
Weaknesses in the Key S
heduling Algorithm of

RC4

S
ott Fluhrer

1

, Itsik Mantin

2

, and Adi Shamir

2

1

Cis
o Systems, In
., 170 West Tasman Drive, San Jose, CA 95134

sfluhrer�
is
o.
om

2

Computer S
ien
e department, The Weizmann Institute, Rehovot 76100, Israel.

fitsik,shamirg�wisdom.weizmann.a
.il

Abstra
t. In this paper we present several weaknesses in the key s
hedul-

ing algorithm of RC4, and des
ribe their 
ryptanalyti
 signi�
an
e. We

identify a large number of weak keys, in whi
h knowledge of a small

number of key bits suÆ
es to determine many state and output bits

with non-negligible probability. We use these weak keys to 
onstru
t

new distinguishers for RC4, and to mount related key atta
ks with pra
-

ti
al 
omplexities. Finally, we show that RC4 is 
ompletely inse
ure in a


ommon mode of operation whi
h is used in the widely deployed Wired

Equivalent Priva
y proto
ol (WEP, whi
h is part of the 802.11 standard),

in whi
h a �xed se
ret key is 
on
atenated with known IV modi�ers in

order to en
rypt di�erent messages. Our new passive 
iphertext-only at-

ta
k on this mode 
an re
over an arbitrarily long key in a negligible

amount of time whi
h grows only linearly with its size, both for 24 and

128 bit IV modi�ers.

1 Introdu
tion

RC4 is the most widely used stream 
ipher in software appli
ations. It was

designed by Ron Rivest in 1987 and kept as a trade se
ret until it leaked out in

1994. RC4 has a se
ret internal state whi
h is a permutation of all the N = 2

n

possible n bits words, along with two indi
es in it. In pra
ti
al appli
ations n = 8,

and thus RC4 has a huge state of log

2

(2

8

!� (2

8

)

2

) � 1700 bits.

In this paper we analyze the Key S
heduling Algorithm (KSA) whi
h derives

the initial state from a variable size key, and des
ribe two signi�
ant weaknesses

of this pro
ess. The �rst weakness is the existen
e of large 
lasses of weak keys,

in whi
h a small part of the se
ret key determines a large number of bits of

the initial permutation (KSA output). In addition, the Pseudo Random Gen-

eration Algorithm (PRGA) translates these patterns in the initial permutation

into patterns in the pre�x of the output stream, and thus RC4 has the undesir-

able property that for these weak keys its initial outputs are disproportionally

a�e
ted by a small number of key bits. These weak keys have length whi
h is

divisible by some non-trivial power of two, i.e., ` = 2

q

m for some q > 0

1

. When

1

Here and in the rest of the paper ` is the number of words of K, where ea
h word


ontains n bits.



RC4

n

uses su
h a weak key of ` words, �xing n + q(` � 1) + 1 bits of K (as a

parti
ular pattern) determines �(qN) bits of the initial permutation with prob-

ability of one half and determines various pre�xes of the output stream with

various probabilities (depending on their length).

The se
ond weakness is a related key vulnerability, whi
h applies when part

of the key presented to the KSA is exposed to the atta
ker. It 
onsists of the

observation that when the same se
ret part of the key is used with numerous

di�erent exposed values, an atta
ker 
an rederive the se
ret part by analyzing

the initial word of the keystreams with relatively little work. This 
on
atena-

tion of a long term se
ret part with an atta
ker visible part is a 
ommonly used

mode of RC4, and in parti
ular it is used in the WEP (Wired Equivalent Pri-

va
y) proto
ol, whi
h prote
ts many wireless networks. Our new atta
k on this

mode is pra
ti
al for any key size and for any modi�er size, in
luding the 24 bit

re
ommended in the original WEP and the 128 bit re
ommended in the revised

version WEP2.

The paper is organized in the following way: In Se
tion 2 we des
ribe RC4

and previous results about its se
urity. In Se
tion 3 we 
onsider a slightly mod-

i�ed variant of the Key S
heduling Algorithm, 
alled KSA

�

, and prove that a

parti
ular pattern of a small number of key bits suÆ
es to 
ompletely determine

a large number of state bits. Afterwards, we show that this weakness of KSA

�

,

whi
h we denote as the invarian
e weakness, exists (in a weaker form) also in

the original KSA. In Se
tion 4 we show that with high probability, the patterns

of initial states asso
iated with these weak keys also propagate into the �rst

few outputs, and thus a small number of weak key bits determine a large num-

ber of bits in the output stream. In Se
tion 5 we des
ribe several 
ryptanalyti


appli
ations of the invarian
e weakness, in
luding a new type of distinguisher.

In Se
tions 6 and 7 we des
ribe the se
ond weakness, whi
h we denote as the

IV weakness, and show that a 
ommon method of using RC4 is vulnerable to

a pra
ti
al atta
k due to this weakness. In Se
tion 8, we show how both these

weaknesses 
an separately be used in a related key atta
k. In the appendi
es, we

examine how the IV weakness 
an be used to atta
k a real system (appendix A),

how the invarian
e weakness 
an be used to 
onstru
t a 
iphertext-only distin-

guisher and to prove that RC4 has low sampling resistan
e (appendi
es B and

C), and how to derive the se
ret key from an early permutation state (appendix

D).

2 RC4 and Its Se
urity

2.1 Des
ription of RC4

RC4 
onsists of two parts (des
ribed in Figure 1): A key s
heduling algorithm

KSA whi
h turns a random key (whose typi
al size is 40-256 bits) into an initial

permutation S of f0; : : : ; N � 1g, and an output generation part PRGA whi
h

uses this permutation to generate a pseudo-random output sequen
e.

The PRGA initializes two indi
es i and j to 0, and then loops over four

simple operations whi
h in
rement i as a 
ounter, in
rement j pseudo randomly,



ex
hange the two values of S pointed to by i and j, and output the value of S

pointed to by S[i℄ + S[j℄

2

. Note that every entry of S is swapped at least on
e

(possibly with itself) within anyN 
onse
utive rounds, and thus the permutation

S evolves fairly rapidly during the output generation pro
ess.

The KSA 
onsists of N loops that are similar to the PRGA round operation.

It initializes S to be the identity permutation and i and j to 0, and applies the

PRGA round operation N times, stepping i a
ross S, and updating j by adding

S[i℄ and the next word of the key (in 
y
li
 order). We will 
all ea
h round of

KSA a step.

KSA(K)

Initialization:

For i = 0 : : : N � 1

S[i℄ = i

j = 0

S
rambling:

For i = 0 : : : N � 1

j = j + S[i℄ +K[i mod `℄

Swap(S[i℄; S[j℄)

PRGA(K)

Initialization:

i = 0

j = 0

Generation loop:

i = i+ 1

j = j + S[i℄

Swap(S[i℄; S[j℄)

Output z = S[S[i℄ + S[j℄℄

Fig. 1. The Key S
heduling Algorithm and the Pseudo-Random Generation Algorithm

2.2 Previous Atta
ks on RC4

Due to the huge e�e
tive key of RC4, atta
king the PRGA seems to be infea-

sible (the best known atta
k on this part requires time that ex
eeds 2

700

). The

only pra
ti
al results related to the PRGA deal with the 
onstru
tion of dis-

tinguishers. Fluhrer and M
Grew des
ribed in [FM00℄ how to distinguish RC4

outputs from random strings with 2

30

data. A better distinguisher whi
h re-

quires 2

8

data was des
ribed by Mantin and Shamir in [MS01℄. However, this

distinguisher 
ould only be used to mount a partial atta
k on RC4 in broad
ast

appli
ations.

