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Abstract. In this paper we analyze the statistical distribution of the
keystream generator used by the stream ciphers RC4 and RC4A. Our
first result is the discovery of statistical biases of the digraphs distrib-
ution of RC4/RC4A generated streams, where digraphs tend to repeat
with short gaps between them. We show how an attacker can use these
biased patterns to distinguish RC4 keystreams of 2%¢ bytes and RC4A
keystreams of 22%-5 bytes from randomness with success rate of more than
2/3. Our second result is the discovery of a family of patterns in RC4
keystreams whose probabilities in RC4 keystreams are several times their
probabilities in random streams. These patterns can be used to predict
bits and words of RC4 with arbitrary advantage, e.g., after 2% output
words a single bit can be predicted with probability of 85%, and after
259 output words a single byte can be predicted with probability of 82%,
contradicting the unpredictability property of PRNGs.

Keywords: RC4, Stream ciphers, Cryptanalysis, Distinguishing attacks,
Predicting attacks.

1 Introduction

RC4 is the most widely used stream cipher in software applications. Among
numerous applications it is used to protect Internet traffic as part of the SSL
and is integrated into Microsoft Windows. It was designed by Ron Rivest in 1987
and kept as a trade secret until it leaked out in 1994. RC4 has a secret internal
state which is a permutation of all the N = 2" possible n bits words, associated
with two indices in it, when in practical applications n = 8, and thus RC4 has
a huge state of logs (28! x (28)%) ~ 1700 bits.

In this paper we explore several classes of RC4 states, and analyze their
statistical properties and cryptanalytic significance. RC4 was already proven to
contain many patterns with unique statistical behavior and many correlations
between the output words and the internal state. The main innovation of our
work is in moving the focus of RC4 analysis from consecutive sequences of rounds
to non-consecutive ones. We show classes of RC4 partial states that cause unique
behavior of the output stream, when the unique patterns are in correlations
between output words in distant rounds.



Our first result is based on analysis of RC4 1-states (partial states are defined
later), which cause digraphs to repeat with short gaps in RC4 output stream,
e.g., ABAB, ABCAB, ABCDAB, etc, when the relative bias (the ratio be-
tween the additional probability and the original probability) of these patterns
is approximately 1/N for a zero gap (ABAB) and gradually decreases when
the gap length increases. We show how these patterns can be used to mount
a distinguisher of RC4 streams from randomness that requires only 226 output
words, about a third of the data needed by the best known distinguisher from
[4] for the same success rate of 2/3. In addition, we show that these patterns
appear also in RC4A with the same biased probability as in RC4, and describe
a slightly less efficient distinguishing algorithm for RC4A.

Our second result is based on new analysis of RC4 predictive states, which
are partial states (usually small) that suffice for determining keystream output
for several rounds. We define a recyclability property for these states and show
that recyclable predictive states have relatively high probability to repeat in
shifts of N rounds, creating the same predicted output pattern repetitively. We
prove that some of the known predictive states are indeed recyclable and use
these observations to extend the significance of every recyclable predictive state
from a single short biased pattern to a family of patterns that occur with various
probabilities and with various relative biases. The probabilities are lower than
the one of the original pattern, whereas the relative biases are significantly larger
than the one of the original pattern and can grow to arbitrary values, allowing
the attacker to predict output bits with arbitrary advantage. In addition, we
discuss how the recyclable states can be used to construct state recovery attacks
on RC4 internal state.

The rest of the paper is organized in the following way: In section 2 we
describe RC4 and previous results about its security. In Section 3 we present
the digraphs repetition pattern, analyze its statistical properties in RC4/RC4A
generated streams and discuss how the cryptanalyst can exploit these properties.
In Section 4 we define recyclable states and discuss their availability and their
cryptanalytic usability. We summarize our work in Section 5.

2 RC4 and Its Security

2.1 Description of RC4

RC4 consists of 2 parts (described in Figure 1): A key scheduling algorithm
KSA which turns a random key (whose typical size is 40-256 bits) into an initial
permutation S of {0,..., N — 1}, and an output generation part PRGA which
uses this permutation to generate a pseudo-random output sequence.

