
Finite-State Security
Analysis of OTR Version 2

Joseph Bonneau
Stanford University

Stanford, CA

jbonneau@stanford.edu

Andrew Morrison
Stanford University

Stanford, CA

asm@cs.stanford.edu

ABSTRACT
Off-the-Record messaging is a protocol for enabling secure,
authenticated, deniable messaging with perfect forward se-
crecy, specifically over instant messaging networks. In this
paper we describe the results of a finite-state security anal-
ysis of the OTR protocol. In addition to finding several
security issues in the process of modeling the protocol, our
model has discovered security problems in both the authen-
ticated key exchange and data exchange phases of the pro-
tocol. The security problem during data exchange leads to
an attack where by an active attacker can modify a message
without detection by either party or disruption of the proto-
col. In addition to describing the attacks found, we describe
possible solutions where appropriate.

1. INTRODUCTION
The OTR protocol [2] aims to provide a digital communi-
cation mechanism resembling a casual private conversation
in which the honest principals involved may be assured se-

crecy, authentication and more interestingly perfect forward

secrecy and deniability. A full description of the current pro-
tocol, version 2.3, is provided in [1]. A brief outline of the
protocol is provided for reference.

Figure 1 shows the initial authenticated key exchange, mod-
eled after SIGMA. Authentication is provided by a pub-
lic key infrastructure and signatures. The initial AKE au-
thenticates each principal and establishes a Diffie-Hellman
shared secret between the two. Signatures are used only in
the AKE phase, which allows an initial authentication and
allows deniability in the data exchange phase. The use of
signatures means that neither party can deny that a con-
versation did occur between them, it is the contents of the
conversation which are intended to be deniable.

Illustrated in Figure 2 is the OTR data exchange protocol.
Each message is sent encrypted using AES in counter mode,
turning AES into a stream cipher which makes messages

ALICEBOB

”Signature Message”

”Reveal Signature Message”

”D-H Key Message”

”D-H Commit Message”

AESc′(XA), MACKm′

2

(AESc′(XA))

XA = {pubA′ , keyidA′ , sigA(MA)}
MA = MACKm′

1

(gy, gx, pubA, keyidA)

r, AESc(XB), MACKm2
(AESc(XB))

XB = {pubB, sigB(MB)}
MB = MACKm1

(gx, gy, pubB, keyidB)

gy

AESr(g
x), HASH(gx)

Figure 1: OTR authenticated key exchange protocol

malleable to a third party. Malleability is desirable so that
it may be claimed that any third party in possession of the
proper MAC keys is capable of altering messages.

Two principals communicating via OTR are constantly at-
tempting to re-key, both to ensure forward secrecy and to
enable deniability. At any given time, the two are using key
material derived from a Diffie-Hellman shared secret gxiyi .
Each data exchange message sent by Alice contains a new
proposed Diffie-Hellman value gxi+1 . Once Bob has seen
this value, he will use gxi+1yi to encrypt future messages,
as well as sending a new exponent gxi+1 of his own. This
re-keying system has two useful properties.

First, the principals can securely erase old Diffie-Hellman
exponents as soon as they will no longer be used. This
ensures perfect forward secrecy, as a future break-in to ei-
ther principal’s machine cannot recover the old keys, and
therefore cannot decrypt stored messages sent with old keys.
Constantly re-keying makes the “window of vulnerability”
small, that is, a break-in will only allow an attacker to read



”Data Exchange Message”

AES-CTR(msg)}

ALICE BOB

Mx = {keyidA, keyidB, gx′

, t,

”Data Exchange Message”

”Data Exchange Message”

{Mxi
, MACKxi

(Mxi
), K∗

j }

{Myi
, MACKyi

(Myi
), K∗

j+1}

{Mxi+1
, MACKxi+1

(Mxi+1
), K∗

j+2}

K∗

j = {Kmj−1
, Km′

j−1
, Kmj

, Km′

j
}|∅

Figure 2: OTR data exchange protocol

the last few messages encrypted with the current keys in-
stead of the whole conversation. Additionally, re-keying al-
lows the publication of the MAC keys associated with ex-
pired Diffie-Hellman shared secrets. Because the MAC keys
are derived from a hash of the encryption keys, they can
be published without allowing third parties to decrypt old
messages. Once old MAC keys have been published, any
observer can modify the messages and re-MAC them. So,
either Alice or Bob can deny sending a given message, claim-
ing the contents were modified by a third party.