The fa
t that the initialization of RC4 is very simple stimulated 
onsiderable

resear
h on this me
hanism of RC4. In parti
ular, Roos dis
overed in [Roo95℄ a


lass of weak keys that redu
es their e�e
tive size by �ve bits, and Grosul and

Walla
h showed in [GW00℄ that for large keys whose size is 
lose to N words,

RC4 is vulnerable to a related key atta
k.

More analysis of the se
urity of RC4 
an be found in [KMP

+

98℄, [Gol97℄ and

[MT98℄.

2

Here and in the rest of the paper all the additions are 
arried out modulo N



3 The Invarian
e Weakness

Due to spa
e limitations we prove here the invarian
e weakness only for a sim-

pli�ed variant of the KSA, whi
h we denote as KSA

�

and des
ribe in Figure 2.

The only di�eren
e between them is that KSA

�

updates i at the beginning of

the loop, whereas KSA updates i at the end of the loop. After formulating and

proving the existen
e of this weakness in KSA

�

, we des
ribe the modi�
ations

required to apply this analysis to the real KSA.

KSA(K)

a

For i = 0 : : : N � 1

S[i℄ = i

i = 0

j = 0

Repeat N times

j = j + S[i℄ +K[i mod `℄

Swap(S[i℄; S[j℄)

i = i + 1

KSA

�

(K)

For i = 0 : : : N � 1

S[i℄ = i

i = 0

j = 0

Repeat N times

i = i + 1

j = j + S[i℄ +K[i mod `℄

Swap(S[i℄; S[j℄)

a

KSA is rewritten in a way whi
h 
lari�es the relation to KSA

�

Fig. 2. KSA vs. KSA

�

3.1 De�nitions

De�nition 1 Let S be a permutation of f0; : : : ; N � 1g, t be an index in S and

b be some integer. Then if S[t℄

mod b

� t, the permutation S is said to b-
onserve

the index t. Otherwise, the permutation S is said to b-un
onserve the index t.

Denote the permutation S and the indi
es i and j after round t of KSA

�

as S

t

, i

t

and j

t

respe
tively. Denote the number of indi
es that a permutation b-
onserves

as I

b

(S). For the sake of simpli
ity, we often write I

t

instead of I

b

(S

t

).

De�nition 2 A permutation S of f0; : : : ; N � 1g is b-
onserving if I

b

(S) = N ,

and is almost b-
onserving if I

b

(S) � N � 2.

De�nition 3 Let b; ` be integers, and let K be an ` words key. Then K is 
alled

a b-exa
t key if for any index t K[t mod `℄ � (1� t) (mod b). In 
ase K[0℄ = 1

and msb(K[1℄) = 1, K is 
alled a spe
ial b-exa
t key.

Noti
e that for this 
ondition to hold, it is ne
essary (but not suÆ
ient) that

b j `.



3.2 The Weakness

Theorem 1 Let q � n and ` be integers and b

def

= 2

q

. Suppose that b j ` and

let K be a b-exa
t key of ` words. Then the permutation S = KSA

�

(K) is

b-
onserving.

Before getting to the proof itself, we will prove an auxiliary lemma

Lemma 1 If i

t+1

� j

t+1

(mod b), then I

t+1

= I

t

.

Proof: The only operation that might a�e
t S (and maybe I) is the swapping op-

eration. However, when i

t+1

and j

t+1

are equivalent (mod b), S

t+1

b-
onserves

i

t+1

(j

t+1

) if and only if S

t

b-
onserved j

t

(i

t

). Thus the number of indi
es S

b-
onserves remains the same. ut

Proof:(of Theorem 1) We will prove by indu
tion on t that for any 1 � t � N ,

it turns out that I

b

(S

t

) = N and i

t

� j

t

(mod b). This in parti
ular implies that

I

N

= N , whi
h makes the output permutation b-
onserving.

For t = 0 (before the �rst round), the 
laim is trivial be
ause i

0

= j

0

= 0

and S

0

is the identity permutation whi
h is b-
onserving for every b. Suppose

that j

t

� i

t

and S

t

is b-
onserving. Then i

t+1

= i

t

+ 1 and

j

t+1

= j

t

+ S

t

[i

t+1

℄ +K[i

t+1

mod `℄

mod b

� i

t

+ i

t+1

+ (1� i

t+1

) = i

t

+ 1 = i

t+1

Thus, i

t+1

� j

t+1

(mod b) and by applying Lemma 1 we get I

t+1

= I

t

= N and

therefore S

t+1

is b-
onserving. ut

KSA

�

thus transforms spe
ial patterns in the key into 
orresponding pat-

terns in the initial permutation. The fra
tion of determined permutation bits is

proportional to the fra
tion of �xed key bits. For example, applying this result

to RC4

n=8;`=6

and q = 1, 6 out of the 48 key bits 
ompletely determine 252 out

of the 1684 permutation bits.

3.3 Adjustments to KSA

The small di�eren
e between KSA

�

and KSA (see Figure 2) is essential in that

KSA, applied to a b-exa
t key, does not preserve the equivalen
e (mod b) of i

and j even after the �rst round. Analyzing its exe
ution on a b-exa
t key gives

j

1

= j

0

+ S

0

[i

1

℄ +K[i

1

℄ = 0 + S

0

[0℄ +K[0℄ = K[0℄

mod b

� 1

mod b

6� 0 = i

1

and thus the stru
ture des
ribed in Se
tion 3.2 
annot be preserved by the 
y
li


use of the words of K. However, the invarian
e weakness 
an be adjusted to the

real KSA, and the proper modi�
ations are formulated in the following theorem:

Theorem 2 Let q � n and ` be integers and b

def

= 2

q

. Suppose that b j ` and let

K be a spe
ial b-exa
t key of ` words. Then

Pr[KSA(K) is almost b-
onserving℄ � 2=5

when the probability is over the rest of the key bits.



Due to spa
e limitations, the formal proof of this theorem (whi
h is based

on a detailed 
ase analysis) will appear only in the full version of this paper.

However, we 
an explain the intuition behind this theorem by 
on
entrating on

the di�eren
es between Theorems 1 and 2, whi
h deal with KSA

�

and KSA

respe
tively. During the �rst round, two deviations from KSA

�

exe
ution o
-


ur. The �rst one is the non-equivalen
e of i and j whi
h is expe
ted to 
ause

non-equivalent entries to be swapped during the next rounds, thus ruining the

deli
ate stru
ture that was preserved so well during KSA

�

exe
ution. The se
-

ond deviation is that S b-un
onserves two of the indi
es, i

1

= 0 and j

1

= K[0℄.

However, we 
an 
an
el the ij dis
repan
y by for
ing K[0℄ (and j

1

) to 1. In this


ase, the dis
repan
y in S[j

1

℄ (K[1℄) 
auses an improper value to be added to

j, thus repairing its non-equivalen
e to i during the se
ond round. At this point

there are still two un
onserved indi
es, and this aberration is dragged a
ross

the whole exe
ution into the resulting permutation. Although these 
orrupted

entries might interfere with j updates, the pseudo-random j might rea
h them

before they are used to update j (i.e., before i rea
hes them), and send them into

a region in S where they 
annot a�e
t the next values of j

3

. The probability of

this lu
ky event is ampli�ed by the fa
t that the 
orrupted entries are i

1

= 0

whi
h is not tou
hed until the termination of the KSA due to its distan
e from

the 
urrent lo
ation of i, and j

2

= 1 +K[1℄ > N=2 (re
all that msb(K[1℄) = 1),

that is far from i

1

= 2, whi
h gives j many opportunities to rea
h it before i

does. The probability of N=2 pseudo random j's to rea
h an arbitrary value 
an

be bounded from below by 2/5, and extensive experimentation indi
ates that

this probability is a
tually 
lose to one half.