The PRGA initializes two indices ¢ and j to 0, and then loops over four
simple operations which increment ¢ as a counter, increment j pseudo randomly,
exchange the two values of S pointed to by 7 and j, and output the value of S
pointed to by S[i] + S[j]*.

! Here and in the rest of the paper all the additions are carried out modulo N



KSA(K[0...¢—1]) PRCA(K)
Initialization: Initialization:
For¢t=0...N -1 1 =0
S[i] =i i=0
j=0 S =KSA(K)
Scrambling;: Generation loop:
Fori=0...N—-1 t=1+1
j =7+ 5[]+ K[i mod ¢ Jj =7+ S
Swap(ST], S1j]) Swap(S1il, S[j))
Output z = S[S[:] + S[J]]

Fig. 1. The Key Scheduling Algorithm and the Pseudo-Random Generation Algorithm

2.2 Previous Attacks on RC4

Cryptanalysis of RC4 is divided into two main parts, analysis of the initialization
of RC4 and analysis of the keystream generation. The first part focuses on the
KSA, the PRGA initialization and the integration of both, whereas the last
focuses on the internal state and the round operation of the PRGA.

The simplicity of the initialization part and the major difference between the
amount of hidden information between this part and the keystream generation
part attracted a lot of attention in the cryptographic community and indeed
numerous significant weaknesses were discovered in this part of many types,
including classes of weak keys ([18]), patterns that appear twice and three times
the expected probability ([5]), propagation of key patterns through the KSA to
the initial permutation and through the PRGA initialization to the prefix of the
stream ([6]), modes of operation that allow related key attacks ([17]), partial
message recovery ([5]) and full key recovery attacks ([6]) with practical time
complexities, statistical biases in different prefixes of the generated stream ([6]
and [9]) and analysis of the biased distribution of RC4 initial permutation ([7]
and [16]).

The weaknesses that were discovered in [6] where the most distructive ones,
as they were translated to practical attack on the usage of RC4 in the security
protocols (WEP) of the international standard for wireless LAN communication
802.11b. The discovery of this attack affected the trust of cryptographers and
security designers in RC4 and the common practice for using RC4 today includes
hardening of the initialization process by truncating some prefix of the keystream
(RSA and Ron Rivest recommendation is N words). This hardening neutralizes
most of the attacks and weaknesses that were discovered in RC4 initialization.

The analysis of the keystream generation part was far less successful in
mounting severe attacks, but still several interesting weaknesses where discov-
ered. Goli¢ ([1]) and Fluhrer and McGrew ([4]) designed distinguishers of RC4
streams from random streams that require 2447 and 230-¢ keystream words re-
spectively. Several classes of RC4 partial states were defined and analyzed in [4],
[5] and [8] as such that create unique patterns in the output stream and allow
a viewer of the output stream to recover parts of the internal state with more



than trivial probability (chapter 2 of [16] contains an overview of these classes).
The cycles structure of RC4 state progression was also analyzed in [3] and [15],
where the last describes short cycles that are unreachable by RC4. [2] and [3]
describe state recovery attacks with complexity that is less than the square root
of an exhaustive search over all possible states. However, due to the hugeness of
the state (1700 bits for n = 8), these attacks are completely impractical as they
require more than 2799 steps.

Two variants of RC4 were recently proposed, both slightly more complex
than the original RC4 and are claimed to be more secure than it. RC4A ([9])
was designed by Paul and Preneel and works with two RC4 tables (we describe
the algorithm in more details in Section 3.4). The generation stage of RC4A is
slightly more efficient than RC4’s, but the initialization stage requires at least
twice the effort of RC4 initialization. VMPC ([10]) was designed by Zoltak and
includes several changes to the initialization (j not initialized to 0), the round
operation (different progression for j) and the output generation stage (different
calculation of the output index). Maximov described in [13] distinguishers for
both variants, requiring 2°4 data for VMPC and 2°% data for RC4A.

The trend of side-channel attacks had not skipped RC4 and efficient fault
attacks were described in [11] and [12].

3 The Digraph Repetition Bias

In this section we describe a special scenario that occurs when the value 1 is
used to update the index j, analyze the expression of this scenario on the statis-
tical behavior of RC4 output streams and exploit these observations to mount a
distinguishing attack on RCA4.