2. SECURITY PROPERTIES
In order to model and verify the OTR protocols, we first
define a set of desired security properties. In the follow-
ing sections we provide details of several security invariants
which must hold at all phases of execution of the OTR pro-
tocols.

2.1 Secrecy
Secrecy means that no third party should be able to read
the messages Alice and Bob are sending. A secrecy invariant
is defined such that for a conversation between principals A
and B, no other agent shall possess the pair {AESK(m),K}
for any data message m sent using the OTR protocol.

2.2 Authentication
Authentication pertains to the initial AKE, and means that
if the protocol completes, both principals are assured they
are talking to the principal they believe they are speaking
with. We define it as an invariant such that if a principal A
believes the AKE protocol has completed successfully with
principal B, it must be the case that B believes the protocol
has completed successfully with A.

2.3 Perfect Forward Secrecy
Perfect forward secrecy shall be defined such that for a con-
versation between principals A and B, no other agent who
gains possession of the tuple {AESKt(mt),Kt} at time t shall
be able to to learn any information about the same tuple for

time t′ < t − ε. This means that even if a malicious adver-
sary Mallory gains possession of current key material being
used during the protocol, for example by cracking into one
of the principal’s machines, she cannot read any messages
sent with keys too far from before the current time.

2.4 Integrity
During the data exchange protocol, integrity means that no
messages are altered in transit without detection. For any
message {AESK(m), K} accepted by a principal B from A
during the OTR protocol, is must be the case that A actually
sent the message m to B.

2.5 Plausible Deniability
We define plausible deniability via two categories; weak de-

niability in which it may be proven that both A and B have
all necessary key material to produce any given message and
strong deniability in which it may be proven that principals
other than A and B are capable of producing valid messages.

2.5.1 Weak Deniability
During data exchange, the ability to transmit a valid mes-
sage requires knowledge of the current Diffie-Hellman shared
secret gxiyj . Weak deniability shall be defined as the prop-
erty that both A and B possess the full set of necessary key
material derived from this shared secret for any message at
the time it is sent. Given two parties with the necessary
key material, it cannot be proven that either one was the
legitimate author. This property is inherently true of any
symmetric-key cryptographic system, which are exclusively
used in OTR after the AKE, which uses signatures.

2.5.2 Strong Deniability
We define strong deniability as the ability to claim that not
only could A and B have created a given message, but any-
one could have modified the message. This property may
be modeled by the ability of an outside agent F (the forger,
“Francis”) to forge transcripts of a conversation based on
what is heard on the network. In more concrete terms, ev-
ery the full set of correct MAC keys used in the conversation
must be available to anybody listening at any point on the
network by the end of a conversation.

3. FOUND ATTACKS
The following set of attacks were discovered either via “pen-
cil and paper” methods or by use of the Murϕ finite-state
model checker [3]. Through our analysis, flaws were found
in version negotiations, the strong deniability property, mes-
sage integrity during data exchange and in authentication
during authenticated key exchange. No flaws were discov-
ered pertaining to the secrecy, forward secrecy or weak de-
niability properties.

In all of our attacks, we assume the Dolev-Yao model, where
a malicious attacker, Mallory, has complete control over the
network. Mallory can send,block, re-send, or modify any
message on the network, although she is limited to assum-
ing the cryptographic primitives used are “perfect” and un-
breakable. We use “Alice” and “Bob” in our descriptions to
represtent two principals communicating via OTR, as well



as “Francis,” a third party who attempts to forge conversa-
tions by passively listening to Alice and Bob’s conversation
on the network.