4 Key-Output Correlation

In this se
tion we will analyze the propagation of the weak key patterns into the

generated outputs. First we prove Claim 1 whi
h deals with the highly biased

behavior of a weakened variant of the PRGA, applied to a b-
onserving permu-

tation. Next, we will argue that the pre�x of the output of the original PRGA

is highly 
orrelated to the pre�x of the swapless variant (on the same initial

permutation), whi
h implies the existen
e of biases in the PRGA distribution

for these weak keys.

Claim 1 Let RC4

�

be a weakened variant of RC4 with no swap operations. Let

q � n, b

def

= 2

q

and S

0

be a b-
onserving permutation. Let fX

t

g

1

t=1

be the output

sequen
e generated by applying RC4

�

to S

0

, and x

t

def

= X

t

mod b. Then the

sequen
e fx

t

g

1

t=1

is 
onstant.

Sin
e there are no swap operation, the permutation does not 
hange and re-

mains b-
onserving throughout the generation pro
ess. Noti
e that all the values

3

if a value is pointed to by j before the swap, it will not be used as S[i℄ (before the

swap) for at least N � 1 rounds, and in parti
ular it will not a�e
t the values of j

during these rounds.



of S are known (mod b), as well as the initial indi
es i = j = 0 � 0 (mod b), and

thus the round operation (and the output values) 
an be simulated (mod b),

independently of S. Consequently the output sequen
e (mod b) is 
onstant, and

deeper analysis implies that it is periodi
 with period 2b, as exempli�ed in Figure

3 for q = 1.

i j S[i℄ S[j℄ S[i℄ + S[j℄ Out

0 0 0 0 0 /

1 1 1 1 0 0

0 1 0 1 1 1

1 0 1 0 1 1

0 0 0 0 0 0

1 1 1 1 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 3. The rounds of RC4

�

, ap-

plied to a 2-
onserving permutation

1

st

word 1 � � � 1 1 1

2

nd

word n � � � 3 2 1

3

th

word n � � � 3 2 1

.

.

.

`

th

word n � � � 3 2 1

Fig. 4. The stage in whi
h ea
h one

of the bits is exposed during the re-

lated key atta
k

Re
all that at ea
h step of the PRGA, S 
hanges in at most two lo
ations, and

thus we 
an expe
t the pre�x of the output stream generated by RC4 from some

permutation S

0

, to be highly 
orrelated with the stream generated from the same

S

0

(or a slightly modi�ed one) by RC4

�

. In parti
ular the stream generated by

RC4 from an almost b-
onserving permutation is expe
ted to be highly 
orrelated

with the 
onstant substream fx

t

g from Claim 1. This 
orrelation is demonstrated

in Figure 8, where the fun
tion h �! Pr[1 � 8t � h Z

t

� x

t

mod 2

q

℄ (for spe
ial

2

q

-exa
t keys) is empiri
ally estimated for n = 8, ` = 16 and di�erent q's. For

example, a spe
ial 2-exa
t key 
ompletely determines 20 output bits (the lsb's

of the �rst 20 outputs) with probability 2

�4:2

instead of 2

�20

, and a spe
ial

16-exa
t key 
ompletely determines 40 output bits (4 lsb's from ea
h of the �rst

10 outputs) with probability 2

�2:3

, instead of 2

�40

.

We have thus demonstrated a strong probabilisti
 
orrelation between some

bits of the se
ret key and some bits of the output stream for a large 
lass of weak

keys. In the next se
tion we des
ribe how to use this 
orrelation to 
ryptanalyze

RC4.

5 Cryptanalyti
 Appli
ations of the Invarian
e Weakness

5.1 Distinguishing RC4 Streams from Randomness

In [MS01℄ Mantin and Shamir des
ribed a signi�
ant statisti
al bias in the se
-

ond output word of RC4. They used this bias to 
onstru
t an eÆ
ient algorithm

whi
h distinguishes between RC4 outputs and truly random sequen
es by ana-

lyzing only one word from O(N) di�erent outputs streams. This is an extremely



eÆ
ient distinguisher, but it 
an be easily avoided by dis
arding the �rst two

words from ea
h output stream. If these two words are dis
arded, the best known

distinguisher requires about 2

30

output words (see [FM00℄). Our new observation

yields a signi�
antly better distinguisher for most of the typi
al key sizes. The

new distinguisher is based on the fa
t that for a signi�
ant fra
tion of keys, a

signi�
ant number of initial output words 
ontain an easily re
ognizable pattern.

This bias is 
attened when the keys are 
hosen from a uniform distribution, but

it does not 
ompletely disappear and 
an be used to 
onstru
t an eÆ
ient dis-

tinguisher even when the �rst two words of ea
h output sequen
e are dis
arded.

Noti
e that the probability of a spe
ial 2

q

-exa
t key to be transformed into a

2

q

-
onserving permutation, does not depend of the key length ` (see Theorem 2).

However, the number of predetermined bits is linear in `, and 
onsequently the

size of this bias (and thus the number of required outputs) also depends on `. In

Figure 5 we spe
ify the quantity of data required for a reliable distinguisher, for

di�erent key sizes. In parti
ular, for 64 bit keys the new distinguisher requires

only 2

21

data instead of the previously best number of 2

30

output words.

It is important to noti
e that the spe
i�ed output patterns extend over several

dozen output words, and thus the quality of the distinguisher is almost una�e
ted

by dis
arding the �rst few words. For example, dis
arding the �rst two words


auses the data required for the distinguisher to grow by a fa
tor of between 2

0:5

and 2

2

(depending on `). Another important observation is that the biases in the

lsb's distribution 
an be 
ombined in a natural way with the biased distribution

of the lsb's of English texts into an eÆ
ient distinguisher of RC4 streams from

randomness in a 
iphertext-only atta
k in whi
h the atta
ker does not know the

a
tual English plaintext whi
h was en
rypted by RC4. This type of distinguishers

is dis
ussed in Appendix B.

5.2 RC4 has Low Sampling Resistan
e

Biryukov, Shamir and Wagner de�ned in [BSW00℄ a new se
urity measure of

stream 
iphers, whi
h they denoted as their Sampling Resistan
e. The strong


orrelation between 
lasses of RC4 keys and 
orresponding output patterns 
an

be used to prove that RC4 has relatively low sampling resistan
e, whi
h improves

the eÆ
ien
y of time/memory/data tradeo� atta
ks. Further details 
an be found

in Appendix C.

6 RC4 Key Setup and the First Word Output

In this se
tion, we 
onsider related key atta
ks where the atta
ker has a

ess to

the values of all the bits of 
ertain words of the key. In parti
ular, we 
onsider the


ase where the key presented to the KSA is made up of a se
ret key 
on
atenated

with an atta
ker visible value (whi
h we will refer to as an Initialization Ve
tor

or IV ). We will show that if the same se
ret key is used with numerous di�erent

initialization ve
tors, and the atta
ker 
an obtain the �rst word of RC4 output


orresponding to ea
h initialization ve
tor, he 
an re
onstru
t the se
ret key with



minimal e�ort. How often he 
an do this, the amount of e�ort and the number

of initialization ve
tors required depends on the order of the 
on
atenation, the

size of the IV, and sometimes on the value of the se
ret key. This observation is

espe
ially interesting, as this mode of operation is used by several 
ommer
ially

deployed en
ryption systems ([Rei01℄, [LMSon℄) and the �rst word of plaintexts

is often an easily guessed 
onstant su
h as the date, the sender's identity, et
, and

thus the atta
k is pra
ti
al even in a 
iphertext-only mode of atta
k. However,

the weakness does not extend to the Se
ure So
ket Layer proto
ol that browsers

use.

