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Abstract

Key derivation functions (KDFs) are integral to many cryptographic protocols. Their functionality
is to turn raw key material, such as a Diffie–Hellman secret, into a strong cryptographic key that
is indistinguishable from random. This guarantee was formalized by Krawczyk together with the
seminal introduction of HKDF (CRYPTO 2010), in a model where the KDF only takes a single
key material input. Modern protocol designs, however, regularly need to combine multiple secrets,
possibly even from different sources, with the guarantee that the derived key is secure as long as at
least one of the inputs is good. This is particularly relevant in settings like hybrid key exchange for
quantum-safe migration. Krawczyk’s KDF formalism does not capture this goal, and there has been
surprisingly little work on the security considerations for KDFs since then.

In this work, we thus revisit the syntax and security model for KDFs to treat multiple, possibly
correlated inputs. Our syntax is assertive: We do away with salts, which are needed in theory to
extract from arbitrary sources in the standard model, but in practice, they are almost never used
(or even available) and sometimes even misused, as we argue. We use our new model to analyze
real-world multi-input KDFs—in Signal’s X3DH protocol, ETSI’s TS 103 744 standard, and MLS’
combiner for pre-shared keys—as well as new constructions we introduce for specialized settings—e.g.,
a purely blockcipher-based one. We further discuss the importance of collision resistance for KDFs
and finally apply our multi-input KDF model to show how hybrid KEM key exchange can be analyzed
from a KDF perspective.

1 Introduction

Key derivation functions (KDFs) are a common ingredient of many cryptographic applications. They
operate as a versatile tool, taking highly entropic sources and generating an almost infinite amount of
strong cryptographic keys, potentially bound to some context. KDFs are used to derive keys in many
widely-used protocols such as TLS, IPsec, Bluetooth, or Signal. Several standards describe KDFs based
on common cryptographic algorithms and deployed in many widely-used protocols. At the forefront, this
includes the IETF RFC 5869 [46] for HKDF, based on the seminal work of Krawczyk [48] which describes
how HMAC can be used to build a KDF. Equally important are NIST’s special publications concerning
KDFs, notably SP800-56C [6] on key derivation in key establishment schemes, in particular using hash
functions, HMAC, and KMAC, as well as SP800-108 [24] concerning KDFs based on pseudorandom
functions like HMAC, CMAC, and the hash function SHA-3.

1.1 State-of-the-Art KDFs

HKDF and the extract-then-expand paradigm. The most commonly used key derivation function
in practice is arguably the HMAC-based function HKDF, proposed by Krawczyk at CRYPTO 2010 [48]
and subsequently standardized by the IETF in RFC 5869 [46]. HKDF follows the extract-then-expand
(XtX) paradigm, also by Krawczyk, which suggests that key derivation functions should operate in two
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stages: The first stage extracts uniform randomness from the (entropic, but not necessarily uniform)
input key material, generating an intermediate pseudorandom key PRK . The second stage takes the
key PRK and expands it using a variable-output-length PRF to generate a key of the desired length.

In the case of HKDF, the extract (HKDF.Extract) and expand (HKDF.Expand) modules are both based
on HMAC [9]. HMAC : {0, 1}∗ × {0, 1}∗ → {0, 1}8hl, as standardized in [45, 53], takes an arbitrary-length
key K ∈ {0, 1}∗ and input x ∈ {0, 1}∗ and applies a (nested) computation of a Merkle–Damg̊ard hash
function H : {0, 1}∗ → {0, 1}8hl to obtain an hl-byte output.1 The extract function HKDF.Extract is
defined as

HKDF.Extract(S, σ) := HMAC(S, σ),

where σ is the source key material and S is a salt value. The output is a pseudorandom key PRK of
length hl. The expansion function HKDF.Expand takes as input PRK , a label L for the derived key, and
an output length ` as a value up to 255 · hl. The evaluation HKDF.Expand(PRK ,L, `) iterates HMAC,
computing

T (0)← ε,

T (i)← HMAC(PRK , T (i− 1)||L|| [i]1) for i = 1, 2, . . . , N = d`/hle.

The counter value i is encoded as a single byte, allowing at most 255 iterations. The procedure eventually
outputs the first ` bytes of T (1)‖T (2)‖ . . . ‖T (N). Finally, HKDF is defined as HKDF(σ,S,L, `) :=
HKDF.Expand(HKDF.Extract(S, σ), L, `).

Extendable output, or not. Note that the output length parameter ` does not enter the HMAC
calls but only determines how the T (i) values are truncated. This means that HKDF is a so-called
extendable-output function (XOF). That is, if one fixes the inputs σ,L, S, then the output for some length
parameter `1 is a prefix of the output for length parameter `2 ≥ `1. We call this type of KDF a XOF-KDF
to distinguish it from KDFs that produce independent keys for distinct length parameters (which we
instead refer to as not output-extendable, NOF-KDFs); we treat both types in this work.

Single-input KDF syntax and security. Together with the design of HKDF and the XtX paradigm,
Krawczyk also formalized the syntax of a key derivation function and established its expected security.
As can be seen in the function signature of HKDF, a (single-input) KDF in Krawczyk’s syntax takes as
input the raw key material σ generated by some randomness source Σ, a salt S used for smoothing the
raw key material, a label L binding key-related information (and possibly context about the input key
material) to the derived key, and finally the desired output length `:

K ← KDF(σ, S,L, `).

For example, σ could be a Diffie–Hellman secret, S some independent random nonce, and L a string like
"c hs traffic" or "c ap traffic" as used in TLS 1.3 [57] for computing the client handshake resp.
application traffic secret.

Krawczyk’s security model in [48] considers an indistinguishability game in which the adversary has
oracle access to a single KDF instance for random, but fixed, key material σ and salt S, on labels L and
length ` values of its choice. That is, the game samples σ and S, and the adversary can then adaptively
query KDF(σ,S, ·, ·) on arbitrary label L and length ` and learn the derived key. For a single challenge
query on a label distinct from those in all prior and later queries, the adversary either gets the real KDF
value on the chosen inputs or a random string of the requested length and has to distinguish which it is.

Key combiners. Following Krawczyk’s initial work, most formalizations of KDFs—including stan-
dards [24, 46]—cover single-input KDFs: the KDF takes a single key material input σ to derive the key.
In practice, however, many protocols deal with multiple key material inputs σ1, . . . , σn when deriving
keys, possibly from different sources. This includes the Transport Layer Security (TLS) protocol in
version 1.3 [57], where cryptographic keys may be derived by combining a pre-shared key (established in a
previous connection) and a fresh Diffie–Hellman (DH) secret. Similarly, Signal’s X3DH key exchange [49]
derives its key from three to four correlated DH secrets computed from several ephemeral and static DH
shares. In the Messaging Layer Security (MLS) protocol [7], an arbitrary number n of pre-shared keys
can be injected into the key schedule (e.g., to add entropy or authenticate members of prior epochs) and
for that purpose are first combined into a single key value using HKDF extraction and expansion.

Combining keys in this fashion aims to achieve security for the derived keys as long as at least one
input key is secure. Yet, no existing formalism for KDFs with multiple key material inputs captures

1HKDF and HMAC interpret lengths in bytes (octets), hence the factor 8 here.
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this security goal. Hence, all of these protocols resort to using a single-input KDF, applied either to the
concatenation σ1, . . . , σn of the key material inputs or by repeatedly feeding key material into both the
salt and key input in a chaining fashion. Since neither of these approaches follows the intended usage of
the KDF, each construction necessitates a tailored security analysis, and a formal definition of the joint
security goal remains lacking.

The need for a thorough formal understanding of multi-input KDFs becomes even more pressing
with the quantum-safe transition and the increasing deployment of hybrid protocols that combine keys
from classical and post-quantum schemes. Advancements in quantum key distribution (QKD) may
further increase the urgency, as a hybrid deployment of QKD with both post-quantum and classical key
exchange protocols might be desirable for risk-hedging purposes. This development is accompanied by
the appearance of the first standards on KDFs for these new scenarios, such as TS 103 744 [36, 37] of
the European Telecommunications Standards Institute (ETSI), which so far lack a matching, formal
definition.

This is the gap that we aim to fill. We begin by defining the syntax and security of multi-input
KDFs, thereby providing a formal underpinning for the key combiners appearing in deployed systems
and recent standards. We use our definition to analyze these practical constructions, providing proofs
and exposing shortcomings, and devise new constructions targeting dedicated usage scenarios. Finally,
looking at applications, we discuss how the security of a hybrid key exchange can be viewed through the
lens of multi-input KDFs.

1.2 Our Contributions

Multi-input KDFs. Our first contribution is to extend the syntax of a KDF. Instead of only taking
a single key material input, a KDF now accepts n key material inputs {σi}i∈[1,n], each associated with
some context information ci.

2 We call such a function an “n-KDF”, to highlight the multiple inputs. As
before, an n-KDF also takes a label L and a length parameter ` specifying the intended usage and desired
length of the derived key, respectively:

K ← n-KDF((σ1, c1), . . . , (σn, cn),L, `).

Note that for single-input KDFs, the distinction between context information c and the label L is often
blurred. Some standards, like NIST SP800-108 [24], make both explicit, but then simply concatenate c
and L in all proposed constructions. RFC 5869 [46], in contrast, specifies HKDF only with an info field
for capturing both context and label data, following [48]. For n-KDFs, the separation between context
and label is clearer: context is associated with the individual source key material. Hence, there are n
separate such inputs, whereas the label L is associated with the derived key; hence, there is only a single
such input regardless of the value of n.

The attentive reader will have noticed the absence of salt in the inputs to the n-KDF. This is on
purpose and our second contribution to the syntax of KDFs. As it turns out, almost without exception,
practical approaches to building multi-input KDFs—as well as applications of single-input KDFs—do not
use salts at all. Instead, if a single-input KDF is used as a building block, the salt input field is simply
populated with a fixed constant, or one of the multiple key inputs. For some prominent examples, we refer
to Hybrid Public-Key Encryption (HPKE) [8], iMessage PQ3 [63], MLS [7], Noise [54], Signal’s X3DH [49]
and PQXDH [50] handshakes, TLS 1.3 [57] and its hybrid key exchange draft [64], and XWing [5].3 This
is not due to ignorance of the concepts of salts in extractor theory, but due to practical limitations. A
random and independent salt can be unavailable, primarily due to latency or communication constraints.
In these cases demanding a salt input may be outright dangerous: The multi-input KDF construction
suggested by ETSI in version 1.1.1 of TS 103 744 [36] turns out to be insecure when used as a general
KDF without restrictions, due to a misuse of labels as salts.

In some multi-input KDFs, extraction is handled in a separate step (e.g., via privacy amplification of
a reconciled key in QKD) before inputs are combined. In either case, salts, in practice, are not used in
the construction or for security of multi-input KDFs, so we take this opportunity to remove them. This
both simplifies the syntax and exposes the true security achieved by practical constructions.

Security model. The goal of a multi-input KDF remains similar to that of a single-input KDF: to
generate keys of the desired length, which are computationally indistinguishable from random. In

2Context here refers to information associated to the generation of the source key material, such as public parameters or
the transcript of a key exchange. Generally, including as much context as possible in the KDF evaluation is advisable.

3Indeed, the only example of a widely deployed protocol actually using salts in a KDF is the Internet Key Exchange
(IKE) version 2 protocol [43] underlying IPsec.
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contrast to single-input KDFs, this guarantee is now extended to encompass keys derived from partially
adversarially-controlled inputs. A secure n-KDF combines the entropy of the inputs and returns a key
that is indistinguishable from random as long as one of the n key material inputs is unknown to the
adversary.

In our new KDF security notion (Section 4), we capture this by distinguishing between “honest” key
material inputs, which contain entropy, and “dishonest” inputs chosen by the adversary. The adversary
can ask to see multiple challenge outputs of the n-KDF, for chosen labels L and output lengths `,
and should not be able to distinguish the outputs from random, under the condition that in each key
derivation, at least one key material input is honest. The adversary may also ask for real outputs from the
KDF—however, we show that this does not add to security; the notions with and without such queries
are logically and tightly equivalent. Our model further distinguishes between extendable (XOF) and
non-extendable (NOF) output KDFs, capturing the expected security for both types, via appropriate
query restrictions.

The honest key material inputs, also referred to as “secrets”, are generated by a collection Σ of
sources, where each source Σi ∈ Σ outputs a vector of potentially correlated secrets σi with some context
information ci, as well as some leakage information αi which is handed to the adversary. This allows us
to consider, for example, related Diffie–Hellman secrets gxixj , arising from pairwise combinations from a
collection of DH shares {gx1 , . . . , gxn}.
Analyses of real-world proposals. We then turn to study real-world constructions of multi-input
KDFs in our security model in Section 5. To illustrate the versatility of our model, we study three
constructions with distinct internal designs, input key material settings, and output behaviors.

The first construction captures the approach used in MLS [7] to combine a sequence of n pre-shared
keys into one, fixed-length key. This scheme, which we call MLS-PSK-KDF, uses a chain of HKDF
extraction and expansion steps. We show that it is a secure n-KDF in our model when used to combine
uniform pre-shared keys. The proof only relies on the standard-model assumptions that HMAC (underlying
HKDF) is a dual-PRF [3] and collision resistant.

The second construction, which we call ETSI-CatKDF, is proposed by ETSI in their TS 103 744
standard; of which we analyze version 1.1.1 [36]. ETSI-CatKDF concatenates the key material inputs
and applies HKDF to derive multiple keys (XOF style). We first identify that this proposal is insecure
when used as a general, unrestricted KDF in the sense of our model. The reason is a misuse of labels as
salt inputs to the extraction step HKDF.Extract, allowing an adversary to produce identical outputs by
choosing different labels appropriately. If we restrict the choice of labels and assume that all key material
inputs have fixed length—which the standard does not enforce in version 1.1.1—then we can prove
ETSI-CatKDF secure as a XOF-KDF, modeling HMAC as a random oracle [33]. Notably, the recently
published version 1.2.1 of the standard [37] restricts the choice of labels; a similar revision is under
consideration for version 1.1.1 [36] following discussions of our results with ETSI. Furthermore, the key
material from hybrid key exchanges targeted by ETSI TS 103 744 is fixed-length in nature. Arguably, the
ETSI design could be strengthened to achieve general-purpose multi-input KDF security. Instead, the
revised version 1.2.1 restricts ETSI-CatKDF to 2 + 1 key inputs (compared of n+ 1 in version 1.1.1 which
we analyze), barring it from use as a general purpose n-KDF.

