was broken before the key exchange (this is similar
to case 1).

4. DH was broken only after the key exchange, and either
KEMs are fully broken or the PQSPKB (similar to case
2) .

All those cases appear normal, and it is in all the possible
compromise cases that still maintain security that we find the
classical security notions to be implied.

484 33rd USENIX Security Symposium USENIX Association

https://github.com/Inria-Prosecco/pqxdh-analysis/blob/main/revision2/pqxdh-diff-rev-1-to-2.pdf
https://github.com/Inria-Prosecco/pqxdh-analysis/blob/main/revision2/pqxdh-diff-rev-1-to-2.pdf
https://github.com/Inria-Prosecco/pqxdh-analysis/blob/main/revision2/pqxdh-diff-rev-1-to-2.pdf
https://github.com/Inria-Prosecco/pqxdh-analysis/blob/main/revision1/pqxdh-rev1.pdf
https://github.com/Inria-Prosecco/pqxdh-analysis/blob/main/revision1/pqxdh-rev1.pdf
https://github.com/Inria-Prosecco/pqxdh-analysis/blob/main/revision2/pqxdh-rev2.pdf
https://github.com/Inria-Prosecco/pqxdh-analysis/blob/main/revision2/pqxdh-rev2.pdf

Remark that using an OPK does not change anything on the
responder side, as they are not authenticated. But of course,
compromising the OPK makes it so that the honest responder
will never receive and answer the message.

We can also prove some form of authentication and data
agreement:

Theorem 8 (Symbolic authentication). Whenever an initiator
Blake accepts (resp. with or without an OPK), then, there ex-
ists a responder Alex that also accepted (resp. with or without
the same OPK) with the same SPKB and PQSPKB, unless:

1. IKA was compromised before the exchange (allows the
impersonation of Alex).

2. Some SPKB was compromised before the exchange
(knowing SPKB allows to impersonate A).

3. DH has been broken before the exchange.

The second compromise case here is the most interesting
one. Indeed, it means that Signal is suceptible to a form of
ephemeral key compromise impersonation: compromising
the ephemeral SPKB secret of Blake allows to impersonate
anybody to Blake. This is natural with the design of Signal,
as Alex only authenticates by using a long term DH share
combined with the SPKB.

Theorem 9 (Symbolic Initiator Secrecy). The key SKB com-
puted by the initiator Blake is secret, unless:

1. IKA was compromised before the communication. (this
allows a full impersonation of Alex)

2. Some SPKB was compromised before the communica-
tion. (more surprisingly, but inevitably, this allows a full
impersonation of any Alex)

3. IKB, SPKB and PQSPKB are compromised after the com-
munication, and either no OPK was used or it was com-
promised. (all secret material of A is leaked here, so this
is a very natural case)

4. IKB and SPKB are compromised after the communication,
and KEMs are broken, and either no OPK was used or it
was compromised. (similar to 3)

5. DH was broken before the exchange (naturally breaks
everything)

6. DH was broken after the exchange, and the PQSPKB
used by the responder was compromised (similar to 3)

7. DH was broken after the exchange, and KEMs are broken
(similar to 5)

In contrast, the OPK now plays a role and increases the
security, and also need to be compromised in many cases.

Summing up the three theorems, we do have the higher
level security properties mentioned in Theorem 1:

1. peer-authentication: directly implied by Theorem 8,
where authentication holds unless there is a compromise.

2. forward secrecy: implied by Theorems 7 and 9, where
we can see that compromising the identity key of any
party after the completion of a key exchange is not one

of the insecure case, and is thus not enough to break the
security.

3. resistance to key compromise impersonation: implied
by Theorem 8, as authentication holds even if IKB was
compromised.

4. session independence: implied by Theorems 7 and 9,
where we can see that one must compromise precisely
ephemerals secrets of the target session to break it, and
thus that leaking the ephemeral keys of other sessions
does not impact security.

5. resistance to “harvest now decrypt later”: all three theo-
rems give us that just breaking DH after completion is
not enough, and that additional compromises are always
needed.

B Full protocol description

USENIX Association 33rd USENIX Security Symposium 485

Long term keys: IKsk
B , IKpk

A
BLAKE SERVER

Long term keys: IKpk
B , IKsk

A
ALEX

Medium term keys:

SPKsk
B ,SPKpk

B
$←− DH.Keygen

PQSPKsk
B ,PQSPKpk

B
$←− KEM.Keygen

Short term keys:

OPKsk
B ,OPKpk

B
$←− DH.Keygen

PQSPK′skB ,PQSPK′pkB
$←− KEM.Keygen

OPKpk
B ,SPKpk

B ,sign(encodeEC(SPKpk
B), IKsk

B)

PQSPKpk
B ,sign(encodeKEM(PQSPKpk

B), IKsk
B)

PQSPK′pkB ,sign(encodeKEM(PQSPK′pkB), IKsk
B)PQSPK′pkB ,sign(encodeKEM(PQSPK′pkB), IKsk
B)

(?OPKpk
B),SPKpk

B ,sigEC, PQSPKpk
B ,sigKEM

Verify signatures

EKsk
A ,EKpk

A
$←− DH.Keygen

CT,SS
$←− KEM.encaps(PQSPKpk

B)

DH1−3 = (SPKpk
B)IKsk

A ∥(IKpk
B)EKsk

A ∥(SPKpk
B)EKsk

A

SKB = kdf(DH1−3(?∥(OPKpk
B)EKsk

A)∥SS)

AD = IKpk
A ∥IKpk

B

EKpk
A ,id(SPKB),(?id(OPKB)), id(PQSPKB),CT ,enc(”hello”,0,AD,SKB)

Fetch secret keys from ids
SS = KEM.decaps(CT,PQSPKsk

B)

DH1−3 = (IKpk
A)SPKsk

B ∥(EKpk
A)IKsk

B ∥(EKpk
A)SPKsk

B

SKA = kdf(DH1−3(?∥(EKpk
A)OPKsk

B)∥SS)

Check if AD = IKpk
A ∥IKpk

B
Decrypt and check aead
Delete used short term keys

Figure 4: The PQXDH protocol, revision 1.
It is exactly the X3DH protocol, with additional KEM computations, highlighted with a light gray background. Question marks denote

optional elements.

486 33rd USENIX Security Symposium USENIX Association

	Introduction
	PQXDH: Post-Quantum Extended Diffie-Hellman Key Agreement Protocol
	X3DH: Extended Triple Diffie-Hellman
	PQXDH Design Rationale
	Protocol outline
	Desired Security Properties
	Threat Model and Crypto Assumptions

	Formal Verification Methodology
	Modeling the Protocol
	Threat Model
	Security Goals
	Symbolic Verification using Proverif
	Cryptographic Proofs in CryptoVerif
	Using both Proverif and CryptoVerif

	Protocol Flaws in the PQXDH version 1
	 Attacks on the design
	Public Key Confusion Attack
	KEM Re-Encapsulation Attack

	 Design Considerations
	KDF Input Confusion
	Weak Post-Quantum Forward Secrecy

	Formal Verification of PQXDH version 2
	Protocol Changes in version 2
	Security Theorems proved with Proverif and CryptoVerif
	KEM Public Key Agreement for PQXDH
	Tailored KEM definition
	KEM public key agreement

	Toward PQXDH version 3
	Limitations of our Proofs

	Lessons learned
	Designing Hybrid schemes
	Formal verification

	Related Work
	Conclusion
	Formal Symbolic security Theorems
	Full protocol description