3.1 Version Rollback
Before authentication or communication occurs, protocol
version negotiations take place in the clear over a presum-
ably insecure channel. A version rollback attack exists if the
attacker changes the set of protocols each principal is will-
ing to use. For example, if both principals intend to state
support OTR version 1 or 2, the attacker can change each
to state support for version 1 only. Each principal will as-
sume the other only supports version 1 and communicate
with that version.

The fix for this attack is for both parties to state at the
end of the AKE phase what their initial version preferences
were. If the stated preferences do not match what was ac-
tually used, it is known that the preferences were tampered
with, and the AKE will fail. However, this fix cannot be ap-
plied to previous versions. If Alice and Bob are tricked into
using version 1, that version will not allow them to state
and check each other’s version preferences securely! Thus
the only true fix for this problem is to deprecate versions 1
and 2 of the protocol, and ensure in all future versions that
protocol preferences are securely verified before completion
of the AKE.

3.2 Attack on Strong Deniability
Strong deniability, the claim that a third party listening
on the network will learn the complete set of MAC keys
and therfore be able to forge a different transcript of the
conversation which is still cryptographically valid does not
hold.

Since no validy check is performed on the expired and pub-
lished key material, Mallory can replace the MAC keys pub-
lished by Bob with a set of random values based on some
f(gr) as opposed to the correct key material, disallowing
Francis from producing valid transcripts.

The fix for this attack is non-trivial. In addition to Mal-
lory modifying or replacing the published MAC keys, upon
which no integrity checks are performed, if either principal
is dishonest they themselves can also neglect to publish the
correct values. The first attempt at fixing the problem is
for both parties to check the expird MAC keys published by
the other party.

However, if two intruders have network control on both ends
of the channel, they could alter all expired mac values over
the network, and un-alter them so that the principal receiv-
ing the message will think they were published properly as
seen in Figure 3. For example, if the two intruders have a
shared secret, they could encrypt the published key mate-
rial while being sent over the network, then decrypt prior to
message delivery. Alice and Bob will think MAC keys are
being published properly, but Francis will only see garbage
MAC keys from the middle of the channel.

This attack is fundamental and a defense is not clear. The
strong deniability property depends on Alice and Bob being
able to broadcast their old MAC keys to every party on

ALICE

MALLORY

FRANCIS

BOB

M, old mac keys(xi, yj)

M, EKM
(old mac keys(xi, yj))

M, EKM
(old mac keys(xi, yj))

M, DKM
(EKM

(old mac keys(xi, yi)))
MALLORY′

Figure 3: Weak Attack on strong deniability

the network. However, if an adversary has network control,
they can always prevent anybody besides Alice and Bob
from seeing the correct MAC keys. It is impossible for Alice
and Bob to guarantee delivery of their expired MAC keys to
every third party on an insecure network.

The only approach to broadcasting the keys given an inse-
cure network is to securely send them to some trusted third
party with whom an encrypted channel can be constructed.
This trusted third party would have to act as a server which
could enable others to access the keys. This does not seem
like a realistic solution for the OTR protocol.

In practice, this attack is probably unlikely due to the level
of network control which is required. However, it does weaken
the claimed property of deniability, since it is never fully
clear that Francis will be able to forge a conversation. In
any case, it should be required by the protocol that both
principals perform sanity checks on published MAC keys.

3.3 Authentication Failure
During the initial AKE phase of the protocol, a simple man-
in-the-middle attack is able to convince Alice to commit to a
key exchange without properly authenticating Bob. Figure 4
outlines the attack. Bob believes he is talking to Mallory,

r, AESc(XB), Mm2
(AESc(XB))

ALICEBOB

gy gygy

AESr(g
x), H(gx)AESr(g

x), H(gx)

MALLORY

Figure 4: Attack on AKE authentication

who is forwarding Bob’s messages to the victim, Alice, who



believes she is talking to Bob. The first three messages of
the protocol are passed without modification, and the au-
thentication invariant fails when Alice accepts the “Reveal
Signature” message, and believes she has successfully fin-
ished an authenticated key exchange with Bob.