In terms of keystream output, this atta
k is interested only in the �rst word

of output from any given se
ret key and IV. Hen
e, we 
an simplify our model

of the output. The �rst output word depends only on three spe
i�
 permutation

elements, as shown in the �gure below showing the state of the permutation

immediately after KSA. When those three words are as shown, the value labeled

Z will be output as the �rst word.

1 X X + Y

X Y Z

In addition, if the key setup rea
hes a stage where i is greater than or equal

to 1, X = S

i

[1℄ and X + Y = S

i

[1℄ + S

i

[S

i

[1℄℄, then (if we model the remaining

swaps in the key setup as random) with probability greater than e

�3

� 0:05,

none of the elements referen
ed by these three values will parti
ipate in any

further swaps, and in that 
ase, the value S[S[1℄ +S[S[1℄℄℄ will be output as the

�rst word. With probability less than 1 � e

�3

� 0:95, at least one of the three

values will parti
ipate in a swap, and be set to an e�e
tively random value, whi
h

will make the output value e�e
tively random. We will refer to this situation as

the resolved 
ondition. Our atta
k involves examining messages with spe
i�
 IV

values su
h that, at some point, the KSA is in a resolved 
ondition, and where

the value of S[S[1℄ + S[S[1℄℄℄ gives us information on the se
ret key. Then, we

observe suÆ
iently many IV values that the a
tual value of S[S[1℄ + S[S[1℄℄℄

o

urs dete
tably often.

7 Details of the Known IV Atta
k

7.1 IV Pre
edes the Se
ret Key

First 
onsider the 
ase where the IV is prepended to the se
ret key. In this 
ir
um-

stan
e, assuming we have an I word IV, and a se
ret key (K[0℄;K[1℄; : : :K[`�1℄),

we attempt to derive information on a parti
ular word B of the se
ret key (K[B℄)

by sear
hing for IV values su
h that, after the �rst I steps, S

I

[1℄ < I and

S

I

[1℄ + S

I

[S

I

[1℄℄ = I +B. Then, with high likelihood (probability � e

�

2B

N

if we

model the intermediate swaps as random), we will be in a resolved 
ondition

after step I + B, and then the most probable output value will be

Out = S

I+B�1

[j

I+B

℄ = S

I+B�1

[j

I+B�1

+K[B℄ + S

I+B�1

[I +B℄℄



Or, in other words, if we know the value of j

I+B�1

and S

I+B�1

, then given the

�rst word output Out, we 
an predi
t the value

K[B℄ = S

�1

I+B�1

[Out℄� j

I+B�1

� S

I+B�1

[I + B℄

where S

�1

t

[X ℄ denotes the lo
ation within the permutation S

t

where the value

X appears. This predi
tion is a

urate more than 5% of the time, and e�e
tively

random less than 95% of the time. By 
olle
ting suÆ
iently many values from

di�erent IVs, we 
an re
onstru
t K[B℄.

In the simplest s
enario (3 word 
hosen IVs), the atta
k works as follows

4

:

suppose that we know the �rst A words of the se
ret key (K[3℄; : : : ;K[A + 2℄,

with A = 0 initially), and we want to know the next word K[A+ 3℄. We exam-

ine a series of IVs of the form (A + 3; N � 1; X) for approximately 60 di�erent

values for X . At the �rst step, j is advan
ed by A + 3, and then S[i℄ and S[j℄

are swapped, resulting in the key setup state whi
h is shown s
hemati
ly below,

where the top array is the 
ombined IV and se
ret key presented to the KSA,

and the bottom array is a portion of the permutation, and where the positions

of the i, j variables are indi
ated.

A+ 3 N � 1 X K[3℄ K[A+ 3℄

0 1 2 A+ 3

A+ 3 1 2 0

i

0

j

0

Then, on the next step, i is advan
ed, and then the advan
e on j is 
omputed,

whi
h happens to be 0. Then, S[i℄ and S[j℄ are swapped, resulting in the below

stru
ture:

A+ 3 N � 1 X K[3℄ K[A+ 3℄

0 1 2 A+ 3

A+ 3 0 2 1

i

1

j

1

Then, on the next step, j is advan
ed by X + 2, whi
h implies that ea
h dis-

tin
t IV assigns a di�erent value to j, and thus beyond this point, ea
h IV a
ts

di�erently, approximating the randomness assumption made above. Sin
e the

atta
ker knows the value of X and K[3℄; : : :K[A+2℄, he 
an 
ompute the exa
t

behavior of the key setup until he rea
hes step A + 3. At this point, he knows

the value of j

A+2

and the exa
t values of the permutation S

A+2

. If the value at

S

A+2

[0℄ or S

A+2

[1℄ has been disturbed, the atta
ker dis
ards this IV. Otherwise,

j is advan
ed by S

A+2

[i℄ +K[A+3℄, and then the swap is done, resulting in the

below stru
ture:

A+ 3 N � 1 X K[3℄ K[A+ 3℄

0 1 2 A+ 3

A+ 3 0 S[2℄ S[j℄

i

A+3

4

This s
enario was �rst published by Wagner in [Wag95℄



The atta
ker knows the permutation S

A+2

and the value of j

A+2

. In addition, if

he knows the value of S

A+3

[A+ 3℄, he knows its lo
ation in S

A+2

, whi
h is the

value of j

A+3

, and hen
e he would be able to 
ompute K[A+ 3℄. We also note

that i

A+3

has now swept past 1, S

A+3

[1℄ and S

A+3

[1℄+S

A+3

[S

A+3

[1℄℄, and thus

the resolved 
ondition exists, and hen
e with probability p > 0:05, by examining

the value of the �rst word of RC4 output with this IV, the atta
ker will obtain

the 
orre
t value of K[A+ 3℄. Hen
e, by examining approximately 60 IVs with

the above 
on�guration, the atta
ker 
an rederive K[A℄ with a probability of

su

ess greater than 0.5.

By iterating the above pro
ess a
ross the se
ret key, the atta
ker 
an rederive

` words of se
ret key using 60` 
hosen 3 word IVs.

The next thing to note is that the atta
k works for IVs other than those in

the spe
i�
 (A + 3; N � 1; X) form. Any I word IV that, after I steps, leaves

S

I

[1℄ < I and S

I

[1℄ + S

I

[S

I

[1℄℄ = I + B will suÆ
e for the above atta
k. In

addition, sin
e the atta
ker is able to simulate the �rst I steps of the key setup,

he is able to determine whi
h IVs have this property. By examining all IVs that

have this property, we 
an extend this into a known IV atta
k, without using

an ex
essive number of IVs. The probabilities to �nd the next word, and the

expe
ted number of IVs needed to obtain 60 IVs of the proper form, are given

in Figure 6 at the end of this paper.

7.2 IV Follows the Se
ret Key

In the 
ase that the IV is appended to the se
ret key, we need to take a di�erent

approa
h. The previous analysis atta
ked individual key words. When the IV

follows the se
ret key, what we do instead is sele
t IVs that give us the state of

the permutation at an early phase of the key setup, su
h as immediately after

the se
ret key has been used for the �rst time. Given that only a few swaps

have o

urred up to that point, it is reasonably straight-forward to re
onstru
t

those swaps from the permutation state, and hen
e obtain the se
ret key (see

Appendix D for one su
h method).