We use the notations i, j; and Sy for the indices i and j and the permutation S
after round t¢.

3.1 The Queue Model

The behavior of RC4 permutation was described in [16] as a unique queue with
some interesting properties. The queue has N ordered elements (permutation
elements) and when one reaches its turn, it is used to update the index j through
the function j < j + S[i]. However, instead of going to the end of the line, the
updating element selects a pseudo-random location in the queue (pointed to by
J), pushes itself to this location and sends the deprived element that was there
to the end of the line. One of the properties of this special queue is that values
that were recently used (to update j) are likely to be used again in less than N
rounds, whereas values that were not used for N rounds must have been pushed
back at least once and thus have lower probability to be used.

The permutation itself changes in two locations within every round and in
2k locations (possibly with repetitions) within sequences of k rounds due to
the swapping, where half of these changes are in predicted locations and the
other half are in pseudo-random locations. Lemma 1 measures the effect of these
changes on the permutation entries.



Lemma 1. Let T be a set of r permutation locations. Suppose that RCY is in a
state where the predictable course of the index i in the next k rounds does not
visit Z. Then the probability of the permutation k rounds later to have the same
values in T is approzimately e 57/

Proof. The index i does not reach any of the indices in Z and the index j
progresses in a pseudo-random manner and will reach each of the the r positions
in each of the k rounds with probability 1/N. Thus failing in these kr trials results

with having the set Z untouched. The probability of this event is (1 — 1/N)*" ~
e kr/N, O

3.2 The Digraph Repetition Scenario

Consider the situation where the value 1 is used to update j, i.e. (in “queue
terms”), 1 reaches the head of the line. We will denote the round where that
happens as round r and the pair of rounds [r — 1,7] as the origin pair. Notice
that this situation occurs quite often, approximately once in every N rounds.
Suppose now that the pseudo-random location selected by 1 after the j update
(jr) is not very far from the head of the line, making it unlikely that this element
will be moved from there before being used again to update j. We denote the
distant which 1 passes in the swap by the gap g = j,. — 4. And lastly, suppose
that when 7 reaches the new location of 1, j points exactly to the original location
of 1. We denote this round and the previous one as the end pair [r+g— 1,7+ g].
Our observation is that when that happens, a unique equivalence occurs between
the origin pair of rounds and the end pair of rounds, making it likely that they
produce the same pair of output words. We formalize this observation in Lemma,
2.

Lemma 2. Suppose that Sy_1[i] = 1 and let ¢ = jr—1 — ir—1 (the gap). If
Jr4g—1 = r—1 then the probability of the digraph that is outputted in rounds
[r+g— 1,7+ g] to be identical to the digraph outputted in rounds [r — 1,7] is
bounded from below by e(8=89)/N

Proof. We first prove that when everything “goes right” the digraphs are iden-
tical and then bound the probability that anything “goes wrong”. In Figure 2
we track the internal state during rounds r,...,r 4+ g and show that the same
digraphs are outputted in the origin pair and the end pair.

This scenario assumes that the permutation values in locations that affect
the swaps and the selection of output words in both pairs of rounds, remain
unchanged during the whole process (except for the swaps in the origin and end
pairs). The locations ¢,_1, iy, iryg—1 and i,44 cannot be reached by ¢ but can be
changed by j in any of the g — 2 intermediating rounds. By using Lemma 1 we
get that the probability of 4 elements to survive g — 2 rounds is e ~*(9=2)/N The
locations of the output words Sy_1[ir—1]+ Sp—1[ir4g—1] and Sy [i;] + Sy [ir14] are
arbitrary and may fall in the course of ¢ between the round pairs. Each of these
entries need to remain unchanged for g rounds (the first in rounds r, ..., r+g—1
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Fig. 2. The Digraph Repetition Scenario

and the second in rounds r + 1,...,7+ ¢g) and has a probability of g/N to fall in
the i-affected area. Thus the probability of these two indices to remain in place
is (1 —£)%-e29/N_For small g/N we can use the approximation e ¢ ~ 1 —¢

to get e=%9/N and thus the overall probability of all indices to be in place is
e(8=89)/N O

Theorem 1. For small values of G the probability of the pattern ABSAB in
RCY streams where S is a G-word string is (1 + e(=4=8/N /N) . 1/N?2.