Mallory will be unable to complete the AKE with Bob, since
she has not learned either Bob’s x value or Alice’s y value,
and thus cannot encrypt them and sign them. If she for-
wards Alice’s “Signature” message to Bob, Bob will know it
was not signed with Mallory’s public key. So, Bob will real-
ize the AKE has failed with Mallory and not send or accept
any messages.

Since Mallory has not learned either principal’s Diffie-Hellman
exponent, she will not be able to forge messages for Alice
and thus Alice will not receive any messages in her newly
opened OTR conversation. Alice may attempt to send mes-
sages for Bob, but Mallory will not be able to read them.

Thus the actual damage done by this attack is minimal,
but nonetheless it is an authentication failure in that Alice
believes she has had a successful AKE run with Bob. Bob
not only does not think he has had a successful AKE with
Alice, he does not know Alice received his AKE messages
intended for Mallory, and may not even know who Alice is.
It is possible Mallory could carry out the attack with many
different Bob’s, leaving Alice with many open conversations,
possibly leading to a denial of service attack on Alice if she
has large state associated with each open conversation. In
practice, it is unlikely this could occur. It is assumed Alice
is an instant messenger client, and would personally approve
all OTR conversations. This attack may be nothing more
than an anomaly in the protocol.

The fix for this flaw is to add information about who you
believe you are communicating with, both encrypted and
MAC’d in the final two AKE messages. This way, Alice
could see that Bob believes he is speaking with Mallory,
and know not to accept the results of the AKE.

3.4 Message Integrity
The message integrity property can be broken through the
attack presented in Figure 5. After two normal messages,

ALICE MALLORY BOB

{MACf(gx0y0)(m0), g
x1, ∅}

{MACf(gx1y0)(m1), g
y1, ∅}

{MACf(gx1y1)(m2), g
x2, f(gx0y0)}

{MACf(gx0y0)(m
′

0), g
x1, ∅}

Figure 5: Attack on message integrity

Alice will publish the expired MAC keys associated with

(x0, y0). Because Alice has already seen a message from
Bob encrypted using x1, y0, she correctly assumes no more
messages will be sent by Bob with these keys, since mes-
sages are assumed to arrive in order. However, Mallory,
who is assumed to have total network control, can block
this outgoing message from Alice. She can then re-send Al-
ice’s original message m0. Since Mallory has learned the
MAC keys used for this message, however, she can modify
the message contents to m′

0, since a malleable encryption
scheme is used. When Bob receives this message, it appears
it was sent legitimately by Alice before receiving his message
m1, and was simply delayed in the network, so Bob accepts.
Mallory could then send Alice’s message m2, and the con-
versation between Alice and Bob will proceed, although a
spurious message m′

0 has been inserted.

The attack could also take the form of Figure 6, where Alice
sends two messages out before getting Bob’s response. Mal-
lory could then block the second message, wait until Alice
publishes the MAC keys associated with it, and then send
it.

ALICE MALLORY BOB

{MACf(gx0y0 )(m0), g
x1, ∅}

{MACf(gx1y0 )(m2), g
y1, ∅}

{MACf(gx0y0)(m
′

1), g
x1, ∅}

{MACf(gx0y0 )(m1), g
x1, ∅}

{MACf(gx1y1 )(m3), g
x2, f(gx0y0)}

Figure 6: Attack variant on message integrity

The fix for this attack is not entirely clear. According to
the protocol authors, the currently deployed implementation
is not susceptible to this attack, because each party only
publishes the MAC keys they used to receive messages. By
publishing only MAC keys used to receive, previously sent
messages cannot be modified.