To illustrate the atta
k in the simplest 
ase, suppose we have an A word

se
ret key, and a 2 word IV. Further suppose that the se
ret key was weak in

the sense that, immediately after A steps of KSA, S

A

[1℄ = X , X < A, and

X + S

A

[X ℄ = A. This is a low probability event (p � 0:00062 if A = 13),

but it depends only on the se
ret key. For su
h a weak se
ret key, the atta
ker


an assume the value of j

A�1

+ S

A�1

[A℄, and then examine IVs with a �rst

word of W = Y � (j

A�1

+ S

A�1

[A℄). With su
h IVs, the value of j

A

will be the

presele
ted value Y . Then, S[A℄ and S[Y ℄ are swapped, and so S

A

[A℄ = A

A�1

[Y ℄.

Here, assuming Y was neither 1 nor S

A

[1℄, then the resolved 
ondition has been

established, and with probability > 0:05, S

A�1

[Y ℄ will be the �rst word output.

Then, by examining su
h IVs with the se
ond word being at least 60 di�erent

values, we 
an observe the output a number of times and derive the value of

S

A

[Y ℄ with good probability. By sele
ting all possible values of Y, we 
an dire
tly

observe the state of the S

A

permutation, from whi
h we 
an rederive the se
ret

key. We will denote this result as key re
overy.



If X+S

A

[X ℄ = A+1, a similar analysis would appear to apply. By assuming

S

A

[A℄, S

A

[A + 1℄ and j

A

, we 
an swap S

A+1

[Y ℄ into S

A+2

[A + 1℄ for N � 2

distin
t IVs for any parti
ular Y . However, the value of j

A+2

is always the same

for any parti
ular Y , and so the probabilities that a parti
ular IV outputs the

value S[Y ℄ is not independently distributed. This e�e
t 
auses the reading of the

permutation state to be 'noisy', that is, for some values of Y , we see S[Y ℄ as

the �rst word far more often than our analysis expe
ted, and for other values of

Y , we see it far less often. Be
ause of this, some of the entries S

A+1

[Y ℄ 
annot

be reliably re
overed. Simulations assuming a 13 word se
ret key and n = 8

have shown that an average of 171 words of the S

A

permutation state 
an be

su

essfully re
onstru
ted, in
luding an average of 8 words of (S

A

[0℄; : : : ; S

A

[12℄),

whi
h immediately give you e�e
tively 8 key words. With this information, the

key is redu
ed enough that it 
an be brute for
ed. We will denote this result as

key redu
tion.

If we have a 3 word IV, then there are more types of weak se
ret keys. For

example, 
onsider a se
ret key where S

A

[1℄ = 1 and S

A

[A℄ = A. Then, by as-

suming j

A

, we 
an examine IV where the �rst word has a value W so that the

new value of j

A+1

is 1, and so S

A

[1℄ and S

A

[A℄ are swapped, leaving the state

after A+ 1 steps to be:

K[0℄ K[1℄ K[A� 1℄ W X Z

0 1 A� 1 A A+ 1 A+ 2

S

A

[0℄ A S

A

[A� 1℄ 1 S

A

[A+ 1℄ S

A

[A+ 2℄

j

A+1

i

A+1

Then, by assuming S

A

[A + 1℄ (whi
h with high probability is A + 1, and

will always be at most A + 1), we 
an examine IVs with the se
ond word X =

Y � (1 + S

A

[A + 1℄), for an arbitrary Y , whi
h will swap the value of S

A

[Y ℄

into S

A+1

[A + 1℄. Assuming Y isn't either 1 or A, then the resolved 
ondition

have been set up, and using a number of values for the third IV word Z, we 
an

dedu
e the value of S

A+1

[Y ℄ for an arbitrary Y , giving us the permutation after

A steps.

There are a number of other types of weak keys that the atta
ker 
an take

advantage of, summarized in Figure 7 found at the end of this paper.

The last weak se
ret key listed in Figure 7 is espe
ially interesting, in that

the te
hnique that exposes the weakness is rather di�erent than that of the other

weak se
ret keys listed. Immediately after A steps, the state is:

K[0℄ K[1℄ K[X ℄ W Z

0 1 X A A+ 1

S

A

[0℄ X S

A

[X ℄ Z S

A

[A+ 1℄

i

A

The initial IV word 
auses S

A

[X ℄ and S

A

[A℄ to be swapped, leaving the state

as:



K[0℄ K[1℄ K[X ℄ W Z

0 1 X A A+ 1

S

A

[0℄ X Z S

A

[X ℄ S

A

[A+ 1℄

i

A

Now, to inquire about the value of S

X+Z

[Y +Const℄, we examine numerous

IVs with se
ond and third words that all set the value of j

A+3

to be Y . The KSA

will 
ontinue for X + Z � (A + 3) more steps until i now points to the element

S

X+Z

[X + Z℄. At this point, sin
e we haven't gone through a great number of

steps sin
e we knew the value of j (sin
e X+Z�(A+3)� A�4), then with high

probability, j

X+Z+1

= Y +Const, where Const is a 
onstant term that depends

only on the state of the permutation S

A+1

. If this is true, then S

X+Z+1

[X+Z℄ =

S

X+Z

[Y + 
onst℄, and if the elements S[1℄ and S[X ℄ have not been disturbed

(again, this happens with high probability), the resolved 
ondition has been

a
hieved, and the �rst output word will be biased towards S

X+Z

[Y + 
onst℄.

In addition, be
ause the value of 
onst will be the same independent of Y , its

value 
an easily be determined, thus allowing the atta
ker to observe many of

the values of S

X+Z

. This 
lass of weak keys requires far more known IVs to

exploit, but also o

urs relatively frequently.

If we have a 4 word

5

IV, then the same general approa
h as the previous

analysis 
an be used to re
over virtually all se
ret keys, given suÆ
ient IVs. First,

we assume j

A�1

, S

A�1

[A℄, S

A�1

[A+1℄, S

A�1

[A+2℄, S

A�1

[A+3℄

6

. Then, based

on this assumption, we sear
h for IVs that, after A+ 4 steps, sets S

A+4

[1℄ = X

and S

A+4

[X ℄ = Z for X;Z < A + 4; X + Z � A + 4, and we note the value of

j

A+4

= Y . Then, we save the value of X +Z, the value Y and the value output

as the �rst word for that parti
ular IV. With nontrivial probability, the value of

this word will be S

X+Z

[Y + 
onst

X+Z

℄, where 
onst

X+Z

is a 
onstant term that

depends on the se
ret key, and the value X+Z. Sin
e that value is independent

of the IV, we 
an 
olle
t numerous possible values of S

X+Z

[Y + 
onst

X+Z

℄ for

various values of X + Z, and use that to �rst re
onstru
t 
onst

X+Z

, and then

re
onstru
t S

X+Z

.

8 Related-Key Atta
ks on RC4

In this se
tion, we dis
uss two related-key atta
ks based on weaknesses dis
ussed

previously in this paper. They work within the following model: the atta
ker is

given a bla
k box that has a randomly 
hosen RC4 key K inside it, an output

button and an input tape of jKj words. In ea
h step the atta
ker 
an either press

the output button to get the next output word, or write � on the tape, whi
h


auses the bla
k-box to restart the output generation pro
ess with a new key

de�ned as K

0

= K � �. The purpose of the atta
ker is to �nd the key K (or

some information about it).

5

This approa
h generalizes in the obvious way to longer IVs.

6

Note that S

A�1

[x℄ � x for x � A. This limits the size of the sear
h required.