Proof. Notice that g from Lemma 2 actually represents the shift between the
digraphs and the real gap between the digraphs is G = g — 2.

Let Eg (source event) be the event where the conditions of Lemma 2 are
satisfied, i.e., Sy—1[i] = 1, jr—1 = trrg+1 and jrygr1 = ir—1 and let Ep (target
event) be the event where there is equality between the output digraph of the
origin pair and the end pair. The probability of Eg is N=3 and we use it to
calculate the probability of Er.

P[E7] = P[Er|Es] - P[Es] + P[E7|Es] - P[Es]
Z 6(7878G)/N/N3 + 1/N2 . (1 o ]./NS)
=1/N2%. (1 + T3 3C)/NN) 4 negl(1/N?)

O

The relative bias is bppr(G) = ej,/N (e78/N)G = Oy - CF for the constants
Cy = e 8/N = 0.97 and C, = Cy/N.

For the sake of simplicity the we made many heuristic assumptions during the

analysis. Therefore, we carried out RC4 simulations to support the analysis and

put the analytically calculated biases against the simulation result (see Figure
3)2.

2 In the simulation we used 2'¢ bitstreams of size 224 each, ignoring cross-dependencies
between the examined events and regarding every digraph with every gap as an in-
dependent event, meaning that every bitstream digraph was used for 64 experiments
as the ending digraph and 64 experiments as the beginning digraph.
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Fig. 3. Experimental vs. analytic results for biases of digraph repetitions.

3.3 Digraph Repetition Distinguisher

In [4] Fluhrer and McGrew used information theoretic means to estimate the
number of samples that are required for their distinguisher. They showed that
this amount is inversely proportional to the discrimination between these distri-
butions. Lemma 3 estimates the discrimination between two distributions that
differ in a set of independent events.

Lemma 3. Let X and Y be two distributions and suppose that the independent
events {F; : 1 <1i <k} occur with probabilities px(E;) = p; in X and py(E;) =
(1+b;)p; in Y. Then the discrimination of the distributions is >, p;b?.

We prove this lemma in Appendix A.1.

Let us calculate this sum for the biases of digraphs repetitions with different
gaps of at most M. The probability in random distributions is 1/N? for all events
and the relative bias in RC4 streams is bppr,(G).

> pbhpr(G)=p-Y (C1-C$P=pCP- > (C5)°

0<G<M 0<G<M 0<G<M

this is a partial sum of a geometric sequence and for M > N/4 the tail of the
sum is very small

6_16/N N4 1

1-c3M
1—e16/N T 1 (1—16/N) 16N3

— 2 _~ N1
1—c2

:p012-

The biases used by Fluhrer’s distinguisher are in 7N events that has trivial
probability 1/N3 and relative bias of 1/N, and when summing them according
to Lemma 3 we get an induced discrimination of Y pb?> = 7/N*. Thus for a



given success rate, a distinguisher based on our observations solely, requires
102/N (less than half for N = 256) of the samples that are required by one that
is based on Fluhrer’s biases and a combined distinguisher requires % (less
than one third for N = 256) of this number.

Lemma 4. The number of samples that is required for distinguishing two distri-
butions that have discrimination D with success rate 1 — « (for both directions)
is (1/D) - (1 — 2a) - loga 1=

We prove this lemma in Appendix A.2. We use lemma 4 to estimate the numbers
of samples that are required for different success rates, and get that less than 22°
samples are required for success rate of 90%, less than 228 samples are required
for success rate of 80% and less than 226 samples are required for success rate
of 2/3.

3.4 Applicability to RC4A
We divide the RC4 round into three parts

1. The State update part includes the changes in 7 and j and the swap of the
corresponding values in S.

2. The Output Index Calculation part is the calculation of S[i] + S[j]

3. The Emission part is the selection of the output value from the permutation.

RC4A uses two instances of RC4 tables with cross references between them.
Every round comprises two semi-rounds, in each of which an output word is
emitted, and thus every round results with two output words. During the ini-
tialization stage both tables are initialized to pseudo-random permutations (we
omit detailed description of this part) and during the generation stage both ta-
bles are involved in the generation of every output word; In the first semi-round
the state update and the output index calculation are done in one table, whereas
the emission part is done in the other table, namely the output word is taken
from the other table (in the the calculated index). In the second semi-round, the
roles of the tables change and the output is taken from the first table. Notice
that on every such round both RC4A tables progress identically to a standard
RC4 table and thus the state progression is similar to RC4. We will use this
property to show that the statistics of digraphs repetition in RC4A is similar to
its statistics in RC4.