The third construction, used in Signal’s X3DH [49] key exchange, derives a single key from 3 or 4
correlated Diffie–Hellman secrets using (plain) concatenation without context and HKDF. We show
that the corresponding X3DH-KDF scheme is a secure 4-KDF (with the fourth key material input being
optional) via a somewhat lossy reduction to the security of the underlying correlated Diffie–Hellman
source, modeling HMAC as a random oracle. Notably, we can show that the loss in the reduction could
be reduced significantly if X3DH-KDF were to include context (i.e., the involved DH public keys) in the
key derivation—which it currently does not.4

The Combine-then-Expand paradigm. From our analyses of real-world constructions of multi-input
KDFs, a general pattern emerges. We call it the “Combine-then-Expand” (CtX) paradigm, where—in
accordance with existing designs—the extract step is replaced by a generic combine step, which may
or may not involve extraction. CtX can be seen as a counterpart to the Extract-then-Expand (XtX)
paradigm for multiple inputs. In brief, the CtX paradigm constructs an n-KDF as follows, illustrated in
Figure 1: First, the source key material and context is combined into a single, fixed-length, pseudorandom
key PRK via a Combine function. Then, PRK is used to key an Expand function, taking the label L and
desired output length ` as input to produce the output key K .

4This has been assumed in a tight security analysis of a variant of X3DH by Kiltz et al. [44] and was suggested for
independent reasons in analyses of Signal’s post-quantum extension PQXDH [12, 38].
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Combine

(σ1, c1)
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(σn, cn)

PRK Expand

L, `
(optional: c1, . . . , cn)

K

comb-KDF vol-PRF

n-KDF

Figure 1: Combine-then-Expand (CtX) paradigm for building an n-KDF from a comb-KDF Combine
(with empty label and fixed output length) and a variable–output-length PRF Expand.

In Section 6 we show that the CtX paradigm yields a secure n-KDF if the Combine function is a
secure “combiner n-KDF” (comb-KDF) with fixed, empty label and fixed output length |PRK | and the
Expand function is a secure variable-output-length PRF. Observing that a comb-KDF with empty label
and fixed output length is a notably simpler object to construct (given that it has only to produce a
single, fixed-length output key), the CtX paradigm provides a blueprint for constructing multi-input
KDFs from simpler building blocks. In particular, candidate variable-output-length PRFs for the Expand
step readily exist, with HKDF.Expand being a prime example that practical constructions already use in
this paradigm.

New constructions. Equipped with the CtX paradigm, we give new constructions of multi-input
KDFs for specialized settings in Section 7. So far, the proposed n-KDFs we studied are exclusively based
on hash functions. Yet, for single-input KDFs, standards also specify blockcipher-based constructions [24].
Accordingly, we propose an n-KDF that is purely based on a blockcipher BC such as AES. Besides the
pseudorandomness of BC, we also require BC to be key-collision resistant, meaning that it is infeasible to
find keys k 6= k′ and an input x such that BC(k, x) = BC(k′, x). Inspired by the CtX paradigm, we show
that these two properties suffice to combine multiple keys into a single one (without touching context
information or labels yet). Running a variable-output-length PRF (e.g., the CMAC-based construction by
NIST [24]) on this merged key (now including context and label) yields a secure, fully blockcipher-based
multi-input KDF.

We also look into the combination of computationally secure key material with information-theoretically
secure key material. The need for such a combiner arises, for example, to combine a quantum key
distribution protocol with classical and/or post-quantum key exchange. The resulting key should inherit
the information-theoretic security if the corresponding input source is, in fact, information-theoretically
secure. Likewise, it should provide computational security if one of the other sources is computationally
secure or if the “information-theoretic” source merely provides computational security. We show that
combining key material from all sources into a multi-input KDF and then adding another portion of the
alleged information-theoretic source to the output provides this feature.

Collision resistance as a feature. We argue (and discuss in detail in Appendix E) that, ideally,
KDFs should also be collision resistant. This means that even if the adversary has full control over the
inputs to the KDF (i.e., we allow all inputs to be maliciously chosen), it should be hard to find two inputs
for which the KDF output collides. Note that the pseudorandomness of the KDF does not guarantee this
because the adversary fully determines the key material when attempting to produce a collision.

Collision resistance is sometimes explicitly mentioned in standards (e.g., in TLS 1.3 [57]) and in
scientific works (e.g., in [19]) as a requirement for KDFs. We revisit the example of unknown key share
(UKS) attacks on key exchange protocols [15] and how they can be easily prevented if the underlying
KDF is collision resistant.

One may think that HKDF, i.e., HMAC, is collision-resistant if the underlying hash function is. The
nuisance in HMAC, however, lies in the initial processing of the input key, which is padded with 0 bytes
(if too short) or first hashed (if too long). This means HKDF is not collision-resistant for arbitrary inputs,
but only with appropriate restrictions, which—as seen for the ETSI-CatKDF construction—can lead to
insecurities if neglected. We stress that this appears to be widely known among practitioners; here, we
simply show what it means for constructions and how to avoid the potential pitfalls. In particular, we
discuss the constructions we analyze. To give evidence that this property is not achieved in general,
especially for blockcipher-based constructions, we look at the CMAC-based single-input KDF in Bluetooth
Low Energy [16] and show that it is not collision-resistant.

Application. We finally illustrate how our security notion of KDFs can facilitate the analysis of higher-

5



level protocols. In Section 8, we demonstrate this with the example of a KEM+KEM-combiner key
exchange protocol and security against passive adversaries, where the parties combine keys from one
ephemeral and one static KEM. This is used, for example, to build a hybrid combiner of a classically
secure and a post-quantum secure KEM. Ultimately, the key exchange steps can be considered to be the
means to derive key material, and we are only interested in the KDF eventually putting the two keys
together. It is therefore natural to look at the security of the protocol from the angle of the KDF (instead
of the KEMs as in, say, [14]); the key exchange protocol data only enters via the context information
for the KDF. We show that the key exchange security of the combiner indeed immediately follows from
KDF security when the KEMs constitute secure sources. We leave it to future work to apply our model
to more complex protocols and to consider active security.

1.3 Related Work

As mentioned above, key derivation with multiple inputs is common in practice, often as part of complex
protocols. One of the most prominent examples of multi-input key derivation is the latest TLS 1.3
standard [57], combining a pre-shared key psk with a DH secret to derive multiple session keys. TLS 1.3’s
key schedule uses HKDF and can be seen as an example of a 2-KDF. It has been cryptographically
analyzed, explicitly or implicitly, in several works [34, 31, 29, 28, 20]. The results usually model the
underlying hash function as a random oracle, but also rely on the dual-PRF security of HMAC which was
only recently studied by Backendal et al. [3].

In secure messaging, Signal’s X3DH key exchange protocol [49] derives a key from several (correlated)
Diffie–Hellman secrets, basically using concatenation for combing the secrets. Signal’s X3DH KDF has
been analyzed as part of the Signal protocol by Cohn-Gordon et al. [26] in the random oracle model.
Post-quantum versions of Signal’s X3DH appear in [18, 32, 17]. Signal also introduced a post-quantum
key exchange PQXDH [50], adding a KEM shared secret to the DH secrets of X3DH as input for key
derivation, which was analyzed in [12, 38]. An analysis of hybrid solutions of Perrin’s Noise framework as
a full channel protocol appears in [1]. The post-quantum hybrid version of the Noise-inspired WireGuard
protocol has been analyzed by Hülsing et al. [41] as a key exchange protocol, relying on the dual-PRF
security of the key derivation function.

The Messaging Layer Security (MLS) protocol [7] also uses HKDF-based combiners to derive keys from
multiple inputs. Brzuska et al. [19] provide an analysis of the key scheduling. Brzuska and Winkelmann
(BW) [21] consider multi-input pseudorandom functions (n-PRFs) as key combiners in the context of
MLS. While being related to multi-input KDFs, there are significant differences. The goal of n-PRFs is
to combine several (pseudo)random keys in a robust way. In contrast, multi-input KDFs target arbitrary
and even correlated sources. Notably, while n-PRFs take context inputs, these are required to be unique,
while key material (and contexts) may be reused in a multi-input KDF. BW give a construction called
NPRF based on HMAC, which computes the xor of PRF outputs for each (extracted) key and the unique
context information. A similar proposal with a comparable goal appears in a recent work by Aviram et
al. [2]. We note that BW [21] mention collision resistance as a desirable goal for multi-input PRFs and
argue, based on the collision-resistance of HMAC, that their enhanced construction crNPRF achieves this
property.

Password-based key derivation functions such as PBKDF2 [42] need to process low-entropic inputs,
in contrast to the sources we consider here. This introduces special requirements for the design of such
schemes, e.g., impeding exhaustive searches. While our approach is, in principle, applicable to this setting
as well, the constructions are usually fundamentally different. We note that Nair and Song [52] recently
considered multi-factor key derivation protocols based on Krawczyk’s KDF framework. Although their
protocols are also called key derivation functions, they are located at a higher abstraction level, aiming
to be able to deal with lost secrets and, therefore, requiring some form of setup steps. Indeed, their
constructions themselves apply (password-based) KDFs. Furthermore, they were recently shown to have
severe vulnerabilities [59].

Combiners for key encapsulation mechanisms (KEMs) have been considered in [40, 14, 35, 55]. Bindel
et al. [14] consider several suggestions close to the TLS 1.3 key scheduling and its hybrid key exchange
draft [64], Schwabe et al. [60, 61] and Celi et al. [23] analogously investigate the combiner used in
KEMTLS. Campagna and Petcher [22] investigated the security of the key derivation functions proposed
by ETSI from a hybrid KEM viewpoint. All these results refer to security from a KEM perspective, via
IND-CPA/CCA type games. We, in contrast, are interested in the security of the key derivation step itself
for general key material sources, multiple challenge queries, and applications of derived keys. Indeed, our
application to a KEM+KEM-combiner key exchange protocol (see Section 8) is an example of analyzing
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a hybrid (KEM) key exchange through the lens of (multi-input) KDFs rather than KEM combiners.

2 Notation and Conventions

As is common in standards, we sometimes work with bytes (octets) instead of bits as atomic values.
We denote by O = {0x00, . . . , 0xFF} the set of all possible values of an octet, in hexadecimal form. To
capture both bit-oriented as well as octet-oriented settings simultaneously, we sometimes use B for the
underlying character set, with the understanding that B = {0, 1} for bit strings and B = O for byte
strings.

For a string a ∈ B∗ we denote by |a| its length (in B characters) and by a[i] and a[i..j] the characters
at position i, resp. i through j (inclusive), starting with index 1; if i > j then a[i..j] denotes the empty
string ε. We write a1 4 a2 for a1 being a prefix of a2. The symbol ‖ denotes string concatenation and we
write an = a‖ . . . ‖a for the n-fold repetition of a string a. We write a = [x]n for the canonical big-endian
encoding of integer x < 2n with a fixed number |a| = n of B characters. We denote by 〈x, y〉 an injective
encoding of strings which ensures that, if x 6= x′ or y 6= y′, then 〈x, y〉 6= 〈x′, y′〉.

For i ∈ N, [i] denotes the set {1, . . . , i}. For a vector x, usually written in boldface, |x| denotes its
length and for i ∈ [|x|], x[i] or xi denotes the ith element. By x←$ S1 we denote sampling an element
uniformly at random from S1 and assigning it to x. Similarly, we write X ←$ X to indicate sampling
a random variable X from a probability distribution X . By [[cond]] we denote the boolean result of
evaluating cond.

The distinguished symbol ⊥ is used as a placeholder value for uninitialized variables and to signal
errors. Unless otherwise defined, sets, strings, counters, and boolean variables are assumed to be initialized
to the empty set ∅, the empty string ε, the value 0, and 0, respectively. Vectors—we often use the term
tables synonymously—such as a[·] are initialized to ⊥ in all positions. We follow an object-oriented
approach to read and write vector entries. That is, for vector a we denote by a[i].x the value of entry a[i]
at attribute x. Likewise, a[i].x ← x denotes the assignment of variable x to attribute x of the ith entry
in a (where we often use identical variable and attribute names). We also use a[i].(x,y,z) to read all entries
x, y, z at once and the notation a[i].(x,y,z) ← (x, y, z) as shortcut for the simultaneous assignment. We use
(query) lists Q to store queries, adding element (x, y, z) to the initially empty list via Q.append(x, y, z).
The ith element is denoted Q[i]. We denote by Q1||Q2 the concatenation of two lists.

We use the game-playing framework of [11]. By GSec-d
S (A), we denote running the game for security

experiment Sec, parameterized by scheme S and (optionally) bit d ∈ {0, 1}, with adversary A. Games
have procedures, also called oracles. In particular, there may be an initialization procedure Initialize
and a finalization procedure Finalize. If oracles Initialize or Finalize are present, only one query to
each is allowed, and this must be the first resp. last query the adversary makes. The output of the game
execution is defined as the output of Finalize if the latter is present and the output of the adversary
otherwise. By G(A)⇒ y we denote the event that the execution of game G with adversary A results in
output y. We associate the boolean values true to 1 and false to 0 and write Pr[G(A)] as shorthand for
Pr[G(A)⇒ 1], the probability that the execution returns 1.

3 Key Material Sources

The security of a key produced by a key derivation function inevitably depends on the amount of entropy
in the source(s) from which the inputs are drawn. Here, we recall the definition of a key material source,
introduce the concept of a source collection, and give measures of source security. Further relevant
background definitions are in Appendix A.

Key material sources. In the following, we will be concerned with different kinds of sources that
provide the raw input key material to the key derivation functions. We will assume that the sources
generate key material with high entropy, but not necessarily that this source key material is unbiased and
independent. In particular, we want a definition that is general enough to cover the most common types
of “secrets” used for key derivation in cryptographic applications. This includes (in order of decreasing
expected entropy): information-theoretically secure QKD keys, computationally secure uniform keys,
shared keys from Diffie–Hellman key exchange with high computational min-entropy, and passphrases or
passwords from some distribution with low guessing probability. In particular, the latter two examples
illustrate the need to cover sources which generate correlated secrets; in a Diffie–Hellman protocol, the
public key of user A can be used to exchange keys with multiple other users, generating a set of shared
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keys that are all correlated, and in the password setting, users are known to choose highly correlated
secrets.