8.1 Related-Key Atta
k Based on the Invarian
e Weakness

This atta
k works when the number of key words, is a power of two. It 
onsists of

n stages where in stage q the q

th

bit of every key word is exposed

7

. The predi
ate

Che
kKey takes as input an RC4 bla
kbox and a parameter q (the stage number)

and de
ides whether the key in the box is spe
ial 2

q

-exa
t. This purpose 
an be

a
hieved by randomly sampling key bits that are irrelevant for the 2

q

-exa
tness of

the key and estimating the expe
ted length of q-patterned output. For a spe
ial

2

q

-exa
t key the expe
ted length will be signi�
antly longer than in a random

output (where it is less than 2) and thus Che
kKey works in time O(1). The

pro
edure Expand takes as input an RC4 bla
kbox and a parameter q (the stage

number), assumes that the key in the box is spe
ial 2

q�1

-exa
t, and makes it

spe
ial 2

q

-exa
t. The method for doing so is by enumerating all the possibilities

for the q

th

bits (2

`�1

su
h possibilities) and invoking Che
kKey to de
ide when

the key in the box is spe
ial 2

q

-exa
t. Expand works in a slightly di�erent way

for q = 1 and q = n. For q = 1, ex
ept for the lsb's, it determines the 
omplete

K[0℄ (by for
ing it to 1) and msb(K[1℄). For q = n, there is only one 2

n

-exa
t

key and 
onsequently we 
an 
al
ulate the output produ
ed from this key and

repla
e Che
kKey by simple 
omparison. The time 
omplexity of this stage is

O(2

n+`

) for q = 1 and O(2

`�1

) for any other q.

The total time required for the atta
k is thus O(2

n+`

) + (n � 1)O(2

`

) =

O(2

n+`

). For typi
al RC4

n=8

key with 32 bytes, the 
omplexity of exhaustive

sear
h is 
ompletely impra
ti
al (2

256

), whereas the 
omplexity of the new atta
k

is only O(2

n+`

) = O(2

40

).

8.2 Related-Key Atta
k Based on Known IV Weakness

In this se
tion we use the known IV weaknesses to develop an eÆ
ient related

key atta
k on RC4.

The atta
k 
onsists of 3 stages, where in the �rst two stages we gain informa-

tion on the �rst three words of the se
ret key, and in the third stage we iterate

down the key, and expose ea
h word of the key su

essively. The stages of the

atta
k are as follows:

Step 1 This step attempts to �nd values of K[0℄, K[1℄ su
h that S

1

[1℄ = 1,

and reveal the value of K[2℄. The pro
edure is to sele
t random values of

(X;Y ), and for ea
h su
h random value, write onto the tape 240 ve
tors

with the initial four words (X;Y; Z;W ) for Z 2 f0; N=4; N=2; 3N=4g and

with 60 distin
t random values of W , and for ea
h su
h ve
tor, press the

output button. If X and Y are su
h that S

1

[1℄ = 1 (for the modi�ed key),

then the output of the �rst word will be biased towards 3+(K[2℄�Z), unless

that value happens to be 1. Hen
e, for at least 3 of the sele
ted values of

Z, the �rst word outputs will be biased towards one of 
onst, 
onst+N=4,


onst + N=2, 
onst + 3N=4. This is dete
table, and also by examining the

value of 
onst, the atta
ker 
an re
onstru
t the value of K[2℄. We expe
t to

try N random values of (X;Y ) before �nding a pair that is appropriate.

7

In fa
t, K[1℄ is fully revealed during the �rst stage (see Figure 4)



Step 2 This step attempts to �nd the values of K[0℄, K[1℄. The pro
edure is to

write on the tape 60 ve
tors with the initial four words (X;Y; Z;W ), where

X , Y are the values re
overed in the previous step, Z = (N � 3) � K[2℄,

and with 60 distin
t random values of W , and for ea
h su
h ve
tor, press

the output button. This parti
ular initial sequen
e assures that S

2

[1℄ = 1

and S

2

[2℄ = S

1

[0℄ = K[0℄, and hen
e the output will be biased towards K[0℄.

On
e that has been re
overed, K[1℄ 
an be 
omputed.

Step 3 This step iteratively re
overs individual words of the key. It operates

by running a subpro
edure that assumes that we have already re
overed

(K[0℄; : : : ;K[A� 1℄), and want to learn the value of K[A℄. The pro
edure is

to write 60 ve
tors that have the property that, given the known values of

(K[0℄; : : : ;K[A � 1℄), that S

A�1

[1℄ = X < A and X + S

A�1

[X ℄ = A. With

60 su
h ve
tors, we 
an use the pro
edure shown in 7.1 to rederive K[A℄.

The total time required for the atta
k is thus (be
ause 2

n

� `):

Step1 + Step2 + (`� 3) � Step3 = O(2

n+8

) + 2

6

+ (`� 3)2

6

= O(2

n+8

)

For a RC4 key with n = 8 the time 
omplexity is O(2

16

) and is essentially

independent of the key length.

8.3 Comparing the Atta
ks

Both atta
ks are able to 
ompletely re
onstru
t the randomly 
hosen RC4 key

8

with a number of 
hosen keys and amount of work that is signi�
antly below

that of brute for
e (ex
ept for extremely short RC4 keys). The �rst atta
k s
ales

upwards as the key grows longer, while the time 
omplexity of the se
ond atta
k

is independent of key length, with a 
ross-over point at ` = 8.

However, due to the se
ond word weakness, future implementations of RC4

are likely to dis
ard some pre�x of the output stream, and in this 
ase the se
ond

atta
k be
omes diÆ
ult to apply { output word x depends on 2x+1 permutation

elements immediately after KSA, and all the 2x+1 elements must o

ur before

t for the resolved 
ondition to hold. On the other hand, the �rst atta
k extends

well, in that the probability of the output words being patterned drops modestly

as the number of dis
arded words in
reases.

9 Dis
ussion

Se
tion 3 des
ribes an interesting weakness of RC4 whi
h results from the sim-

pli
ity of its key s
heduling algorithm.We re
ommend to neutralize this weakness

by dis
arding the �rst N words of ea
h generated stream. After N rounds, every

element of S is swapped at least on
e and the permutation S and the index j

are expe
ted to be "independent" of the initialization pro
ess.

Se
tion 6 des
ribes a weakness of RC4 in a 
ommon mode of operation in

whi
h atta
ker visible IV's are 
on
atenated with a �xed se
ret key. It is easy

8

the �rst atta
k works only for some key lengths.



to extend the atta
k to other simple types of 
ombination operators (e.g., when

we XOR the IV and the �xed key) with essentially the same 
omplexity. We

re
ommend to neutralize this weakness by avoiding this mode of operation, or

by using a se
ure hash to form the key presented to the KSA from the IV and

se
ret key.

A Applying The Atta
k to WEP-like Cryptosystems

The Wired Equivalent Priva
y (WEP) proto
ol is designed to provide priva
y

to pa
ket based wireless networks based on the 802.11 standard (see [LMSon℄).

It en
rypts by taking a se
ret key and a per-pa
ket 3 byte IV, and using the

IV followed by the se
ret key as the RC4 key. Then, it transmits the IV, and

the RC4 en
rypted payload. By using the results from Se
tion 7.1, we 
an show

how, by examining enough 
iphertext pa
kets, to re
onstru
t the se
ret key for

a WEP-like 
ryptosystem. Note that we have not attempted to atta
k an a
tual

WEP 
onne
tion, and hen
e do not 
laim that WEP is a
tually vulnerable to

this atta
k.