Before getting to the fine details, let us give some intuition for why the
digraph repetition patterns are biased also in RC4A. Most of the weaknesses
of RC4 keystream generation rely on certain scenarios that are known to occur
during RC4 progression. We refer to these scenarios as special. Most of the special
scenarios rely on a small number of values that appear in certain locations of
the RC4 table, which are used during the scenario. Scenarios that are based on
a large number of values are less frequent and thus in order to maximize the
probability of occurrence, a typical special scenario minimizes the number of
starting conditions (known entries) by re-using the known entries for all three



parts of the round; State update is crucial for assuring the correct progression of
the scenario. Qutput index calculation and emission are important for external
expression of the scenario, sometimes resulting with biases in the keystream
distribution. In RC4A the emission part is done in the second table and thus
the same values cannot be used for both parts 1 and 3 or 2 and 3. Thus the
expression of most of the special scenarios vanishes in RC4A and their induced
weaknesses disappear.

However, the digraph repetition scenario is an exceptional one, since the
permutation entries that guarantee the occurrence of the scenario are used only
for state update and output index calculation. The expression of the scenario
does not depend on any particular output value and thus the separation of
the emission part does not affect the expression of the scenario. The output
indices at close pairs of rounds are identical with high probability and the only
requirement from the output values is to remain in the same locations during the
intermediating rounds. This requirement is fully satisfied in RC4A since both
tables evolve in the same rate as RC4 tables and therefore the digraph repetition
scenario occurs in RC4A with similar statistics as in RC4.

The scenario in RC4A is as follows. We use permutations P; and P, and
same symbols as in Figure 2. In addition, we ignore every second semi-round
(which does not affect P).

1. Round ¢: The index i reaches the position before the value 1 in Py (i, — 1).
Output of the first semi-round is the value from P; in location B + A (Z7).

2. Round t + 1: The index i reaches the value of 1 in Py (i,). Output of the
first semi-round is the value from P; in location C' + 1 (Zs).

3. g — 2 rounds pass. Locations B + A and C + 1 remain unchanged in Ps.
Locations ¢, t 4+ 1, t + g and t 4+ g + 1 remain unchanged in P;.

4. Round t + g: The index 7 reaches again the position before the value 1 in Py
(ir + g — 1). Output of the first semi-round is the value from P, in location
B+ A (again Z7). In the second semi-round some arbitrary value is emitted.

5. Round ¢ + g + 1: The index 7 reaches the value of 1 in P; (i, + g). Output
is the value from P, in location C' + 1 (again Z3).

Thus when omitting the even output words and concentrating in the sub-stream
of odd words, or alternatively concentrating in sub-stream of even words) the
same pattern Zy Zs . .. x Zy Z5 occurs with the same biased probability as in RC4

g
streams. When summing up the biases of these patterns in both sub-streams, we

get a similar induced discrimination of ﬁ.

Corollary 1. There exists an algorithm that distinguishes RC4A streams from
randomness with success probability of 2/3 by analyzing less than 2265 samples.

The difference between the distinguishers is due to the unavailability of Fluhrer’s
biases in RC4A. The best RC4A distinguisher that was described in the literature
([13]) requires 259 output words, which is more than billion times the data for
our distinguisher.



4 Recycling Attacks

4.1 Partial States and Fortuitous States

A significant part of published RC4 analysis is based on classification of RC4
states and partial states according to their cryptanalytic significance. We recall
the definition of partial states and predictive states from [5].

Definition 1. A d-state is a partially specified RCY state, that includes i, j and
d (not necessarily consecutive) elements of S.

We use the notation {ig,jo, [xo,Z1,...,2q-1]} to specify the d-state i = i,
7 =Jo, S[’L'(]'F].,...,’Llo—l—d} = [xo,...,xd,l].