We adapt the definition of a source of key material from Krawczyk’s HKDF paper [48] to also
encompass sources of correlated key material as follows: A source Σ samples a vector of tuples, (σ, c, α),
where each tuple consists of “secret” key material σ ∈ Skm, context information c ∈ Ctx about the
generated secret, and auxiliary information α ∈ Aux (which is assumed to be available to the adversary
as leakage). As a convention, the auxiliary information always includes the context, meaning that the
context is also publicly known. The distinction between context and leakage is that context is provided
as input to the key derivation function, whereas leakage is given to the adversary. As such, the auxiliary
information may contain more information than just the context, as long as it does not leak information
about the secret key material that would allow an adversary to mount trivial attacks on the underlying
scheme.

To illustrate the difference between context and auxiliary information, consider a simple Diffie–Hellman
key exchange in which the parties exchange shares gx and gy and use σ = gxy as the key material. The
context information c could be empty according to the protocol specification; this is for example the
approach taken by Signal [49] in the multi-input setting. However, the adversary would nonetheless learn
the auxiliary data α = (gx, gy), reflecting the information observed in the key exchange.5

Definition 1 (Key material source). A source of key material (or, simply, source) Σ is a correlated
probability distribution over a support set Skm×Ctx×Aux which is generated by an efficient probabilistic
algorithm that we will also refer to as Σ. Associated with Σ is an integer parameter u called the sample
size, such that when called, Σ outputs a vector z of length u, where each element consists of a triple
(σ, c, α) ∈ Skm × Ctx × Aux. We assume that c is contained in α. That is, for each (σ, c, α) ∈ z, there
exists an efficient way of extracting c from α.

The notion of key material sources is purposefully generic and allows for a wide range of instantiations.
Let us consider some illustrating examples.

Uniform keys. For a source of uniform keys of length `, the sampler Σ returns a vector of uniformly
chosen strings in {0, 1}`, with context and auxiliary information being empty (or possibly including
some public identifier for the key material). This models key generation for cryptographic primitives
with uniformly distributed fix-length keys. In practice, this could capture pre-shared keys or the
usage of a QKD scheme.

KEMs. A source can also capture the shared secrets established by a key encapsulation mechanism
KEM = (KGen,Encaps,Decaps). Here, each element in z is a tuple (K , 〈pk, c〉, α), where (pk, sk)
←$ KEM.KGen() is a KEM key pair and K is the result of an encapsulation (c,K)←$ KEM.Encaps(pk).
That is, the secret key material is the KEM secret K and the context is an encoding of the KEM
public key and ciphertext 〈pk, c〉. Recall that, as per our definition, this context is also included in
the auxiliary information α.

Diffie–Hellman. To model a Diffie–Hellman key exchange protocol, the source key material might be a
distribution over the group G of prime order p with an associated generator g . Here, each element
in the key material vector has the form (gxy, 〈G,p, g , gx, gy〉, α), where x, y ∈ Z∗p. That is, the
secret key material is the Diffie–Hellman secret and the context information is an encoding of the
group, its order, the generator, and the DH shares; per definition, this context is also included in α.

In some source distributions the secrets σ in the vector z←$ Σ may be correlated. This is the case if,
for example, the same Diffie–Hellman or KEM public key is used to establish multiple secrets. We assume
that the distribution is public, and hence that such correlation patterns are known to the adversary. For
example, for the Diffie–Hellman source capturing the inputs to Signal’s KDF in X3DH, the vector z
contains all pair-wise combinations of users’ long-term/static and ephemeral Diffie–Hellman public keys
(see Section 5.4 for details). We then assume that the adversary knows which elements in z are associated
with the public key of each user, without having to first inspect the context information of each secret.

Source collections. We define security of key derivation functions with respect to the key material
sources that provide the inputs to the KDF. That is, the game that defines security of an n-input KDF
(n-KDF) will be parameterized by a collection of sources, Σ, from which the inputs are drawn.

5Other protocols like TLS 1.3 put the data of the key exchange in c such that it is immediately available to the adversary
by our assumption about α superseding c.
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Game Gup
Σ :

Initialize()

1 z←$ Σ

2 win← 0

3 If ∃i 6= j ∈ [u] : z[i].σ = z[j].σ

4 then win← 1
� No trivially correlated secrets

5 Return (win, z[1].α, . . . , z[u].α)
� Recall that c is part of α

Predict(i, σ∗)

6 win← [[z[i].σ = σ∗]]

7 Return win

Finalize()

8 Return win

Game Gpr-d
Σ :

Initialize()

1 z←$ Σ

2 If d = 0:

3 For i = 1 to u:

4 z[i].σ←$ {0, 1}|z[i].σ|

5 Return z

Figure 2: Games defining multi-challenge unpredictability (left) and pseudorandomness (right) of a
source Σ.

To accommodate that correlated secrets from the same source may be used across multiple input
positions in the KDF, we associate to the source collection a surjective function Σ-map : [n]→ [r] which
maps an integer representing the position of a KDF input to an index of a source in the collection of
r sources. That is, an (n, r)-source collection maps the n input positions of a n-KDF to the r sources,
such that each position in the KDF is assigned exactly one source. We define the mapping Σ-map to be
surjective to ensure that we only consider sources which contribute to the key derivation process.

Consider, for example, a collection Σ = (Σ1,Σ2) consisting of a source Σ1 outputting a vector of
Diffie-Hellman shares σi = gxyi and a source Σ2 generating a vector of random keys Ki representing
ephemeral KEM shares. Then a 2-KDF which expects the DH secrets as the first input and the KEM
values at the second position has Σ-map(1) = 1 and Σ-map(2) = 2.

Definition 2 (Source collection). An (n, r)-source collection Σ = (Σ1, . . . ,Σr) is a tuple of r ≤ n sources
with an associated surjective function Σ-map : [n]→ [r].

Note that the sources Σi of a collection Σ = (Σ1, . . . ,Σr) are considered to be independent, meaning
that one can sample each source individually. Correlations of key material, as in the Diffie–Hellman
example of sampling related secrets σi = gxyi for the same share gx are captured within a single source.
Maliciously chosen key material is later dealt with in our security model by giving the adversary the
possibility to set key inputs for the KDF.

Entropy measures. In order to quantify the security that a KDF provides with respect to a source
collection, we need a measure of the amount of entropy provided by the sources. In particular, due to the
leakage of the auxiliary information, we measure the unpredictability of the secrets in a sample given this
leakage.

We use a game-based approach to define average min-entropy. In the game, shown in Figure 2, a
vector z of key material is sampled according to the source Σ. The predictor receives the auxiliary data
for z and can make multiple attempts to guess a secret σi in the vector via an oracle Predict, winning
if at least one attempt is correct. To capture cases where the secrets are trivially correlated due to
being identical, we let the adversary immediately win if identical secrets occur in the sample. If the
predictor A is unbounded, the advantage measures the statistical unpredictability of the source; if A is
computationally bounded, it measures the computational source unpredictability.

Definition 3 (Unpredictable source). We define the advantage of an adversary A against the unpre-
dictability ofa key material source Σ to be

Advup
Σ (A) = Pr [ Gup

Σ (A)⇒ 1 ] ,

where game Gup
Σ is given in Figure 2. We say that Σ is (t, ε)-computationally unpredictable if for any

adversary running in time at most t we have Advup
Σ (A) ≤ ε.

Sometimes we can make stronger assumptions about the key material sources than unpredictability.
For example, when the secrets are generated by a KEM, the IND-CPA-security of the KEM implies that
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the key material not only has high entropy but is pseudorandom. That is, each secret generated by the
source is computationally indistinguishable from a uniformly random string of some fixed length. We
refer to this type of source as a pseudorandom source and show in Appendix A.3 that pseudorandom
sources are also unpredictable.

Definition 4 (Pseudorandom source). Let Σ be a key material source. We define the advantage of an
adversary A against the pseudorandomness of Σ to be

Advpr
Σ (A) = Gpr-1

Σ (A)−Gpr-0
Σ (A) ,

where game Gpr-d
Σ is given in Figure 2. The source Σ is (t, ε)-pseudorandom if for any adversary running

in time at most t we have Advpr
Σ (A) ≤ ε.

4 Multi-Input Key Derivation Functions

In this section, we define multi-input key derivation functions and their security.

4.1 Syntax

An n-KDF extends the basic notion of a KDF by taking up to n key material inputs σi ∈ Skmi together
with the context information ci ∈ Ctxi of each input (cf. Definition 1). Syntactically, an n-KDF always
has a fixed number n of inputs. However, our definition also supports optional inputs by letting ⊥ ∈ Skmi,
where ⊥ is a distinguished symbol denoting that this input is null. In addition to the source key material
and their contexts, the n-KDF takes a label L ∈ Lbls for the output key and a parameter ` ∈ KLout
declaring the desired key output length. Here, the length may be denoted in bits or in octets. Recall that
we use B as the generic character set, capturing both bits B = {0, 1} and octets B = O.

Definition 5 (Key derivation function). An n-input key derivation function (n-KDF) F : (Skm1×Ctx1)×
. . . × (Skmn × Ctxn) × Lbls × KLout → B∗ is a deterministic algorithm with an associated key output
length set KLout ⊆ N. Via K ← F((σ1, c1), . . . , (σn, cn),L, `), algorithm F on input n tuples of secrets and
associated contexts, a label string L and an output length ` ∈ KLout outputs a key K ∈ B`.

We call an n-KDF with fixed, empty label and fixed output length (i.e., Lbls = {ε} and KLout = {`})
a “combiner n-KDF” (comb-KDF).

4.2 Security

We define the security notion for an n-KDF F through the real-or-random indistinguishability game
Gkdf-d

F,Σ,req shown in Figure 3. The game is parameterized by a bit d ∈ {0, 1}, a source collection Σ, and a
predicate req which helps to exclude trivial attacks such as challenge queries for dishonest keys only. For
comb-KDFs, the empty label and fixed output length (in gray boxes) can essentially be ignored; we call
this simplified notion “fixed-label-and-length” (fixL`-kdf) security.

The game’s parameter d determines the setting, with d = 1 indicating the “real” game and d = 0
the “random” game, Σ determines which key material sources may be used in which position of the
KDF, and the predicate req determines the requirements on queries made by the adversary. We list
possible requirements in Table 1, discussed in Section 4.3 below. One purpose of req is to prevent the
adversary from mounting trivial attacks, but it also allows us to capture different settings with no changes
to the main game. For example, req encodes whether the game captures security for extendable-output
n-KDFs (XOF-n-KDFs), when req =⇒ reqX , or for non-extendable-output n-KDFs (NOF-n-KDFs),
namely when req =⇒ reqN . The task of the adversary is to distinguish real outputs of the KDF F from
uniformly random strings of the same length.

The game begins by sampling a vector zi (of length u) of source key material from each Σi ∈ Σ. It
then runs the adversary with oracle access to the procedures NewKey, SetKey, Ro$-KDF, and KDF.

Oracle NewKey takes as input two indexes i, j: the first one specifies from which source Σi ∈ Σ
the key material should be taken, and the second one the position j ∈ [u] of the desired key material
in the vector zi. The oracle assigns a new “honest” input for F with source key material, context, and
auxiliary information (σ, c, α) = zi[j], where “honest” indicates that the key material is not influenced by
the adversary. The new key is stored in a vector k[·], together with the index i of its source. The game
keeps track of the next available position in k by using the counter ν. Finally, the used key material is
deleted from zi, preventing it from being assigned again, and the auxiliary information is returned to the
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Game G
fixL`-kdf-d
F,Σ,req :

Initialize()

1 For i = 1 to r do:

2 zi←$ Σi
� vector of key material from Σi

Finalize(d∗)

3 If ¬req(k,Qr,Q$):
� check for trivial attacks

4 Return 0

5 Return d∗

NewKey(i, j) � new honest key

6 If zi[j] = ⊥: Return ⊥
7 (σ, c, α)← zi[j] ; zi[j]← ⊥

� secrets can only be assigned once

8 ν ← ν + 1 � increment key counter

9 k[ν].(σ,c,α,src,t) ← (σ, c, α, i, hon)

10 Return α

SetKey(σ, c, α) � set new dishonest key

11 ν ← ν + 1

12 k[ν].(σ,c,α,t) ← (σ, c, α, dishon)

Ro$-KDF((v1, . . . , vn), L, `)

� evaluate KDF or return random string

13 K1 ← F(k[v1].(σ,c), . . . ,k[vn].(σ,c) ,L, `)

14 K0←$ B` � B = {0, 1} or O
� freshness condition in req prevents trivial at-
tack from repeated queries

15 Q$.append((v1, . . . , vn), L, `)

16 Return Kd

KDF((v1, . . . , vn), L, `)

� evaluate KDF

17 K ← F(k[v1].(σ,c), . . . ,k[vn].(σ,c), L, `)

18 Qr.append((v1, . . . , vn), L, `)

19 Return K

Figure 3: Games Gkdf-d
F,Σ,req and GfixL`-kdf-d

F,Σ,req defining kdf security for an n-input key derivation function
F, an (n, r)-source collection Σ, and requirement req; see Table 1 for the requirement definition. The
“fixed-label-and-length” (fixL`-kdf) version of the game is for a KDF with fixed label L and output length `
(in gray boxes, which can essentially be ignored).

adversary as leakage. Note that the key material can only be assigned once to a position in k, but then
the value may be used multiple times to derive keys.

Complementing NewKey, oracle SetKey allows the adversary to register (maliciously chosen) input
key material of its choice. These keys are also stored in the vector k[·] at the next available position ν. To
distinguish them from honest keys, keys registered using oracle SetKey are marked with k[ν].t = dishon.
This oracle also allows the adversary to void an optional key material input of the KDF by registering a
new key with σ set to the dedicated symbol ⊥. Such void optional inputs are marked as dishon since they
do not contribute to the entropy of the derived key.

Finally, in oracles Ro$-KDF and KDF the adversary can request outputs from the n-KDF. The
oracles take as input a vector (v1, . . . , vn) of indexes, where vp indicates which source key material and
context from vector k to use in position p. The compliance of these inputs is checked in the requirement
req at the end of the game. (For example, reqValidPos ensures that honest inputs are only used in positions
associated with the source from which the key material was drawn.) The other arguments passed to
the oracle are the label L and the output key length `. In the Ro$-KDF oracle, the final key may be
replaced by a random string of length `, depending on the game bit d. The game stores query inputs for
oracle Ro$-KDF in the list Q$ and queries to oracle KDF in Qr.

The game ends when the adversary runs oracle Finalize with its bit guess d∗ as input. If requirement
req is fulfilled (indicating that, at a minimum, there have been no trivial attacks), Finalize returns
d∗; otherwise, it returns 0. The parameter req additionally allows us to put further restrictions on the
adversary’s success, thereby obtaining multiple different security notions from one game, as explained
next.