We assume that the atta
ker is able to retrieve the �rst byte of the RC4

output from ea
h pa
ket

9

. By the analysis done in se
tion 7.1, to re
over key

byte B, the atta
ker needs to know the previous key bytes, and then sear
h for

IVs that sets up the permutation su
h that

X = S

B+3

[1℄ < B + 3 (1)

X + S

B+3

[X ℄ = B + 3

With 60 su
h IVs, the atta
ker 
an rederive the key byte with reasonable

probability of su

ess. The number of pa
kets required to obtain that number

of IVs depends on the exa
t IVs that the sender uses. Although the 802.11

standard does not spe
ify how an implementation should generate these IVs,


ommon pra
ti
e is to use a 
ounter to generate them.

A.1 Analysis of IVs Generated by a Little Endian Counter

If the IVs are generated by a multibyte 
ounter in little endian order (and hen
e

the �rst byte of the IV in
rements the fastest), then the atta
ker 
an sear
h for

IVs of the form (B; 255; N) for 3 � B < 8. If he 
an 
olle
t these for 60 di�erent

values of N, then he 
an derive the se
ret key with little work. This requires

approximately 4,000,000 pa
kets.

9

Be
ause of the payload format used with 802.11, the atta
ker typi
ally does know

the �rst byte of ea
h plaintext payload, and hen
e is able to derive the �rst byte of

RC4 output.



A.2 Analysis of IVs Generated by a Big Endian Counter

If the IVs are generated by a multibyte 
ounter in big endian order (and hen
e

the last byte of the IV in
rements the fastest), then the atta
ker 
an, as above,

sear
h for IVs of the form (B; 255; N). This requires approximately 1,000,000

pa
kets to 
olle
t the requisite IVs, assuming that the 
ounter starts from zero.

However, if the 
ounter doesn't start from zero, the atta
ker has an alter-

native strategy available to him. He 
an assume the �rst several bytes of se
ret

key, and then sear
h for IVs that set up the permutation as in Equation 1. If

the atta
ker assumes the �rst two bytes of se
ret key, then for ea
h initial IV

byte, there are approximately 4 settings of the remaining two bytes that set

up the permutation as required to rederive a parti
ular key byte. Hen
e, with

approximately 1,000,000 pa
kets, and an additional 2

16

work fa
tor, he 
an still

rederive the key.

It is 
ommon pra
ti
e in the industry to extend the length of the WEP

se
ret key (whi
h is spe
i�ed as 40 bit). Be
ause the above atta
ks re
over ea
h

key byte individually, the 
omplexity of the atta
k grows linearly rather than

exponentially with the key length, and thus even an extremely long key is not

immune to this atta
k.

B Ciphertext-Only Distinguishers based on the

Invarian
e Weakness

The distinguishers we presented in Se
tion 5.1, as well as most of the distin-

guishers mentioned in the literature (for RC4 and other stream 
iphers) assume

knowledge of the plaintext in order to isolate the XORed key stream.

However, in pra
ti
e the only information the atta
ker has is typi
ally some

statisti
al knowledge about the plaintext, e.g., that it 
ontains English text.

Combining the non-random behaviors of the plaintext and the key-stream is not

always possible, and there are 
ases where XORing biased streams result with

a totally random stream, e.g. when one stream is biased in its even positions

and the other stream is biased in its odd positions. We prove here that if the

plaintexts are English texts, it is easy to 
onstru
t a 
iphertext-only distinguisher

from our biases. The intuition of this 
onstru
tion is that the biases des
ribed

in Se
tion 5.1 are in the distribution of the lsb's, and 
onsequently they 
an be


ombined with the non-random distribution of the lsb's of English texts.

There are many major biases in the distribution of the lsb's of English texts,

and they 
an be 
ombined with biases of the key-stream words in various ways.

In Theorem 3, we show how to 
ombine the distribution of the �rst lsb of the

RC4 output stream, with the �rst order statisti
s of English texts

10

:

Theorem 3 Let C be the 
iphertext generated by RC4 from a random key and

the ASCII representation of plaintexts, distributed a

ording to the �rst order

10

Sin
e the purpose of the theorem is only to demonstrate this approa
h , we ignore

the fa
t that the distribution of the �rst 
hara
ters in an English senten
e di�ers

from the distribution of mid-text 
hara
ters.



statisti
s of English texts. Let p be the probability of a random key to be spe
ial

2-exa
t. Then C 
an be distinguished from a random stream by analyzing about

200

p

2

output words.

For example, for RC4

n=8

with 8 byte keys, p = 2

�16

, whi
h implies a reliable


iphertext-only distinguisher that works with less than 2

40

data. The proof of

Theorem 3 is based on the observation that the lsb of a random English text


hara
ter is zero with probability of about 55%. The formal proof is omitted due

to spa
e limitations.

It is important to note that Theorem 3 does not use all the statisti
al infor-

mation whi
h is available in either the key-stream or the plaintext distributions,

and 
onsequently does not represent the best possible atta
k.

C The Sampling Resistan
e of RC4

Most of the Time/Memory/Data tradeo� atta
ks on stream 
iphers are based

on the following paradigm. The atta
ker keeps a database of [state,output℄ pairs

(sorted by output) and lookups every subsequen
e of the output stream in this

database. When a (suÆ
iently long) database sequen
e is lo
ated in the output,

the atta
ker 
an 
on
lude that the a
tual state is the one stored along with this

sequen
e and predi
t the rest of the stream.

A drawba
k of this approa
h is that the large database must be stored in a

hard disk(s) whose random a

ess time is about a million times slower than a


omputational step. To improve that atta
k we 
an keep on disk only states that

are guaranteed to produ
e outputs with some rare but easy re
ognizable property

(e.g., starting with some pre�x �). In this 
ase only output sequen
es that have

this property have to be sear
hed in the database, and thus the expe
ted time

and the expe
ted number of disk probes is signi�
antly redu
ed.

In general, produ
ing a pair [state,output℄ with su
h a rare property 
osts

mu
h more than produ
ing a random pair. O(

1

p

) random states are required to

�nd a single pair, where p is the probability of a random output to have this prop-

erty. However, if we 
an eÆ
iently enumerate states that produ
e su
h outputs,

the number of sampled states de
reases dramati
ally, and this method 
an be

applied without signi�
ant additional 
ost during the prepro
essing stage. The

sampling resistan
e of a stream 
ipher provides a lower bound on the eÆ
ien
y

of su
h enumeration.

Su
h an atta
k 
an be applied to RC4 in two ways, based on the KSA and

PRGA parts. An atta
k on the generation part 
onstru
ts a database of pairs

[RC4 state, output substring℄ and analyzes all the substrings along a single out-

put stream. The database 
onstru
tion is very simple sin
e it is easy to enumerate

states whi
h produ
e outputs that have some 
onstant pre�x. However, this enu-

meration seems to be useless due to the huge e�e
tive key of this part (1684 bits)

whi
h makes su
h a tradeo� atta
k 
ompletely impra
ti
al. A more promising

approa
h is based on the KSA part whi
h uses a key of 40-256 bits and might be

vulnerable to tradeo� atta
ks. In this 
ase, the pairs in the database are [se
ret



key, pre�x of the output stream℄, and the atta
k requires pre�xes from a large

number of streams (instead of a single long stream).

The 
orrelation des
ribed in Se
tion 4 provides an eÆ
ient sampling of keys

that are more likely to produ
e output pre�xes of the patterned type spe
i�ed

above (
onstant (mod b)).