Definition 2. Let D be a d-state and suppose that for a positive b there exist a
sequence of b words that are output (in certain shifts) by every RC4 state that is
compliant with D. Then D is said to be b-predictive.

It was shown in [5] how b-predictive states can be used to attack RC4 by
revealing parts of the internal state and constructing efficient distinguishing al-
gorithms, in particular when b = d (it was proved in [8] that b < d). A fortuitous
state of order d is a d-predictive d-state in which the predicted d outputs are
emitted immediately after the occurrence of the state. In Figure 4 we demon-
strate predictiveness by presenting a family of NV — 1 fortuitous states of order
two, {z — 1,0,[—1,x + 1]} for every z # 2.

Round| 4 j | S[z] |S[z + 1]| S[¢] |S[F]|S[é] + S[j]|Output
z—1lz—1lz+2 -1 | z+1 / / / /
T z |x+1llz+1] -1 |xz+1]—1 x x+1
z+1|lz+1| =z -1 | z+1 |[z+1|-1 x -1

Fig. 4. A Family of Fortuitous States of order 2

4.2 Recyclable States

A very interesting property of the scenario presented in Figure 4 is the fact that
the swap on the second round reverts the swap from the first round, leaving the
permutation in the same situation as it was at the beginning of the scenario. We
formalize this behavior by defining recyclable states and then discuss how the
cryptanalyst can exploit this property.

Definition 3. For some d, let D be a d-state with 1 = i* and let I be the
permutation consecutive interval that begins in 1* 41, contains the d permutation
entries of D and is the minimal interval that satisfies these requirements (thus
|I| >= d). Suppose that in every D-compliant state, the permutation S after i
leaves I satisfies again the permutation constraints of D. Then D is said to be
recyclable.



At the point where ¢ leaves I, the permutation entries that are specified by
D have the same values that they had when D occurred and they have a very
high probability of more than e~? to remain in place during the next N — i
rounds until the index ¢ completes a full traversal of S. Combining in the 1/N
probability of the index j to be also in place at that time, we get an overall
probability of at least e=¢/N for another D-compliant state, exactly N rounds
after the first one.

Moreover, D remains recyclable and the second occurrence of D causes a
third occurrence with the same probability of e~¢/N and so forth. We formalize
this observation in Theorem 2.

Theorem 2. Let D be a recyclable RC/ d-state and suppose that the state of
round t has the index i as specified by D and that the rest of the state is distrib-
uted uniformly. Then the probability of the states in rounds t,t + N,t + 2N, t +
3N,...,t+(k—1)N to be D-compliant is bounded from below by e~4*=1) /Nd+k,

Proof. Since a D-compliant requires (except for ¢) d specific permutation ele-
ments and specific index j, the probability of the state in round ¢ to be D-
compliant is N =1~ The probability of round ¢t + N to have D-compliant state
(given that round ¢ had one) is at least e~¢/N and the same situation holds for
round t+2N,t+3N, ..., t+(k—1)N and thus the overall probability of the whole
sequence to be D-compliant is at least N~1=% . (e7¢/N)k=1 = e=d(k=1) /Nd+k,
O

4.3 Availability of Recyclable Fortuitous States

We enumerated the fortuitous states of different orders to check whether and
how many recyclable fortuitous states exist. The results are assorted where for
some orders we found few states (9 states of order 3 and 100 states of order
5), whereas for other orders we found that most of the fortuitous states are
recyclable. 512 out of 516 fortuitous states of order 2 are recyclable, more than
500 of them from the family {z,z + 3,[-1,z + 1 or = + 2]}. 4011 out of 6540
fortuitous states of order 4 are recyclable, more than 4000 of them from the
family {z,z+6,[-3,1,x+4 or z+5or x+6 or c+7,xz or x+1 or z+2 or x+3]}.
There are no recyclable fortuitous states of order 6.

Due to time limitations, we were not able to complete the research on the
availability of recyclable states of high order. Our intuition and some simulations
we made lead us to the conjecture that recyclable fortuitous states of high order
are rare or unavailable at all. However, when such states occur they tend to come
in families, e.g., recyclable fortuitous states of an even order 2d tend to come
in large families of about N - (2d)¢ members (as described above for d = 1,2),
where the index i is “free” and the second half of the permutation constraints
have some “freedom” (each entry has 2d alternatives).