However, this fix weakens the strong deniability property,
since it means that each principal only publishes half of the
MAC keys used, instead of each principal redundantly pub-
lishing the full set, as the protocol specification calls for.
This means that if either party is dishonest they can publish
their MAC keys incorrectly, and disable the strong deniabil-
ity property.

There is a negative interaction occuring between the desire
for deniability and message integrity. We believe a better
fix might be to publish MAC keys which are two genera-
tions removed from use, thus ensuring the other principal
has already seen a message at least one generation newer



than the published keys. The downside to this approach is
that it requires remembering keys for longer, increasing the
window of vulnerability for deniability and perfect forward
secrecy.

In any case, as specified the protocol has a serious flaw which
leads to a strong attack as Mallory can insert a modified
message into the conversation without detection. The pro-
tocol must be updated to eliminate this risk.

4. CONCLUSION
Via finite-state analysis of the OTR protocol using the Murϕ
model checker, several attacks have been found and improve-
ments to the protocols have been offered where possible. A
refactoring of the AKE protocol is given in Figure 7. In

gy

XB = {pubB, sigB(MB)}

XA = {pubA′, keyidA′, sigA(MA)}

”D-H Commit Message”

”D-H Key Message”

”Reveal Signature Message”

”Signature Message”

BOB ALICE

AESr(g
x), HASH(gx)

MB = MACKm1
(gx, gy, pubB, keyidB, A)

MA = MACKm′

1

(gy, gx, pubA, keyidA, pubB)

r, AESc(XB), v, MACKm2
(AESc(XB), v)

AESc′(XA), v, MACKm′

2

(AESc′(XA), v)

Figure 7: Improved OTR AKE protocol

Figure 7 we add a reference A to the Reveal Signature

Message specifying that Bob believes he is talking to Alice,
and a reference pubB to the Signature Message signifying
that Alice believes she is talking to Bob. We add a new el-
ement v to the Reveal Signature Message and Signature

Message which is meant to specify the version each principal
initially desired such that a version rollback attack may be
more easily detected.

We also present a re-factoring of the data-exchange proto-
col as provided in Figure 8, with the requirement that ex-
pired MAC keys are published only when two generations
old, eliminating the message integrity attack. Furthermore,
an improved protocol description should make explicit that
published MAC keys shall be checked for validity on both
ends, and either re-published or terminating the conversa-
tion upon failure.

Overall, we conclude from our analysis that OTR is gener-
ally secure and does provide the properties it claims other

”Data Exchange Message”

AES-CTR(msg)}

ALICE BOB

Mx = {keyidA, keyidB, gx′

, t,

”Data Exchange Message”

”Data Exchange Message”

{Mxi
, MACKxi

(Mxi
), K∗

j }

{Myi
, MACKyi

(Myi
), K∗

j+1}

{Mxi+1
, MACKxi+1

(Mxi+1
), K∗

j+2}

K∗

j = {Kmj−1
, Km′

j−1
, Kmj

, Km′

j
}|∅

Figure 8: Improved OTR data protocol

than integrity. However, our finite-state analysis is designed
only to discover attacks, not to prove the protocol correct.
We recommend the OTR protocol incorporate our suggested
fixes into a new version 3 to defend against the found at-
tacks, but cannot rule out the possibility of additional at-
tacks on the protocol.

5. REFERENCES
[1] Off-the-Record Messaging Protocol version 2

[2] Off-the-Record Messaging, or, Why Not To Use PGP,
Nikita Borisov, Eric Brewer, and Ian Goldberg, WPES
2004, http://www.cypherpunks.ca/otr/Protocol-v2-
3.0.0.html

[3] “Automated analysis of cryptographic protocols using
Murphi,” John C. Mitchell, Mark Mitchell, and Ulrich
Stern, IEEE Symposium on Security and Privacy, 1997