We define the following security notion for n-KDFs, where Gkdf
F,Σ,req(A) is as defined in Figure 3.

Definition 6 (KDF security). Let F be an n-KDF. We define the advantage of an adversary A against
the KDF security of F with source collection Σ and requirement req as

Advkdf
F,Σ,req(A) = Pr

[
Gkdf-1

F,Σ,req(A)
]
− Pr

[
Gkdf-0

F,Σ,req(A)
]
.

Note that for this definition to be meaningful, the requirements must include all the trivial attack
restrictions. That is, we demand that req implies either reqN or reqX . We elaborate on the relations
between the security notions induced by the different requirements below.
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Name Description Predicate

req1HKey At least one
honest key

(∀((v1, . . . , vn),L, `) ∈ Q$)(∃p ∈ [n]) : k[vp].t = hon

reqXOF XOF freshness (∀q ≤ |Q$|) (∀q′ ≤ |Q$‖Qr|), (vq ,Lq, ∗) ← Q$[q], (vq′ ,Lq′ , ∗) ←
(Q$‖Qr)[q

′] : q 6= q′ =⇒ (vq ,Lq) 6= (vq′ ,Lq′ )

reqNOF NOF freshness (∀q ≤ |Q$|) (∀q′ ≤ |Q$‖Qr|) : q 6= q′ =⇒ Q$[q] 6= (Q$‖Qr)[q
′]

reqNoDColl No dishonest
key collisions

(∀v, v′ ≤ ν) : v 6= v′ ∧ k[v].t = k[v′].t = dishon =⇒ k[v].(σ,c) 6=
k[v′].(σ,c)

reqValidPos Honest keys in
valid positions

(∀((v1, . . . , vn),L, `) ∈ Q$ ∪Qr)(∀p ∈ [n]) :
k[vp].t = hon =⇒ k[vp].src = Σ-map(p)

reqX XOF KDF reqXOF ∧ req1HKey ∧ reqNoDColl ∧ reqValidPos

reqN NOF KDF reqNOF ∧ req1HKey ∧ reqNoDColl ∧ reqValidPos

req1×Key(S) One-time keys
for sources S

(∀q, q′ ≤ |Q$‖Qr|), ((v1, . . . , vn), ∗, ∗)← (Q$‖Qr)[q],

((v′1, . . . , v
′
n), ∗, ∗)← (Q$‖Qr)[q

′],
(∀p ∈ [n] | Σ-map(p) ∈ S) : q 6= q′ =⇒ vp 6= v′p

reqHybridKR(S) Honest keys
for sources S

(∀p ∈ [n] | Σ-map(p) ∈ S)(∀((v1, . . . , vn),L, `) ∈ Q$) : k[vp].t = hon

reqHybrid(S) Honest keys
for sources S
(no key reuse)

req1×Key(S) ∧ reqHybridKR(S)

reqNoReal No queries to
KDF oracle

|Qr| = 0

Table 1: Requirements req for games Gkdf-d
F,Σ,req and GfixL`-kdf-d

F,Σ,req (the latter fixes the label and length inputs

in the gray boxes) defined in Figure 3. The upper predicates are necessary to rule out trivial attacks, the
lower predicates are optional and implement various useful refinements.

4.3 Requirements

The parameter req flexibly controls the admissible actions of the adversary, penalizing any violations at
the end of the game. The possible requirements are listed in Table 1.

Fundamental Requirements. The first core requirement is called req1HKey and ensures that there is
at least one “honest” key among the secrets input to the n-KDF in an Ro$-KDF query. Otherwise,
the adversary could call oracle Ro$-KDF on only maliciously chosen keys and easily determine the
secret game bit d. Additionally, in order to prevent trivial attacks, req must also include one of the two
“freshness” requirements reqXOF and reqNOF. These ensure that queries to the challenge oracle Ro$-KDF
are fresh, in the sense that the same inputs have not been used in a prior computation of F. The difference
between the two is whether the output length ` is considered to contribute to freshness or not. reqXOF

caters to extendable-output functions (XOF) and hence does not take the output length into account
when checking freshness. In contrast, with reqNOF, two queries are considered fresh with respect to one
another even if they only differ in the desired output length ` and should hence produce independent
outputs, even if all other inputs are equal, in order for the n-KDF to be secure.

The last requirement to prevent trivial attacks is called reqNoDColl. It disallows the adversary from
registering the same input key material (σ, c, α) more than once in oracle SetKey. Without this check, the
adversary could call oracle Ro$-KDF on distinct inputs ((v1, .., vi, ..vn),L, `) and ((v1, .., v

′
i, .., vn),L, `),

where vi 6= v′i both refer to dishonest inputs holding the same key material (σ, c, α). That is, the indexes
vi, v

′
i are distinct, but k[vi].σ,c,α = k[v′i].σ,c,α. This would allow the adversary to bypass the freshness

check, making two identical queries that look distinct to the game, and hence to trivially distinguish real
from random answers of the oracle, because in the real case the responses would be identical, whereas in
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the random case this rarely happens. For optional inputs, the adversary must—and can—point to a fixed
index vi holding symbol ⊥ to satisfy reqNoDColl.

Finally, we also use req to ensure that the honest inputs to the KDF computation are used in the
correct positions. Recall that the game is parameterized by a source collection Σ = (Σ1, . . . ,Σr) which
associates the r ≤ n sources to the input positions of the KDF via the mapping Σ-map : [n] → [r]
associated to Σ. Requirement reqValidPos ensures that there are no KDF computations in which honest
keys are used in a position not associated to their source. (For most n-KDF constructions, the source
collection either consists of a single source covering all inputs—in which case this check is not needed—or
of n sources associated to one input position each—in which case Σ-map is the identity function.)

For XOF-n-KDFs and NOF-n-KDFs, we conveniently collect the minimum necessary requirements in
the predicates reqX and reqN , respectively.

Optional Requirements. It is sometimes convenient to make further restrictions beyond what is
strictly necessary. For example, reqNoReal restricts the adversary from making any queries to oracle KDF.
That is, there are no “real” queries—only challenge queries to oracle Ro$-KDF are allowed. We can
also ask that keys in certain positions (corresponding to a set S of sources) are only used once in queries
with requirement req1×Key(S). The latter is useful if one considers information-theoretically secure key
material that should be used only once. Note that the predicate still allows the same key input to appear
at multiple positions within a single query.

The Hybrid Requirement(s). Our fundamental requirements reqX resp. reqN provide very strong
security guarantees. With theses requirements, security refers to indistinguishability of challenge values
from random, as long as one of the key material inputs in each query is genuine (requirement req1HKey).
The positions of the good inputs, however, may vary with each challenge query. For instance, for the
first real-or-random query the key material k[v1].(σ,c) may be honest and the material k[v2].(σ,c) may be
controlled by the adversary, and for the second real-or-random query it may be the opposite case. This
captures cases where individual outputs of sources may be weak.

In contrast, the common notion of hybrid key derivation, e.g., combining classical and quantum-
resistant sources, demands that at least one source is good and that all key material inputs from this source
are good. This contemplates that the underlying classical assumption or the post-quantum assumption
(or both) cannot be broken, such that all input key material from such a source contains sufficiently
high entropy. This is a more restrictive stipulation, summarized in the requirement reqHybridKR(S), for
a designated set S of good sources: it demands that all keys from sources in S are good (i.e., honestly
generated), and the other ones in [r] \ S should be treated as providing no security.

To see that the hybrid requirement is restricting the adversary more than the regular one, note that
reqHybridKR(S) =⇒ req1HKey for a non-empty set S because, by surjectivity of Σ-map, a good source i ∈ S
according to predicate reqHybridKR(S) must be assigned to one or more positions p1, p2, . . . . But then the
honest key material inputs of this source i must appear at the (same) positions in all real-or-random
queries, such that each query contains at least one genuine key material inputs, implying predicate
req1HKey. The converse does not hold in general, as the above example with two queries switching the
position of the honest contribution shows.

However, even when imposing the stricter requirement reqHybridKR(S), our model still captures stronger
guarantees than commonly expected in hybrid scenarios. Namely, reqHybridKR(S) allows for key re-use from
good sources in S (hence the “KR”), in arbitrary combinations with other keys (even from sources deemed
insecure). Usually, hybrid combiners are however used with ephemeral/one-time-use key material, so that
any good key is combined only once with possibly insecure keys. This can be captured in our model by
additionally requiring the predicate req1×Key(S), and we hence ultimately capture this common hybrid
approach with the (even) stricter requirement reqHybrid(S) combining reqHybridKR(S) and req1HKey(S).

The difference between the two scenarios, our strong main notions and the hybrid setting, becomes
discernible when showing security of constructions. The fundamental requirements reqX and reqN are
less restrictive for the adversary. Since the adversary in each real-or-random query may vary the position
of the genuine key material input, security proofs require all sources to be secure. This results typically
in security statements where the advantage against the multi-input KDF is bounded by the sum of the
security advantages against the sources. For instance, assuming that the KDF behaves like a random
oracle and assuming a suitable input encoding, we obtain (Theorem 8 in Section 5.1):

Advkdf
RO-KDFn[HT],Σ,req(A) ≤ 2 ·

r∑
i=1

Advup
Σi

(Bi),
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with respect to the unpredictability of all sources.6 For the hybrid setting, with the more demanding
restriction for the adversary, one usually requires only security of one source such that the bounds become
tighter. Once more, for the random-oracle-based KDF we obtain (Theorem 9 in Section 5.1):

Advkdf
RO-KDFn[HT],Σ,req∧reqHybrid(S)(A) ≤ 2 ·min

i∈S

(
Advup

Σi
(Bi)

)
.

and the advantage against the random-oracle-based KDF is thus bounded by the minimum over the
unpredictability advantages of all good sources. This indeed captures the expected the intuition behind
hybrid multi-input key derivation: derived keys should inherit the strength of the unbroken key material
source(s) entering the KDF, as long as good keys are used only once. The proofs for the random-oracle-
based KDF are in the full version [4].

We emphasize that, whenever a hybrid setting uses static/multi-use key material (e.g., long-term user
keys), then the predicate reqHybridKR(S) allowing key reuse is appropriate to capture arbitrary combinations
with other keys. Security bounds for such settings then need to account for collisions in the honest key
material of sources: If such values collides in some position i, then the adversary in the key-reuse setting
can query Ro$-KDF on distinct inputs ((v1, .., vi, ..vn),L, `) and ((v1, .., v

′
i, .., vn),L, `), where vi 6= v′i

point to such a colliding key material, yielding matching answers if d = 1. To render this attack useless,
one needs to exclude the possibility of collisions in each of the good sources, resulting in the sum over all
probabilities.

4.4 Model Simplification and Relations

Our KDF security notion provides the adversary with both a challenge oracle (Ro$-KDF) and a “real”
function oracle (KDF). This is in contrast to, for example, PRF security, where the game only has a
real-or-random challenge oracle. Here, we show that providing the real oracle in addition to the challenge
oracle does not make a qualitative difference to the KDF security notion: one can use the Ro$-KDF
to first replace all Ro$-KDF and KDF query responses with random, then again to change the KDF
queries back to real (the formal proof is in Appendix C). That is, KDF security with both real and
real-or-random oracle is equivalent to KDF security with only the real-or-random oracle.

Proposition 7. Let F be an n-KDF and let adversary A be an adversary against the KDF security of F.
Then for any source collection Σ, there exists an adversary B such that

Advkdf
F,Σ,req(A) ≤ 2 ·Advkdf

F,Σ,req∧reqNoReal
(B) .

Adversary B has query count qOr(B) = qOr(A) for any oracle Or from the set {NewKey,SetKey},
and qRo$-KDF(B) = qRo$-KDF(A) + qKDF(A). The running time of B is roughly the same as that of A.

In Appendix B, we further relate the security of XOF- and NOF-n-KDFs, and also formally justify
the approach taken, e.g., by TLS 1.3 [57] to bind the input key material to its intended output length by
including the latter in the label, effectively transforming a XOF-KDF to a NOF-KDF.

5 Analyzing Real-World Constructions

We now apply our security model to analyze real-world constructions of multi-input KDFs. To illustrate
the versatility of our model, we study three constructions with distinct internal designs, input key material
settings, and output behaviors: the approach in MLS [7] to combine pre-shared keys for injection into its
key schedule, an ETSI proposal based on concatenation [36], and the key derivation in Signal’s X3DH
handshake protocol [49]. Beforehand, we also discuss the generic random-oracle-based construction.

5.1 Random-Oracle-Based Construction

We discuss here that for hash-based constructions, if one views the hash function as a unitary random
oracle, then any reasonable encoding of the inputs will result in a secure KDF for multiple inputs, as long
as one is unpredictable. If one uses a hash function with fixed output length, e.g., one of the members of
the SHA-3 family, then one obtains a NOF-n-KDF; if the hash function has extendable output length,
e.g., one of the SHAKE versions, then one obtains a XOF-n-KDF. Formally, we thus distinguish between

6The factor 2 accounts for adversarial evaluation queries made to KDF in addition to the ones made to Ro$-KDF, as we
show generally in the next section.

14



RO-KDFn[HT]((σ1, c1), (σ2, c2), . . . , (σn, cn),L, `)

1 K ← HT(〈σ1, c1, σ2, c2, . . . , σn, cn,L〉)
� parameter ` only for T = XOF

2 Return K[1..`]

Figure 4: KDF RO-KDFn[HT] based on random oracle H with some recoverable encoding 〈·〉.

random oracles with non-extendable (fixed) output length hl, denoted as HNOF, and those with extendable
outputs, denoted HXOF. The latter takes an additional length parameter ` as input and outputs a string
of length `. A formal definition of such random oracles appears in Appendix A.2. In the NOF-n-KDF
case we assume that the output length parameter ` is bounded from above by hl and truncate the hash
output to ` bits.

We assume some recoverable encoding 〈σ1, c1, σ2, c2, . . . , σn, cn,L〉 of the input data. One option to
encode the values σi, ci, and L is to prepend each value with its length, encoded in a fixed-space entry.
For instance, if the length of each entry is less than 232 bits, then four octets suffice. We would then set

〈σ1, c1, σ2, c2, . . . , σn, cn,L〉 = [|σ1]32 ‖σ1‖ [c1]32 ‖c1‖ . . . ‖ [|L|]32 ‖L

where [i]32 denotes the encoding of integer i < 232 with 32 bits. Then, one can parse the string from left
to right and recover the entries again.