4.4 Recycling Attacks

When the state in question is predictive, the recyclability property becomes
extremely important since the occurrence of these states are expressed in the
output stream.

Statistical Analysis of RC4 Streams

Theorem 3. Let D be a recyclable b-predictive d-state and suppose that the

predicted outputs of D are the values zq, ..., zp—1 in distances rq, ..., rp—1 after
the occurrence of D. Then the following pattern has probability of at least N % .
Ndk*d*k
(1 + ed(F—1) )
ro ry o1 ro+N Tb_14N ro+(k—1)N Tb—14+(k—1)N
Z0yev vy RlyeresRb—lyecey R0 seovy Rbe1 gevoyenny 20 geeey Zb—1 yen
N N N

Proof. Let Er be the target event in which the output values of the dk rounds in
question comply to the pattern. By Theorem 2 the probability for k occurrences
of D in N-distances is e=4*=1 . N=4=k We denote this event by Eg. When Eg
occurs Er occurs with probability 1 and otherwise Er has the trivial probability
of N2k,
P[Er| = P[Es| - P[E7|Es] + P[Es] - P|Er|Es]
— emdk=1)  y—d—k 4 1- p—d(k—1) NTdoky L Nk
Ndk—d—k

— N—dk
=N (1 —

= )_ e—d(k—l) . N—d—(d+1)k)

negl(N—d4k)

O

N
Notice that for a fixed d the relative bias is proportional to (N :d ! ) and thus

can increase to arbitrary values by increasing k. However, despite of the hugeness
of these relative biases, they can be hardly used by distinguishing algorithms.
When k grows, the original probability (N ~2¥) decreases rapidly and the amount
of data that is required for the distinguishing increases. However, large relative
biases can be used for prediction of output bits and words with large advantages.

Theorem 4. Let X be a distribution and suppose that a particular bit-pattern
B = bgby ... by_1 occurs with probability p-(1+b) in X (for p = 27%). In addition,
suppose that for a parameter v < k all the other k-bit strings with the same v-bit
prefix as B have trivial probability of p. Then there exists an algorithm that once

2k
F=orh
suffiz with success probability %{74;15.

in samples (on average) of k-bit strings from X predicts the (k — v)-bit

We prove this theorem in Appendix B. Thus a k-bit pattern that occurs with
relative bias b can be used to predict a bit (v=k—1) with success probability



14b _ b : 2
= = 1/2+ Tra; once in every 5o samples on average. The same pattern can
14b

be used to predict a byte (v=k—8) with success probability ="

once in every

ﬁib samples on average.
We summarize the practical predictions that are derived from the combination
of Theorems 3 and 4 in the table in Figure 5.

d |States| k |Relative Bias|P[Er|Es]|Samples Number|Byte Prediction|Bit Prediction
2 0.135 20 2799 (279) 1.135/N 0.53
2| 512 [3 4.7 2790 2713 (2%9) 4.63/N 0.85
4 162 22 2777 (2°%9) 0.39 0.994
5 5628 2758 2065 0.956 ~ 1
3] 9 |2 12.75 2796 279 (2718) 0.05 0.93
3 41586 2780 20615 ~1 ~1
4401112 1200 2772 2°0 0.825 0.999
3 228.5 2—104 20345 ~ 1 ~1

Fig. 5. Predictions of bits and bytes. The samples number are calculated for bit pre-
diction and whenever the samples number for byte prediction is significantly different,
we add it in parentheses.

State Recovery Attack

Some of the state recovery attacks that are analyzed in [2] work very fast when
more than 100 permutation elements are known. Let us present a way to ob-
tain these 100 elements within relatively small effort using recyclable fortuitous
states. A recyclable fortuitous state of order d repeats k times with probabil-
ity e=@(+—1) . N=d=k_The attacker can wait for the event where the expression
pattern of this state repeats k times in shifts of N rounds (e?*~1) . N9t} and
guess that this external pattern stems from the corresponding internal pattern
(with probability of almost 1). The amount of data that is required for this
event to occur for appropriate selections of k = d = 10 is e?9N20 ~ 2290 In
that case, the attacker learns 100 permutation elements with probability 1. An
equivalent attack that is based on occurrences of fortuitous states of order 100
get the hundred elements in a single state, but requires 28%° data in order to
obtain them.