For example, 
onsider the problem of sampling M keys whi
h are trans-

formed by the KSA into streams whose �rst �ve words are �xed (mod 16). This

property of random streams has probability of 2

�20

, and the expe
ted number

of disk probes during the a
tual atta
k is redu
ed by this fa
tor. For stream


iphers with high sampling resistan
e, su
h a �lter would in
rease the prepro-


essing time by a fa
tor of one million, as one would have to sample a million

random keys in order to �nd a single \good" key. For RC4 (due to the invarian
e

weakness), the prepro
essing time in
reases by a fa
tor of less than four, as more

than one quarter of the exa
t spe
ial keys produ
e su
h streams. Consequently,

the prepro
essing stage is a

elerated by a fa
tor of 2

18

.

To summarize this se
tion, we proved that RC4 has relatively low Sampling

Resistan
e, whi
h greatly improves the eÆ
ien
y of tradeo� atta
ks based on its

KSA.

D Deriving the Se
ret Key from an Early Permutation

State

Given the values S

A

[0℄; : : : ; S

A

[A�1℄, one method to �nd all values ofK[0℄; : : : ;K[A�

1℄ that result in su
h a permutation is:

i = 0

S = f0; : : : ; N � 1g

For i = 0 : : : A� 1

X = S

�1

[S

A

[i℄℄

If i < X < A

Bran
h over all values of 0 � X < A s.t. X � I or

S[X ℄ 6= S

A

[X ℄, running the remaining part of this

algorithm for all su
h values.

K[i℄ = X � j � S[i℄

j = X

Swap(S[i℄, S[j℄)

Verify that fS[0℄; : : : ; S[A� 1℄g = fS

A

[0℄; : : : ; S

A

[A� 1℄g

The number of times this algorithm will perform an iteration is bounded by

A

�+1

, where � if the number of values 0 � x < A where S

A

[x℄ < A. Be
ause �

is typi
ally quite small, this algorithm is typi
ally eÆ
ient.

An algorithm with a better lower bound on run time 
ould be given by using

the values of S

A

[A℄; : : : ; S

A

[N � 1℄.



Referen
es

[BSW00℄ A. Biryukov, A. Shamir, and D. Wagner. Real time 
ryptanalysis of a5/1

on a p
. In FSE: Fast Software En
ryption, 2000.

[FM00℄ Fluhrer and M
Grew. Statisti
al analysis of the alleged RC4 keystream

generator. In FSE: Fast Software En
ryption, 2000.

[Gol97℄ Goli�
. Linear statisti
al weakness of alleged RC4 keystream generator.

In EUROCRYPT: Advan
es in Cryptology: Pro
eedings of EUROCRYPT,

1997.

[GW00℄ A. L. Grosul and D. S. Walla
h. a related-key 
ryptanalysis of RC4. June

2000.

[KMP

+

98℄ Knudsen, Meier, Preneel, Rijmen, and Verdoolaege. Analysis methods for

(alleged) RC4. In ASIACRYPT: Advan
es in Cryptology { ASIACRYPT:

International Conferen
e on the Theory and Appli
ation of Cryptology.

LNCS, Springer-Verlag, 1998.

[MT98℄ Mister and Tavares. Cryptanalysis of RC4-like 
iphers. In SAC: Annual

International Workshop on Sele
ted Areas in Cryptography. LNCS, 1998.

[Roo95℄ A. Roos. A 
lass of weak keys in the RC4 stream 
ipher. September 1995.



` q b k

1

a

k

2

b

p




P

RND

d

P

RC4

e

Data

4 1 2 12 15 2

�3

2

�15

2 � 2

�15

2

15

6 1 2 14 18 2

�4

2

�18

2 � 2

�18

2

18

8 1 2 16 21 2

�5

2

�21

2 � 2

�21

2

21

10 1 2 18 24 2

�6

2

�24

2 � 2

�24

2

24

12 1 2 20 27 2

�7

2

�27

2 � 2

�27

2

27

14 1 2 22 30 2

�8

2

�30

2 � 2

�30

2

30

16 1 2 24 34 2

�10

2

�34

2 � 2

�34

2

34

Fig. 5. Data required for a reliable distinguisher, for di�erent key sizes

a

number of predetermined bits (q(`� 1) + n + 1)

b

number of determined output bits




probability of these k

1

key bits to determine these k

2

output bits (taken from Figure 8)

d

= 2

�k

2

e

� P

RND

+ 2

�k

1

p

IV Length Probability Expe
ted IVs required

3 4:57 � 10

�5

1310000

4 4:50 � 10

�5

1330000

5 1:65 � 10

�4

364000

6 1:64 � 10

�4

366000

7 2:81 � 10

�4

213000

8 2:80 � 10

�4

214000

9 3:96 � 10

�4

152000

10 3:94 � 10

�4

152000

11 5:08 � 10

�4

118000

12 5:04 � 10

�4

119000

13 6:16 � 10

�4

97500

14 6:12 � 10

�4

98100

15 7:21 � 10

�4

83200

16 7:18 � 10

�4

83600

Fig. 6. For various prepended IV and known se
ret key pre�x lengths, the probability

that a random IV will give us information on the next se
ret key word, and the expe
ted

number of IVs required to derive the next se
ret key word.



IV Settings

Condition First Se
ond Third Probability Result

S

A

[1℄ = 1 Swap with 1 Swap with Y Cy
le 0.0037 Key re
overy

S

A

[A℄ = A

S

A

[1℄ = 2 Swap with 1 Cy
le Swap with Y 0.0070 Key redu
tion

S

A

[A+ 1℄ = A+ 1

S

A

[1℄ = X < A Swap with Y Cy
le Cy
le 0.0007 Key re
overy

S

A

[X℄ +X = A

S

A

[1℄ = X < A Cy
le Swap with Y Cy
le 0.0009 Key re
overy

S

A

[X℄ +X = A+ 1

S

A

[1℄ = X < A Cy
le Cy
le Swap with Y 0.0007 Key redu
tion

S

A

[X℄ +X = A+ 2

S

A

[1℄ = A Swap with Swap with Y Cy
le 0.0037 Key re
overy

S

�1

A

[1℄

S

A

[1℄ = A+ 1 Swap with Y Swap with Cy
le 0.0036 Key re
overy

S

�1

A

[N � 1℄

S

A

[1℄ = A+ 2 Cy
le Swap with Y Swap with 0.0038 Key redu
tion

S

�1

A

[N � 1℄

S

A

[1℄ = N � 2 Swap with Y Cy
le Swap with 1 0.0034 Key redu
tion

S

A

[A+ 2℄ = A+ 2

S

A

[1℄ = N � 1 Swap with Y Swap with 1 Cy
le 0.0036 Key re
overy

S

A

[A+ 1℄ = A+ 1

S

A

[1℄ = X < A Swap with X Cy
le Cy
le 0.1007 Key redu
tion

S

A

[A℄ = Z

X + Z > A+ 2

Fig. 7. Weak se
ret keys with 3 word post�x IVs. Listed are the 
onditions on the S

A

permutation that distinguish them, the IV properties that the atta
ker sear
hes for to

reveal S[Y ℄, the probability that this 
lass of weak key will o

ur with n = 8 and a 16

word se
ret key, and the result of the atta
k on the weak key.



0 10 20 30 40 50 60
−30

−25

−20

−15

−10

−5

0

L
o
g
 o

f 
th

e
 p

ro
b
a
b
ili

ty
 o

f 
p
a
tt
e
rn

e
d
 p

re
fi
x
 o

f 
s
iz

e
 h

h − size of the patterned prefix

q=1
q=2
q=3
q=4

Fig. 8. This graph demonstrates the probabilities of spe
ial keys (2

q

-exa
t with K[0℄ =

1, msb(K[1℄ = 1)) of RC4

n=8;`=16

to produ
e streams with long patterned pre�xes