The following theorem shows KDF security based on the unpredictability of the source collection:

Theorem 8 (KDF security based on random oracle). Let HT be a random oracle (with output length hl
in case of T = NOF resp. unbounded output length in case of T = XOF). Consider RO-KDFn[HT] as in
Figure 4 (with output length KLout = {`} in case of T = NOF resp. output length KLout = [hl] in case of
T = XOF). Let req be reqN for T = NOF and be reqX for T = XOF. Then for any source collection
Σ = (Σ1, . . . ,Σr) with mapping Σ-map, each source outputting at most u elements, and any adversary A
against the kdf security of RO-KDFn[HT], making at most qNewKey(A), qSetKey(A) and qRO(A) queries
to oracles NewKey, and SetKey and to the random oracle HT, we have

Advkdf
RO-KDFn[HT],Σ,req(A) ≤ 2 ·

r∑
i=1

Advup
Σi

(Bi),

for adversaries Bi with roughly the same running time as A, and making at most qPredict(Bi) =
qNewKey(A) · qSetKey(A) + n · u · qRO(A) queries to their prediction oracle.

The above bound requires that all sources are unpredictable. This is because our security model
gives strong security guarantees, namely, that even highly correlated inputs to the Ro$-KDF result
in quasi-independent random answers. If the key material σj for some key with index v for only one
source at some position p was predictable, then the adversary could register a dishonest key under a fresh
index v′ with σ′ = σj and identical context information, and repeat the query to the Ro$-KDF with v′

replacing v. If the oracle returns real KDF outputs, then the answers would be identical; if the oracle
returns fresh random values, then the answers would be different with overwhelming probability. This
would allow the adversary to distinguish the two cases.

Proof. We assume that A does not make queries to oracle KDF. By Proposition 7, such queries can
be simulated via Ro$-KDF oracle queries, increasing the advantage by a factor 2. It remains to argue
that any queries to oracle Ro$-KDF result in random-looking answers even for the “real” game (d = 1)
unless A makes a random oracle query HT to the actual input of the KDF evaluation. We will argue that
this contradicts unpredictability of the source collection, considering a family of adversaries B1, . . . ,Br
simultaneously. The adversary Bi against unpredictability receives a sample z[i].α from source Σi. Its
goal is to predict some value z.σ by running a black-box simulation of A, simulating all steps of the KDF
security game (sampling the vectors for the other sources) and the random oracle, with one exception:
If the adversary A makes a query (v1, . . . , vn,L, `) to the Ro$-KDF then Bi for d = 1 simply gives a
random answer. This is necessary since Bi may not know the key material if the evaluation involves
source Σi. For d = 0, it proceeds according to the game.

Consider a query (v1, . . . , vn,L, `) of A to the Ro$-KDF oracle. We first argue that the input values
〈σ1, c1, σ2, c2, . . . , σn, cn,L〉 to the random oracle resulting from these oracle input values are always fresh.
For this, observe first that requirement reqNOF resp. reqXOF implies that the adversary A can never repeat
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queries for the same values (v1, . . . , vn,L). For T = NOF this follows immediately from reqNOF and the
single admissible length input `, in the case of T = XOF the freshness condition reqXOF disallows queries
with identical (v1, . . . , vn,L) but different length values ` 6= `′. Hence, since encoding is recoverable, we
must always have different input values for the oracle.

Consider another (distinct) query (v′1, . . . , v
′
n,L
′, `′) to the oracle. There are three cases in which

repeated inputs to the underlying KDF can occur:

1. Assume that there exists a position index p such that vp 6= v′p but such that the keys are honest,
k[vp].t = k[v′p].t = hon, but contain the same secret, k[vp].σ = k[v′p].σ. The requirement reqValidPos

ensures that both keys at position p must originate from the same source i = Σ-map(p). But then
this gives a straightforward reduction to unpredictability for algorithm Bi, because Bi immediately
wins the unpredictability game if such σ-collisions occur within a source.

2. Assume that there exists an index p such that vp 6= v′p and one key is honest, k[vp].t = hon, and
one is dishonest, k[v′p].t = dishon, but they contain the same secret, k[vp].σ = k[v′p].σ. Then we
can construct an algorithm Bi against the unpredictability of source i = Σ-map(p), by letting it
immediately call its prediction oracle on the index in the source sample corresponding to the honest
key, and the key material σ∗ = k[v′p].σ of the dishonest key.

More specifically, note that any adversary Bi can keep track of all key materials of dishonest keys
by observing A’s call to oracle SetKey, and knows all sources and positions of (unknown) honest
key material by observing the NewKey queries of A. When A sets a new honest key for source i
and index j, then Bi will call oracle Predict on position j and all dishonest key materials σ∗ set
before, resulting in at most qSetKey(A) calls. When A sets a new dishonest key to value σ∗, then
Bi will look up all the previously set honest keys and their position j in the source sample and call
oracle Predict about j and σ∗, resulting in at most qNewKey(A) calls for each of the qSetKey(A)
calls to SetKey. In either case, if an index p as above in a call to oracle Ro$-KDF occurs, then
Bi successfully predicts the secret key material of the corresponding source i = Σ-map(p).

3. Assume that there exists an index p such that vp 6= v′p, both keys are dishonest, k[vp].t = k[v′p].t =
dishon, but where the key material and context information are identical k[vp].(σ,c) = k[v′p].(σ,c).
Note that such queries for the same position p are disallowed according to requirement reqNoDColl.

We can thus conclude that either one of our algorithms Bi breaks unpredicatability, or A loses because
of requirement reqNoDColl, if we have different inputs (v1, . . . , vn,L, [`]) mapping to the same encoding
〈σ1, c1, σ2, c2, . . . , σn, cn,L, [`]〉. Furthermore, the adversary cannot ask for distinct length values ` in the
case of the NOF KDF because the set KLout = {`} of admissible output lengths is a singleton. For a
XOF KDF, this follows from requirement reqXOF, disallowing length-prefix queries of otherwise identical
values.

Now that we have established that all inputs 〈σ1, c1, σ2, c2, . . . , σn, cn,L〉 to the random oracle in
Ro$-KDF queries are distinct, the only possibility for the adversary to note a difference between the
game with d = 1 and the simulated game with random responses is to query the random oracle on the
input in question. The requirement req1HKey guarantees that at least one honest key must be used in
queries to Ro$-KDF. Hence, a successfully distinguishing random oracle query by A must predict such a
secret value.

Once more, we can construct adversaries Bi against unpredictability. For each query 〈σ1, c1, σ2, c2, . . . ,
σn, cn,L〉 of A to its random oracle, for each p ∈ [n], query oracle Predict on all values j ∈ [u] and σp.
If A ever makes such a random oracle query, then Bi wins the unpredictability game.

We can now conclude that A cannot distinguish the games for d = 0 and d = 1 anymore because, in
both cases, the oracle Ro$-KDF returns fresh random answers.

The following theorem shows that RO-KDFn[HT] is a secure hybrid n-KDF. That is, that it is
secure as long as at least one of the sources of key material is unpredictable. For this, we use the
requirement reqHybrid, combining reqHybridKR and req1×Key (cf. Table 1).

Theorem 9 (Hybrid KDF security based on random oracle). Let HT be a hash function, which we model
as a random oracle (with output length hl in case of T = NOF resp. unbounded output length in case of
T = XOF, see Figure 15). Consider RO-KDFn[HT] as in Figure 4 (with output length KLout = {`} in
case of T = NOF resp. output length KLout ∈ [hl] in case of T = XOF). Let req be reqN for T = NOF
and be reqX for T = XOF. Then for any source collection Σ = (Σ1, . . . ,Σr) with mapping Σ-map, and
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any non-empty set S ⊆ [r] there exist adversaries Bi for i ∈ S such that

Advkdf
RO-KDFn[HT],Σ,req∧reqHybrid(S)(A) ≤ 2 ·min

i∈S

(
Advup

Σi
(Bi)

)
.

Adversaries Bi have roughly the same running time as A, and make at most qPredict(Bi) = n · u · qRO(A)
queries to their prediction oracles.

Proof. We may again assume that adversary A never queries oracle KDF, causing a factor 2 in the
security bound. Let i ∈ S be an index of a good source. We construct an adversary Bi against the
unpredictability of source Σi. Adversary Bi receives a sample z.α but does not have access to the secret
key material z.σ. Let p1, p2, . . . , pk ∈ [n] be the positions in the KDF that Σ-map maps to source i; by
assumption about the surjectivity of Σ-map at least one such position must exist. Then Bi does not
know any of the key material inputs for these positions when simulating the oracles for A. However, Bi
samples all the data for the other sources in the simulation, including the ones in S \ {i}. It can therefore
map all indexes at other positions p (different from p1, p2, . . . , pk) for queries (v1, . . . , vn,L, `) of A to the
simulated Ro$-KDF oracle to the actual values k[vp].(σ,c); for all positions p1, p2, . . . , pk adversary Bi
simply leaves the value vpj . We call this the partial key-mapping of (v1, . . . , vn,L, `).

Adversary Bi now responds to A’s oracle queries to Ro$-KDF by simply returning a random key.
All queries to SetKey and NewKey are handled locally by Bi, keeping track of key values. The
auxiliary information about keys from source i are given as input to Bi in the unpredictability game,
and for keys from other sources Bi knows them from the internal sampling step, such that Bi can
return these information to A for NewKey queries. In addition, for each query of A to its random
oracle H about 〈σ1, c1, σ2, c2, . . . , σn, cn,L〉—we assume that A never repeats such a query for the same
data—adversary Bi answers with a fresh random value. When A eventually stops, adversary Bi calls its
oracle Predict on all values j ∈ [u] and all inputs σpj for j = 1, 2, . . . , k that have occurred in a query
〈σ1, c1, σ2, c2, . . . , σn, cn,L〉 to H. Overall these are at most n · u queries for each of the qRO(A) random
oracle queries of A. Then Bi also stops.

The simulation is perfect, unless

1. A makes a random oracle query about some actual input 〈σ1, c1, σ2, c2, . . . , σn, cn,L〉 used in the
Ro$-KDF oracle, possibly noting that the random oracle answer does not match, or

2. A manages to make distinct queries (v1, . . . , vn,L, `) and (v′1, . . . , v
′
n,L
′, `′) to oracle Ro$-KDF that

map to the same value under the partial key-mapping.

For the former case note that this eventually results in a successful prediction attack, such that we
can bound the probability of this happening by Advup

Σi
(Bi). The reason is that reqHybridKR(S)—which is

part of reqHybrid(S)—stipulates that all key inputs in oracle Ro$-KDF at positions p1, p2, . . . , pk need
to come from the good source i ∈ S. Hence, if A ever makes such a random oracle query, Bi eventually
makes the corresponding call to oracle Predict and wins the unpredictability game.

For the other case, that A makes colliding queries to oracle Ro$-KDF, we argue that this would
violate requirement req1×Key(S)—which is part of reqHybrid(S). Recall that this requirement stipulates
that each key index vpj at the positions p1, p2, . . . , pk corresponding to source Σi can only occur once
among all queries to oracle Ro$-KDF. Therefore, the partial key mapping, keeping the values vpi as is,
can never map to the same input twice. If, on the other hand, two distinct indexes vpj 6= v′pj would result
in the same secret key material for source Σi, then this meant a collision in the key material and is also
covered by the unpredictability term Advup

Σi
(Bi).

Overall, the simulation of each adversary Bi is close to an actual attack of A, with the difference
in probabilities bounded from above by Advup

Σi
(Bi). But in the simulation the secret bit d of oracle

Ro$-KDF is not used at all and thus completely hidden, such that A cannot obtain an advantage over the
guessing probability. Since this holds for all adversaries Bi, we get the minimum over all unpredictability
advantages as an upper bound.

5.2 MLS: n-KDF Combining Pre-Shared Keys

The MLS [7, Section 8.4] protocol uses the n-KDF given in Figure 5 to combine n pre-shared keys into
a single key using HKDF (i.e., based on HMAC). The combiner, which we denote MLS-PSK-KDF, takes
the n pre-shared keys pski, each associated with some identifying information called PSKLabel in [7]
which we treat as context ci; it does not take any label as input (i.e., L = ε), and the output length ` is
fixed to hl, the output length of the hash function underlying HKDF. The KDF first derives a psk inputi
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MLS-PSK-KDF((psk1, c1), . . . , (pskn, cn),L = ε, ` = hl)

1 For i = 1..n:

2 psk extractedi ← HKDF.Extract(0, pski)

3 psk inputi ← HKDF.Expand(psk extractedi, `||"MLS 1.0 derived psk"||ci, hl)
4 psk secret0 ← 0

5 For i = 1..n:

6 psk secreti ← HKDF.Extract(psk inputi, psk secreti−1)

7 K ← psk secretn
8 Return K

Figure 5: MLS n-KDF combiner for pre-shared keys pski, based on HMAC.

value from each pski input, binding the key and context together. Then, in a cascading application of
HKDF.Extract (i.e., HMAC), it combines the n psk inputi values into a final value psk secretn, which is
also the final output key K .

Assuming pre-shared keys function as a pseudorandom source, we show that MLS-PSK-KDF is a
secure (NOF) KDF based on the dual-PRF security of HKDF.Extract (i.e., regular and swap-PRF security
of HMAC), PRF security of HKDF.Expand (i.e., of HMAC, as the output length is fixed to hl), and the
collision resistance of HMAC. Note that HMAC achieves dual-PRF security and collision resistance for
the fixed key-input lengths used in MLS-PSK-KDF, as shown in [3].

Theorem 10 (KDF security of MLS-PSK-KDF). Let MLS-PSK-KDF be the NOF-n-KDF in Figure 5.
Let Σ be a pseudorandom source and Σ be the (n, 1)-collection based on Σ. Then for any adversary A
against the KDF security of MLS-PSK-KDF there exist adversaries B1, . . . , B6 such that

Advkdf
MLS-PSK-KDF,Σ,reqN

(A) ≤ 2 ·
(
Advpr

Σ (B1) + Advswap-prf
HKDF.Extract(B2)

+ Advprf
HKDF.Expand(B3) + Advcr

HMAC(B4) + Advprf
HKDF.Extract(B5)

+ (n− 1) ·Advswap-prf
HKDF.Extract(B6) +

n · (qRo$-KDF(A) + qKDF(A))

28hl

)
.

The adversaries B1, . . . , B6 have running time roughly the same as A and the following query counts:
qNew(B2) = qFn(B2) = qNewKey(A); qNew(B3) = qNewKey(A) and qFn(B3) ≤ n · (qRo$-KDF(A) +
qKDF(A)); qNew(B5),qFn(B5) ≤ n · (qRo$-KDF(A) + qKDF(A)); qNew(B6),qFn(B6) ≤ qRo$-KDF(A) +
qKDF(A).