The attacks from [2] were tested in situations where the known elements
are in a single permutation whereas in our case the known entries are actually
k times the same d entries in k relatively close permutations. However, many
situations are impossible under the constraints that the same values appear in
the same entries during the kN rounds, e.g., the index j cannot touch these
values (except for the fortuitous scenario), and the attacker can rule out many
impossible branches and converge faster to the correct solution. Still the 229
data complexity is a potential one, depending heavily of efficient ways to exploit



these dk values. Another question that remains open at the moment regards the
availability of recyclable fortuitous state of high order. There are such states of
order 5, but there are none of order 6.

5 Summary

In this paper we presented new families of unique statistical patterns of the
keystream generator of RC4. The families are large and the patterns are more
frequent and more biased than previously known ones, and allow stronger attacks
and new attacks on RC4. These patterns were hidden for a long period mainly
due to the fact that they are spread over distant rounds and thus could not be
accidentally detected. However, the slow evolution of the permutation preserves
many permutation elements with high probability along large number of rounds
and we cannot rule out the possibility that this direction of research was not yet
extracted.

A Statistical Biases and Distinguishing Algorithms

A.1 Combining the Effect of Independent Events

We prove here Lemma 3. The discrimination of two distributions is given by the

expression Y pxlg Z;‘Eg

single event E with probabilities p and p(1 + b) the discrimination is (we use
def

¢ =1-p)

where the sum is over all the possible strings. For a

q b
plg +qlg =plg(l — —) +qlg(l +
q—pb

p pb )
p(140) 1+ q — pb)
We use the log approximation to get

b

The following claim measures the effect of combining several distributions on
the discrimination of the overall super-distribution.

Claim. Let X and Y be two distributions over the domain S and let X’ and )’ be
two distributions over the domain &’. Let XX’ be the distribution (over S x §’)
that is created by concatenating the distributions X and X’, and let VY’ be the
equivalent distribution for J and ). Then D(XX', YY') = D(X,Y)+D(X",)").



Proof.

- 2 zg pa(s)par(s') (lg f;x((i e Z;( 8) B
(G0 (Grmenety)
+(s;px(8)> (;E;,W ) pX/Es/D:

=D(X,Y)+ D(X',)")
O

By applying Claim A.1 recursively we can get a generalization of this claim,
saying that the overall discrimination of a combination of several independent
distributions is the sum of the discriminations of these distributions. The combi-
nation of independent events for the same distribution (as described in Lemma
3) is equivalent to the combination of independent distributions and thus the
discrimination can be summed over the events to get >, pib?.

A.2 Discriminations, Samples Numbers and Success Rates

We prove here Lemma 4. We denote the discrimination between two distributions
by D and the discrimination between ¢ samples from these distributions by L.
From [14], L is on one hand proportional to the number of samples and on the
other hand induces a bound for the false positive rate o and the false negative
rate 8 by the inequality

LZ@DZﬁlgiq-(l_g)lgﬂ
1—a 5
For 8 = a we get £ > (1/D).(1_20‘)'1091?Ta-

B Statistical Biases and Bit Predictions

We prove here Theorem 4.

Proof. Let Eprpr and Esypr be the events where the v-bit prefix of B and the
(k —v)-bit suffix of B occur, and let F be the joint event where B occur (namely,
E =FEprpr /\ESUFF)- Let ' = Eprer A Esyrr. The algorithm analyzes the




output stream of X and locates occurrences of Eprpp. Notice that the bias of
FE affects the probability Eprgp in the following manner:

2k

PlEprpr] = PIE] + PE] =p(1+b) + (2" = 1)p = =—;

In such occurrences the algorithm predicts that Fgypp will occur with the fol-
lowing success probability

P[Esyrr N Eprer]|

PlEsurr|Errer] =

P[EprEF]

_ PlE] _

C27v(1 420 kp)

o 27M1+b) 140D

C27v(1 4 2vkp)  2k—v 4

a
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