Proof. We first apply Proposition 7, losing a factor of 2, to move to the KDF security game without real
KDF oracle queries for some adversary A′ with qOr(A′) = qOr(A) for Or ∈ {NewKey,SetKey} and
qRo$-KDF(A′) = qRo$-KDF(A) + qKDF(A). We then bound the advantage of A′ through a series of game
hops, beginning with the “real” (d = 1) game G0 := Gkdf-1

MLS-PSK-KDF,Σ,reqN∧reqNoReal
and ending with the

“random” (d = 0) game.
We begin by replacing in game G0 the source key material in the vector z1 with uniformly random

values, a step we straightforwardly bound by the pseudorandomness of source Σ:

Pr [ G0 ]− Pr [ G1 ] ≤ Advpr
Σ (B1).

In the second hop, game G2, we replace the psk extractedi values computed from honest source
keys pski by uniformly random values. To bound this hop, consider the following reduction B2 to the
multi-user swap-PRF security of HKDF.Extract. Upon each NewKey call of A′, B2 registers a new key
in the multi-user swap-PRF game, taking the place of pski. It calls Fn on input 0 for each of these keys
and substitutes the results for the psk extractedi values. The rest of the game is simulated truthfully, in
particular, B2 handles all dishonest secrets registered via SetKey itself. We have

Pr [ G1 ]− Pr [ G2 ] ≤ Advswap-prf
HKDF.Extract(B2).

For game G3, we next replace HKDF.Expand with a random function where it is used in line 3 of
Figure 5 to compute values psk inputi from “honest” psk extractedi (i.e., those derived from honest pski
and replaced by random in G2). Note that this in particular leads to the computed “honest” psk inputi
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values being independently and randomly sampled, except when some pski key is reused. We bound this
by a reduction B3 to the multi-user (regular) PRF security of HKDF.Expand. Upon each NewKey call
of A′, B3 register a new psk extractedi key in the multi-user regular PRF game. It calls Fn on input
`||"MLS 1.0 derived psk"||ci||0x01 whenever a Ro$-KDF call involves psk extractedi; this amounts
to at most n calls to Fn per Ro$-KDF call of A′ (which translates to n calls per KDF or Ro$-KDF
call of A). Again B3 handles dishonest secrets from the SetKey oracle itself. We have

Pr [ G2 ]− Pr [ G3 ] ≤ Advprf
HKDF.Expand(B3).

In game G4, we abort the game (by immediately returning 0), if A′ creates a collision in any psk inputi
value for some position i computed from dishonest pski values (registered via the SetKey). That is, we
abort if within or across any Ro$-KDF query/queries, there are two sets of inputs (pski, ci) 6= (psk′i, c

′
i)

such that

HKDF.Expand(HKDF.Extract(0,pski), `||"MLS 1.0 derived psk"||ci)
= HKDF.Expand(HKDF.Extract(0,psk′i), `||"MLS 1.0 derived psk"||c′i).

Rewriting HKDF in terms of its HMAC building blocks, this means

HMAC(HMAC(0,pski), `||"MLS 1.0 derived psk"||ci||0x01)

= HMAC(HMAC(0,psk′i), `||"MLS 1.0 derived psk"||c′i||0x01).

We bound this step by a reduction B4 to the collision resistance of HMAC, noting that in the reduction,
B4 performs the relevant computations itself and can hence detect such collisions. We have

Pr [ G3 ]− Pr [ G4 ] ≤ Advcr
HMAC(B4).

Next, in game G5, within each Ro$-KDF query, we replace HKDF.Extract with a random function
where it is used in line 6 of Figure 5 to compute values psk secreti from “honest” psk inputi (i.e., those
derived from honest pski and replaced by outputs of a random function in G3). Similar to before, a
reduction B5 to the PRF security of HKDF.Extract registers a new key for each of these honestly-derived
psk inputi values (which are independent and random per G3, except for repeated pski key material);
there are at most n keys per Ro$-KDF call of A′ (if in each call all keys are honest and previously
unused). It then calls its Fn oracle on psk secreti−1 to obtain psk secreti, computing the steps involving
dishonest keys itself; this again amounts to at most n calls to Fn per Ro$-KDF call of A′. We have

Pr [ G4 ]− Pr [ G5 ] ≤ Advprf
HKDF.Extract(B5).

Finally, in game G6, we replace the final output key K = psk secretn by a uniformly random value in
any Ro$-KDF query. We let a reduction B6 against the swap-PRF security of HKDF.Extract “complete”
the HKDF.Extract derivation chain from the last psk inputi being derived from an honest pski (and hence
an output of a random function by game G5). Iterating over i = 1 to n− 1, B6 given i registers a new
key in place of each such psk inputi (at most one per Ro$-KDF call of A′) and computes psk inputi+1

using its Fn (again at most once per Ro$-KDF call of A′).
What remains to be argued is that in completing the chain, there is no collision in the derivation

chain affecting the independence of the final psk secretn value. Denoting this such collision event as coll,
and summing the reductions over i ∈ [1,n− 1], we have

Pr [ G5 ]− Pr [ G6 ] ≤ (n− 1) ·Advswap-prf
HKDF.Extract(B6) + Pr[coll].

We complete this step by bounding the remaining collision probability.
Recall that by definition, the inputs ((j1, . . . , jn),L, `) between any two Ro$-KDF must differ some-

where. Given that both the label L = ε and the length ` = hl are fixed in the MLS n-KDF combiner,
we can ignore them here. Hence, between any two queries, the key indexes (ji) must differ for some
position pos. If both of them are honest, then by G3 the resulting psk inputi values are derived from
independent random keys, making them independent, too. If both of them are dishonest, then by the
reqNoDColl requirement either the key material σ or the context c values must be distinct. So we have by
G4 that the resulting psk inputi values do not collide and hence distinct PRF inputs are used in this
step (in the application of the swap-PRF game). Finally, the probability of a dishonest psk inputi value
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ETSI-CatKDF((k1, (c1,MA1,MB1)), . . . , (kn, (cn,MAn,MBn)), (psk, ε),L, `)

1 secret← psk||k1|| . . . ||kn

2 c ← 〈c1, . . . , cn〉, MA = 〈MA1, . . . ,MAn〉, MB = 〈MB1, . . . ,MBn〉
3 fcontext ← f(c,MA,MB)

4 K ← HKDF(secret,L, fcontext, `) � label L used as salt input in HKDF

5 Return K

Figure 6: ETSI-CatKDF based on HKDF.

colliding with an honestly derived one in that position, replaced with random in G3, is 1
28hl . Hence, across

all n positions across the qRo$-KDF(A′) = qRo$-KDF(A) + qKDF(A) oracle queries, we can upper bound
such collisions by

n · (qRo$-KDF(A) + qKDF(A))

28hl
.

Observing that G6 equals the “random” game Gkdf-0
MLS-PSK-KDF,Σ,reqN∧reqNoReal

completes the proof.

5.3 ETSI-CatKDF: Concatenation Combiner for Generic Sources

In 2020, ETSI published a technical specification describing their take on building hybrid key exchange
systems: TS 103 744 version 1.1.1 [36]. The specification assumes that several key exchange protocols are
executed, each deriving a shared secret ki. Parties may also hold a pre-shared secret psk which—if not
present—is replaced by an empty string. The keys are combined via an n-KDF that we call ETSI-CatKDF
by concatenating all secret key material. Notably, the standard only considers single-round KEM-based key
exchange protocols to derive keys ki,resulting in messages MAi and MBi per key, which we treat as context.
The ETSI proposal employs a context formatting function fwhich hashes its length-encoded inputs.

While ETSI proposes ETSI-CatKDF specifically for single time use as part of a hybrid key exchange,
the interface of the KDF suggests that a much broader usage is possible. In fact, for example, the German
Federal Office for Information Security points readers of its technical specification to ETSI-CatKDF for
the general purpose use case of hybridisation [39]. For this reason, we analyze ETSI-CatKDF is the more
general context of a generic n-KDF.

The concatenation construction ETSI-CatKDF is displayed in Figure 6. It concatenates the source
key materials to get secret, then encodes the context information via function f to derive fcontext, and
finally applies HKDF to key secret, salt input L, context fcontext, and length parameter `. To match our
formalization of an n-KDF we assume that we have n sources, where the ith source Σi generates key
material σi = ki, context information (ci,MAi,MBi), and some auxiliary information αi. If the optional
pre-shared key psk is available, then we assume that this is output by another source Σn+1 as σn+1 = psk,
with empty context cn+1 = ε and some auxiliary information αn+1.

Our first observation is that the construction ETSI-CatKDF is insecure according to our security
model when interpreting it as a generic n-KDF. The reason is that any queries to oracle Ro$-KDF that
differ only in the labels L (for |L| < B) and L′ = L‖0x00 yield the same output, allowing an adversary
to immediately win. Recall that the initial extraction step of HKDF pads the labels with sufficiently
many zero-bytes such that both padded labels in the queries become identical. A similar effect occurs
if one label is longer than B octets and gets hashed first: Then L = H(L′) of length B and L′ of more
than B octets would yield the same processed salt input and thus identical answers of Ro$-KDF for
different inputs. Since these attacks depend on the possible choices of the value L, whether or not they
translate into practical vulnerabilities depends on how ETSI-CatKDF is used in real implementations. Yet,
from our viewpoint, these attacks reveal a misconception in the deployment of the HMAC salt values
in ETSI-CatKDF, rendering the construction’s security brittle. Another issue, which we do not further
explore here, is that keys in secret are simply concatenated, without length encoding. Then keys k1, k2

and k′1 = k1‖k2, k′2 = ε would yield the same value secret.
We do not formalize the attacks above but instead turn to a restricted security statement for fixed-size

labels and keys. Notably, the recently published version 1.2.1 of ETSI’s TS 103 744 [37] mandates
labels to have fixed length; the key material arising in the targeted hybrid key exchange setting are also
fixed-length in nature. We also restrict ourselves here to the case of an empty pre-shared secret psk, such
that we really have an n-KDF.
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Theorem 11 (KDF security of ETSI-CatKDF). Consider ETSI-CatKDF with empty pre-shared key (psk =
ε, cn+1 = ε) and fixed-length labels L ∈ Ohl, and model HMAC with octet output size hl as a random
oracle. Let Σ be a pseudorandom source with sample size u and Skm = Om and Σ = (Σ) be the collection
with Σ-map(i) = 1 for all i ∈ [n]. For any adversary A against the kdf security of ETSI-CatKDF, making
at most qHMAC(A) to random oracle HMAC, there exists an adversary B such that

Advkdf
ETSI-CatKDF,Σ,reqX

(A) ≤ 2 ·
(
Advpr

Σ (B) + u2 · 2−8m

+ qHMAC(A) · qRo$-KDF+KDF(A) · (2−8m + 2−8hl)

+ (qRo$-KDF+KDF(A))2 · 2−8hl
)
.

where qRo$-KDF+KDF(A) = qRo$-KDF(A) + qKDF(A). Adversary B has roughly the same running time
as A.

The proof can be easily adapted to the case that either all labels are strictly shorter than hl, or that
all labels are strictly larger than hl, following an argument analogously to [3] for dual-PRFs.

Proof. We may first assume that A does not make any queries to oracle KDF. This can always be
ensured and increases the advantage of A by at most a factor of 2 according to Proposition 7. It also
moves the queries to oracle KDF to queries to Ro$-KDF. We next bound the advantage of A through
a series of game hops, beginning with the “real” (d = 1) game G0 := Gkdf-1

n-KDFETSI-CatKDF,Σ,reqX∧reqNoReal
, and

finishing with the “random” (d = 0) game.
We begin by replacing in game G0 all u values σ output by the source Σ at the beginning of the

game by independent random values σ of m octets each. Call this G1. We can reduce this to the
pseudorandomness of the source, Advpr

Σ (B), by introducing adversary B:

Pr [ G0 ]− Pr [ G1 ] ≤ Advpr
Σ (B).

In the next game hop to game G2 we immediately abort (and declare A to lose) if it queries
its random oracle HMAC about some input (L, secret) matching the extraction input in any of the
qRo$-KDF(A) + qKDF(A) challenge queries to oracle Ro$-KDF. Note that secret = k1‖ . . . ‖kn in all such
oracle queries, and according to requirement req1HKey there must be at least one honest input key ki.
Furthermore, this key is now an unknown random string of m octets by game G1. This can be seen as
follows: For each query to the Ro$-KDF we map the vector (v1, . . . , vn) of indexes of input keys to a
vector of entries, either the index ji for honest keys, or the actual value ki for dishonest keys. We call
this the sanitized secret. Then we keep a random oracle table for such vectors (with the label in the first
entry) and pick a fresh value for each new query. It follows that the answer only depends on the index of
honest keys (and honest keys can only be assigned once, such that the index of honest keys points to a
specific dedicated content). Thus, the probability that any of the qHMAC(A) queries to the random oracle
coincides with any of these inputs, is at most

Pr [ G1 ]− Pr [ G2 ] ≤ qHMAC(A) · (qRo$-KDF(A) + qKDF(A)) · 2−8m.

In the next game hop to G3, we abort if there are two honest keys mapping to the same value. Since
there are at most u honest keys, we get by the birthday bound:

Pr [ G2 ]− Pr [ G3 ] ≤ u2 · 2−8m.

We say that two queries ((v1, . . . , vn),L), ((v′1, . . . , v
′
n),L) of A to oracle Ro$-KDF for the same label

are equivalent if (v1, . . . , vn) and (v′1, . . . , v
′
n) map to the same sanitized vector. Note that this means that

they coincide on indexes for honest keys and on the actual content of dishonest keys, even though the
indexes for dishonest keys may differ. Note that we can decide if two queries are equivalent by observing
the queries to oracle SetKey. Now, any two vectors (v1, . . . , vn), (v′1, . . . , v

′
n) not in the same equivalence

class yield an independent random oracle value PRK output by HKDF.Extract. The reason is that, if the
vectors differ in indexes of honest keys, then they also differ in the secret value by the previous game.
And if they only differ in dishonest keys, then, as they do not lie in the same equivalence class, they must
have different values in the entries of dishonest keys. Furthermore, since A has never queried the random
oracle about the value secret, the adversary is perfectly oblivious about each PRK .

In game G4 we let A lose if it either queries the random oracle HMAC about one of the extracted keys
PRK at some point or if two extracted keys collide. There are at most qHMAC(A) random oracle queries and
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X3DH-KDF((dh1, c1), (dh2, c2), (dh3, c3), (dh4, c4),L = ε, ` = 256)

1 If dh4 = ⊥ : secret← dh1||dh2||dh3

2 Else : secret← dh1||dh2||dh3||dh4

3 K ← HKDF(F||secret, 0hl, info, `)

4 Return K

Figure 7: Key derivation function in Signal’s X3DH handshake protocol, based on HKDF. F is a
curve-dependent constant, info is a fixed per-application label.

at most (qRo$-KDF(A)+qKDF(A)) extracted keys in total, each of octet size hl, such that the probability of
querying HMAC about such a value is at most qHMAC(A) · (qRo$-KDF(A) + qKDF(A)) · 2−8hl. Furthermore,
the independent random extracted keys collide with probability at most (qRo$-KDF(A)+qKDF(A))2 ·2−8hl.
Therefore,

Pr [ G3 ]− Pr [ G4 ] ≤ qHMAC(A) · (qRo$-KDF(A) + qKDF(A)) · 2−8hl

+ (qRo$-KDF(A) + qKDF(A))2 · 2−8hl.

Note that collisions for different context information are impossible because fcontext injectively encodes
any context information. Furthermore, each evaluation in the iterations of HKDF.Expand appends a
fixed-size octet [i]1 for the counter, such that collisions within one expansion step cannot happen either.
It follows that all evaluations of HMAC in the expansion step are for different inputs. Given in addition
that A never queries the random oracle HMAC about the extracted keys, the outputs of random oracle
HMAC in the expansion step are thus all independently and randomly distributed. It follows that the
winning probability of A in game G4 is upper bounded by the probability of winning the “random” game
(d = 0). Collecting the probabilities now yields the claim.

5.4 Signal X3DH: 4-KDF Combining Diffie–Hellman Secrets

Next, we take a look at the approach employed in Signal’s X3DH key exchange protocol [49] to combine
multiple Diffie–Hellman secrets. This combiner, which we denote as X3DH-KDF, is a 4-KDF (with optional
fourth input) built on top of HKDF as shown in Figure 7. Its purpose is to derive one shared secret from
three to four correlated elliptic-curve Diffie-Hellman secrets, all originating from the same DH source
(concretely, elliptic-curve DH secrets, all from either X25519 or X448). X3DH-KDF first concatenates the
DH secrets into a string secret, which is prepended with a constant F identifying the curve and then
used as the (single) input key material for HKDF. (Note that secret is uniquely encoded thanks to the
fixed length of the DH secrets.) The remaining inputs to HKDF are fixed to a constant-zero salt 0hl, an
application-specific label info, and an output length of ` = 32 bytes.

In X3DH, parties hold three types of Diffie–Hellman keys: long-term keys (ga, gb, . . . ), semi-static
keys (gs, . . . ), and ephemeral keys (gx, gy, . . . ). A session key between two parties Alice and Bob is
derived using X3DH-KDF from dh1 = gas, dh2 = gxb, dh3 = gxs, and (optionally) dh4 = gxy, where
ga, gx are Alice’s long-term and ephemeral shares and gb, gs, gy are Bob’s long-term, semi-static, and
ephemeral shares (where gy might not be available). We denote the Diffie–Hellman source underlying
X3DH for some group G of order q between p parties, each running at most s sessions and using at most
t many semi-static keys as ΣG,p,s,t

X3DH . A sample from ΣG,p,s,t
X3DH contains all pair-wise combinations of the

parties’ long-term keys and semi-static keys (like σ = gas) as well as those between ephemeral keys and
long-term (gxb), semi-static (gxs), and ephemeral (gxy) keys, respectively; i.e., u = p2t + p2s + p2st + ps2

many entries. We assume that the order of these keys is known to an adversary, who can hence directly
index into the ΣG,p,s,t

X3DH sample to select any particular DH combination of its choice. X3DH does not use

context, so c = ε in tuples produced by ΣG,p,s,t
X3DH , but the auxiliary information α includes the DH shares

(e.g., ga, gs for a long-term–semi-static combination), reflecting that the adversary observes those in the
X3DH handshake.

The source ΣG,p,s,t
X3DH is unpredictable, following for adversaries making a single prediction query only

from the computational Diffie–Hellman (CDH) assumption in G, and for general adversaries from the
gap Diffie–Hellman (GapDH) assumption in G, modulo a term accounting for colliding DH secrets. We
prove this in Appendix D.1.

Theorem 12 (KDF security of X3DH-KDF). Let X3DH-KDF be the 4-KDF in Figure 7. Let ΣG,p,s,t
X3DH be

the Diffie–Hellman source underlying X3DH as defined above, let Σ be the (4, 1)-source collection based
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on ΣG,p,s,t
X3DH , and model HMAC as a random oracle. Then for any adversary A against the KDF security

of X3DH-KDF, there exists an adversary B (making one Predict query) such that

Advkdf
X3DH-KDF,Σ,reqN

(A) ≤ 4qNewKey(A) ·
(
qSetKey(A) + 4qRO(A)

)
·Advup

ΣG,p,s,t
X3DH

(B).

Proof. Recall that HKDF is defined based on HMAC, so given the fixed output length ` = hl, the key
derivation on line 3, Figure 7 can be rewritten as

K ← HMAC( HMAC(0hl,F||secret), info||0x01).

Since X3DH-KDF does not use a label (permitting only a single Ro$-KDF call for any combination of
secrets) and the outer HMAC call uses a constant second input, we can focus for security on the inner
HMAC call: if that inner call yields a value PRK , independent and indistinguishable from random for
each Ro$-KDF call, then the output of the outer call is also indistinguishable from random, since HMAC
is modeled as a random oracle and inner and outer calls are domain-separated (via F and info).

The proof proceeds via a sequence of games G0–G3. Game G0 is identical to G
kdf-X3DH-KDF,Σ,reqN
1 ,

i.e., the “real” n-KDF game, with HMAC modeled as a random oracle.
The first step of the proof is to apply Proposition 7, losing a factor of 2, to move to game G1, which

is the KDF security game without “real” KDF oracle queries, for an adversary A′ with qRo$-KDF(A′) =
qRo$-KDF(A) + qKDF(A).

Next, let game G2 be identical to G1, except that of computing the inner HMAC values PRK =
HMAC(0hl,F||secret), these are replaced with independent and uniform values PRK ←$ Ohl. This change
can be detected by A′ only through (1) forcing a collision between the secret values in two Ro$-KDF
calls, or (2) making a random oracle query of the form (0hl,F||secret) involving the value secret used in an
Ro$-KDF call. Call these two events bad1 and bad2, respectively, then Pr[G1] ≤ Pr[G2] +Pr[bad1∨bad2].
Observe that due to the format of secret and collisions among dishonest key material being disallowed by
reqNoDColl, bad1 can only be triggered by colliding honest key material, or across dishonest and honest key
material.

We bound Pr[bad1 ∨ bad2] via a reduction B to the unpredictability of ΣG,p,s,t
X3DH as follows. Instead of

sampling a source key material itself, B uses the auxiliary information obtained in the unpredictability
game to simulate NewKey queries. It answers all Ro$-KDF queries by sampling the inner HMAC
value PRK at random. When A′ stops, B picks at random b ∈ {1, 2} as well as one of the key material
indexes j which A′ registered via the NewKey oracle.

� If b = 1, B further picks at random one of the SetKey queries A′ made, with source key material
σi. It queries (j, σi) to it Predict oracle. If A′ triggers bad1 via colliding dishonest and honest key
material, then B will pick these with probability 1

qNewKey(A)·qSetKey(A) . If honest key material collides,

B immediately wins the unpredictability anyway.

� If b = 2, B further picks at random one of the random oracle queries of the form HMAC(0hl,F||secret)
that A′ made. It parses secret = dh1||dh2||dh3||dh4 (where dh4) is optional, picks one of the dh
values at random, and queries (j,dh) to its Predict oracle.

IfA′ triggers bad2, then we know that one random oracle call is on a value secret = dh1||dh2||dh3||dh4

(with dh4 optional) used in an Ro$-KDF call. By req1HKey, we know that one of the involved
dhi secrets must be honest, i.e., corresponding to the secret registered via some NewKey query.
Hence with probability 1

4·qNewKey(A)·qRO(A) , B will pick the index of the honest secret involved and

the random oracle call in which A queries it, winning the unpredictability game.

Combining both cases, we have

Pr[bad1 ∨ bad2] ≤ Pr[bad1] + Pr[bad2]

≤ 2qNewKey(A) · (qSetKey(A) + 4qRO(A)) ·Advup

ΣG,p,s,t
X3DH

(B).

Finally, in game G3, we replace all responses to Ro$-KDF queries with random, uniform strings of
octet length hl. Since, in the outer HMAC computation, the first inputs at this point are independent
random strings of octet length hl and the second inputs are a constant, this does not change the view
of A′, hence Pr[G2] = Pr[G3]. Observing that G3 is equivalent to to the “random” n-KDF game

G
kdf-X3DH-KDF,Σ,reqN
0 establishes the bound.
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CtX[Combine,Expand]((σ1, c1), . . . , (σn, cn),L, `)

1 PRK ← Combine((σ1, c1), . . . , (σn, cn), ε, `PRK)

2 K ← Expand(PRK,L, `)

3 Return K

Figure 8: Combine-then-Expand (CtX) construction CtX[Combine,Expand] of an n-KDF from
comb-KDF Combine and function family Expand.

Remark 13. We note that Signal’s X3DH-KDF could achieve tighter KDF security if it included the
Diffie–Hellman shares as context in the inner HMAC call (i.e., HKDF.Extract), in some unambiguous way.
(This is akin to the random-oracle–based n-KDF construction discussed in Section 5.1.) That way, the
reduction to unpredictability in the proof of Proposition 12 would not need to guess which honest key
corresponds to which random oracle query made by the adversary: Seeing the DH shares as context
in an HMAC random oracle call, it could directly identify the corresponding key material and make
one Predict query on that key material (per random oracle query of A). This strategy avoids the
4qNewKey(A)qRO(A) loss in the bound, which can be notable in practical terms, relying on the GapDH
instead of CDH assumption for multi-challenge unpredictability (cf. Lemma 31).

This approach would mirror tight proof strategies in the random oracle model for Diffie–Hellman key
exchange [27]. Context being included in the key derivation has also been assumed in a tight security
analysis of a variant of X3DH by Kiltz et al. [44]. It is further in line with recommendations from recent
analyses of Signal’s post-quantum handshake PQXDH [12, 38].

6 The Combine-then-Expand Paradigm

From the analyses of real-world constructions of multi-input KDFs in the previous section, we can observe
a general two-step approach to building n-KDFs.

Combine. First, the multiple input key materials are combined into a single, pseudorandom value PRK
(taking the context into account). In the MLS n-KDF (see Figure 5), this is done by cascading
applications of HMAC to produce a value psk secretn. In ETSI-CatKDF and Signal’s X3DH-KDF
(Figures 6 and 7), this is done via first concatenating the source key material (and in ETSI-CatKDF
hashing the context) and then applying HKDF.Extract inside HKDF, producing a pseudorandom
key.

Expand. Second, PRK is expanded into the desired output-key length, incorporating the label. This is
analogous to the expand step in HKDF’s Extract-then-Expand (XtX) paradigm, and indeed both
ETSI-CatKDF and Signal use HKDF.Expand for this purpose, keyed with PRK . MLS, deriving only
a single key of fixed length without any label input, skips this step and directly uses PRK derived
in Combine as the output (i.e., Expand is simply the identity function).

We call this paradigm “Combine-then-Expand” (CtX), and formalize it as a generic construction
CtX[Combine,Expand] of an n-KDF from two functions Combine and Expand, as shown in Figure 8 (see
also Figure 1 for an illustration). Syntactically, Combine is what we call a “comb-KDF”: an n-KDF with
no label input and fixed output length `PRK = |PRK | (see Definition 5), and Expand : {0, 1}`PRK × Lbls×
KLout→ B∗ is a function family.

The careful reader will notice that the real-world constructions we have seen do not always fully align
with the formalized version of CtX in Figure 8. MLS and Signal both derive only a single output key
of fixed length, hence the Expand step is somewhat degenerate: in Signal, it only takes a hard-coded
“info” string and fixed output length; in MLS, there is no Expand step at all (i.e., it is the identity
function). ETSI-CatKDF indeed uses HKDF.Expand in the general sense to derive multiple keys from the
combined key material, via label and length inputs, but also includes the context values there, not in the
Combine step along with the source key material. Consequently, we gave tailored analyses for the n-KDF
constructions used in MLS, Signal, and ETSI-CatKDF in the prior section. Nevertheless, going forward,
we deem the CtX paradigm a valuable blueprint for designing new multi-input KDFs.

Concretely, we show that the CtX[Combine,Expand] construction yields a secure XOF- or NOF-n-KDF
if the Combine function is a secure fixL`-KDF (fixed label and length) and the Expand function is a
(multi-user) secure variable-output-length PRF (volPRF, see Appendix A.2 for the formal definition) of
type XOF or NOF, respectively. Importantly, the requirement for Combine, being an n-KDF that produces
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a single, fixed-length key (with no label input), is notably easier to achieve (and can be constructed
from other primitives than hash functions, as we explore in the next section). For the Expand step,
candidates for variable-output-length PRFs readily exist, with HKDF.Expand being a prime example of
an XOF volPRF.

Theorem 14 (n-KDF security of CtX). Let Combine be a comb-KDF with output length `PRK ∈ N,
let Expand : {0, 1}`PRK × Lbls× KLout→ {0, 1}∗ be a function family and let C = CtX[Combine,Expand]
be the n-KDF built from Combine, Expand as defined in Figure 8. Then for any source collection Σ
and requirement req =⇒ reqX ∨ reqN , and any adversary A against the kdf security of C, there exist
adversaries B1, B2 such that

Advkdf
C,Σ,req(A) ≤ 2 ·

(
Advkdf

Combine,Σ,req∧reqNoReal
(B1) + Advvol-prf

Expand,type(B2)
)
,

where type = XOF if req =⇒ reqX and type = NOF if req =⇒ reqN . Adversaries B1,B2 have
roughly the same running time as A. Adversary B1 makes the same number of queries to oracles
NewKey,SetKey as A, and at most qRo$-KDF(A) + qKDF(A) to oracle Ro$-KDF. Adversary B2

makes at most qRo$-KDF(A) + qKDF(A) queries to each of its oracles.

Proof. We assume without loss of generality that adversary A does not violate requirement req; if it
did, it would have an advantage of 0, making the claimed bound trivially true. To begin with, we apply
Proposition 7 to add requirement reqNoReal to req, effectively removing oracle KDF from the game. The
reason is that the intermediate key PRK might be shared across calls to Ro$-KDF and KDF (if they
differ only in the label or length inputs), but the volPRF security game does not provide a “real” function
oracle. Hence, the final reduction to the volPRF security of Expand would not be able to simulate
responses to queries to oracle KDF in these cases. Proposition 7 gives us an adversary B making the
same number of queries as A to {NewKey,SetKey} and qRo$-KDF(A) + qKDF(A) queries to oracle
Ro$-KDF, such that

Advkdf
C,Σ,req(A) ≤ 2 ·Advkdf

C,Σ,req∧reqNoReal
(B) .

Adversary B additionally does not violate req ∧ reqNoReal, by assumption on A.
The proof now proceeds through a sequence of games G0–G2, which all run adversary B and provide

the oracles named in the n-KDF game in Figure 3. Let req∗ := req ∧ reqNoReal. Game G0 is identical
to Gkdf-1

C,Σ,req∗ , that is, the “real” n-KDF game without oracle KDF. Hence Pr[G0] = Pr[Gkdf-1
C,Σ,req∗ ].

Game G1 only differs from G0 in oracle Ro$-KDF, where instead of computing the key K as

PRK ← Combine((σ1, c1), . . . , (σn, cn), ε, `PRK)

K ← Expand(PRK ,L, `),

the key PRK for Expand is replaced by a consistently sampled random string in B`PRK , with consis-
tency maintained with a table T[(v1, . . . , vn)] indexed by the source key material indexes input to
oracle Ro$-KDF by the adversary.

We construct an adversary B1 against the fixL`-kdf security of Combine such that

Pr[G0]− Pr[G1] ≤ Advkdf
Combine,Σ,req∗(B1), (1)

as follows. Adversary B1 runs adversary B, acting as the challenger in game G0, with the following
differences. B1 does not sample any source key material. Instead, it simulates queries to oracle NewKey by
forwarding them to its own oracle NewKey. It similarly relays queries to oracle SetKey. When B makes a
query Ro$-KDF((v1, . . . , vn),L, `), adversary B1 uses its own Ro$-KDF to populate table T[(v1, . . . , vn)].
That is, it checks if the table entry is initialized; if not, it initializes it with the key returned from
Ro$-KDF((v1, . . . , vn), ε, `PRK), i.e., the forwarded query from B to its own oracle, stripped of label and
with fixed length. It then sets PRK ← T[(v1, . . . , vn)], proceeding as the challenger in game G0.

This way, adversary B1 perfectly simulates game G1−d when playing the fixL`-kdf game with
bit parameter d. Adversary B1 has query count qOr(B1) = qOr(B) = qOr(A) for oracles Or ∈
{NewKey,SetKey}, and qRo$-KDF(B1) ≤ qRo$-KDF(B) = qRo$-KDF(A) + qKDF(A) Furthermore, B1

satisfies requirements req ∧ reqNoReal, assuming that B also does. For all requirements except reqNOF or
reqXOF, this follows directly from B not violating the requirement. For the freshness condition, we observe
that thanks to the table T, adversary B1 never repeats a query to oracle Ro$-KDF, hence fulfilling both
reqNOF and reqXOF. This proves Equation (1).
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Figure 9: Key combiner for two keys based on blockcipher BC.

We proceed with the final game hop. Game G2 is identical to G1, except that instead of computing K as
K ← Expand(PRK ,L, `) in oracle Ro$-KDF, K is sampled consistently at random in B`. We construct
an adversary B2 against the volPRF security of Expand such that

Pr[G1]− Pr[G2] ≤ Advvol-prf
Expand,type(B1), (2)

where type = XOF if req =⇒ reqX and type = NOF if req =⇒ reqN . Adversary B2 runs B, acting as
the challenger in game G1, with two exceptions when adversary B issues an Ro$-KDF((v1, . . . , vn),L, `)
query. First, instead of sampling PRK in B`PRK to populate the table T[(v1, . . . , vn)] (if not already
populated), adversary B2 queries oracle New in its own game to initialize a new key for Expand and
stores the index of the key in T[(v1, . . . , vn)]. Second, instead of computing Expand(PRK ,L, `) itself, B2

queries oracle Fn(T[(v1, . . . , vn)],L, `) to compute K .
This way, adversary B2 perfectly simulates game G1 and G2 for B when the bit parameter d in

the volPRF game is 1 and 0, respectively. Furthermore, if the queries by B satisfy reqX , adversary
B2 will never make two queries Fn(i,L, `) and Fn(i,L, `′) such that ` 6= `′ (as such a query would
only be triggered by a query from B which violated reqXOF). This proves Equation (2). Adversary B2

has query count qNew(B2) ≤ qRo$-KDF(B) = qRo$-KDF(A) + qKDF(A) and qFn(B2) = qRo$-KDF(B) =
qRo$-KDF(A) + qKDF(A).

7 New Constructions

We discuss two new approaches to building multi-input KDFs. The first construction uses a simple
key-mixing step, which can be implemented with key-collision-resistant blockciphers, and only requires a
variable-output-length pseudorandom function on top, enabling a purely blockcipher-based design. The
second approach shows how to build a multi-input KDF that achieves information-theoretic security if
one of the key material sources is statistically secure, e.g., if generated via a quantum key distribution
protocol. Both approaches do not make use of hash functions, addressing scenarios where only a limited
set of building blocks is available due to system limitations or design requirements.

7.1 Blockcipher-Based Construction

The idea for the two-input blockcipher-based construction is to first define a simple key combiner function,
mixing the two (pseudorandom) keys σ1 and σ2 via blockcipher BC : {0, 1}bl × {0, 1}kl → {0, 1}bl into a
single, strong key. Only then we apply a simple variable-output-length pseudorandom function to this
derived key and the context information, label, and desired output length. This variable-output-length
pseudorandom function can, for example, be the CMAC construction by NIST [24], yielding a solution
that is entirely based on a blockcipher. Note that we thus slightly diverge from our general CtX paradigm
discussed in Section 6 in the sense that we mix in the context information only in the expansion step,
owned to the fact that we use a blockcipher in the combining step. For “empty” context information
security of our construction here already follows from the more general CtX result.

Besides the pseudorandomness, the security of our construction hinges on the key-collision resistance
of the blockcipher [13]. This means that it should be infeasible to find an input x ∈ {0, 1}bl and distinct
keys k, k′ ∈ {0, 1}kl such that BC(k, x) = BC(k′, x). The absence of such collisions is also commonly used
in practical schemes for so-called key check values (KCVs), with the goal to ensure the integrity of the
key by comparing (truncated) blockcipher outputs for constant inputs like 0bl. We note that key-collision
resistance already follows from collision-resistance of the blockcipher used in Davies–Meyer mode [56],
h(k, x) = BC(k, x)⊕ x. Any key collision as above for the same input value x thus also yields a collision
for the Davies–Meyer hash function.
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BC-KDF[BC,Expand]((σ1, c1, ε), (σ2, c2, ε),L, `)

1 k ← BC(σ1,BC(σ2,BC(σ1, 0
bl)))

2 K ← Expand(k, 〈L, c1, c2〉, `)
3 Return K

Figure 10: Construction BC-KDF[BC,Expand] based on blockcipher BC and variable-output-length Expand.
Note that context information is part of the label.

Definition 15 (Key-collision resistance of blockcipher). For an adversary A denote by Advkcr
BC (A) the

probability that A outputs (k, k′, x) ∈ {0, 1}kl × {0, 1}kl × {0, 1}bl such that BC(k, x) = BC(k′, x) and
k 6= k′.

We describe the construction formally as a 2-KDF for combining two uniform keys, illustrated in
Figure 9. We assume that the source collection Σ outputs pseudorandom strings σ of kl bits, and that
the auxiliary information α is empty. Other sources may require another intermediate step to first derive
such (pseudo)random key material. The key mixing step applies the blockcipher three times in a row,
starting with input 0bl and computing the key k ← BC(σ1, BC(σ2, BC(σ1, 0

bl))) for the key material σ1

and σ2. Then it runs the underlying 1-KDF F on this key k and the joint context information (and salts,
if existing), the label, and the length parameter.

The idea of the key mixing approach is that if the middle entry σ2 is honest, then the block cipher
input to the last round is pseudorandom and thus is k. If the adversary queries for the same material σ2

again, but for a different dishonest key σ′1, then key-collision-resistance ensures that the input to the inner
evaluation BC(σ2, ·) is new, and that the evaluation of the blockcipher for σ2 yields a fresh pseudorandom
string. If, vice versa, the inner key σ2 is dishonest but σ1 is honest, then key-collision-resistance of the
inner evaluation guarantees distinct inputs to the outer evaluation BC(σ1, ·), ensuring pseudorandomness
of the output. If the adversary queries for a different dishonest key σ′2 for the same value σ1, then once
more key-collision resistance ensures that the input to the final evaluation is new and hence the output a
fresh pseudorandom value.

To formalize this, we also require pseudorandomness of the blockcipher for secret key k. To simplify,
and since we only need to compute the blockcipher in the forward direction, we define pseudorandomness
via indistinguishability from pseudorandom functions, implicitly including a PRP/PRF switch [11]. See
Definition 20 in Appendix A.1 for the formalization of PRF security. In addition, we consider the source
(collection) Σ which outputs a vector consisting of pseudorandom key material σi of bit size kl and empty
auxiliary data αi. Note that the context information is arbitrary.

The following theorem shows that the construction is secure if BC is a pseudorandom, key-collision-
resistant blockcipher and Expand is a secure volPRF. The resulting KDF inherits the type (XOF/NOF)
from Expand. For technical reasons in the reduction, we need to move the context information into the
label field when evaluating Expand, as it is done, for instance, in TLS 1.3 [57] and also in the NIST
proposals [24] anyway.

Theorem 16 (KDF security based on Blockcipher). Let Expand be a volPRFof type T ∈ {XOF,NOF}
and BC be a blockcipher. Let req be reqX for T = XOF and be reqN for T = NOF. Consider
BC-KDF[BC,Expand] as in Figure 10. Then for a pseudorandom source (collection) Σ = (Σ) with output
length u and any adversary A against the kdf security of BC-KDF[BC,Expand], making at most qSetKey(A)
queries to oracle SetKey and at most qRo$-KDF(A) + qKDF(A) queries to oracles Ro$-KDF and KDF
in total, there exists adversaries B1,B2, B3, and B4 such that

Advkdf
BC-KDF[BC,Expand],Σ,req(A)

≤ 2 ·
(
Advpr

Σ (B1) + Advkcr
BC (B2) + Advprf

BC (B3) + Advvol-prf
Expand,T(B4)

)
,

where adversaries B1,B2,B3,B4 have roughly the same running time as A. Furthermore, adversary
B3 against the pseudorandomness of BC, as well as adversary B4 against the variable-output-length
pseudorandomness of Expand, each make at most u · qSetKey(A) calls to their oracle New and at most
qRo$-KDF(A) + qKDF(A) calls to their oracle Fn.

Proof. To simplify the proof we first assume that A does not make any queries to oracle KDF, costing us
a factor 2 in the bound, but keeping the sum qRo$-KDF(A) +qKDF(A) of queries to oracles Ro$-KDF and
KDF unchanged. We continue to bound the advantage of A through a sequence of game hops, beginning
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with the “real” (d = 1) game G0 := Gkdf-1
BC-KDF[BC,Expand],Σ,req, and finishing with the “random” game for

d = 0.
In game G1 we replace the pseudorandom outputs of the source (collection) Σ = (Σ) by truly random

key material σi of the corresponding length. The pseudorandomness of the source gives us

Pr [ G0 ]− Pr [ G1 ] ≤ Advpr
Σ (B1)

where B1 simulates A’s attack with the help of its (random or pseudorandom) sample z, outputting 1 if
and only if A succeeds in the simulated attack.

In game G2 we immediately stop if the adversary, during the attack, ever generates a key-collision
in the step for computing k (line 1 of Figure 10) in an oracle call to Ro$-KDF. That is, for different
keys σb, σ

′
b and the same input x (where x = 0bl or x = BC(σ1, 0

bl)) we have BC(σb, x) = BC(σ′b, x). We
implement this in the game by keeping track of all intermediate values when evaluating the BC chain and
abort if we find such a collision. To bound the probability of A causing such a key-collision in game G2

we argue via the key-collision resistance of BC:

Pr [ G1 ]− Pr [ G2 ] ≤ Advkcr
BC (B2).

In game G3 we next replace all evaluations of BC in the key mixing step (line 1) for each honest
key material σ by a random function (but consistently, i.e., for same key σ and same input with the
same value as before). The random functions are implemented via tables Tσ[·] and efficient look-ups.
Note that for dishonest σ we still compute BC as before. Furthermore, we still adhere to the checking
for collisions in the intermediate values, now for the modified evaluations of the blockcipher. It follows
from the pseudorandomness of BC that this is indistinguishable, i.e., since this corresponds exactly to the
difference in the pseudorandomness game, there exists an algorithm B3 such that

Pr [ G2 ]− Pr [ G3 ] ≤ Advprf
BC (B3).

Note that there are at most u honest key material values σ, and each value can be assigned at most once.
In total, adversary B3 thus makes at most u calls to its oracle New in the (multi-user) PRF game, and
at most qRo$-KDF(A) + qKDF(A) evaluation requests to oracle Fn.

Now we observe that each call to oracle Ro$-KDF for indexes v1, v2 must point to at least one honest
key according to requirement req1HKey. Hence, the evaluation of the most outer honest key (either σ2

for a dishonest σ1, or σ1 if σ2 is honest or dishonest) in each such call is always for a new input value
by the previous games, if the other key changes. It follows that the output of such an evaluation is an
independent random value, denoted as K(σ1,σ2). This also holds for a dishonest outer value σ1 because
we then apply the final blockcipher evaluation BC(σ1, ·) for the chosen key to the random output Tσ2

[·]
for honest key σ2. Here we use the fact that σ2 is set by the adversary before the first call to Ro$-KDF
and thus independent of the random function value.

We would now like to proceed to G4 and replace the evaluation results of the variable-output-length
PRF Expand by random variables in calls to oracle Ro$-KDF, using the fact that the key for Expand is
already random according to the previous game, i.e., that each pair of key material (σ1, σ2) with one
honest key maps to a random string K(σ1,σ2). However, the adversary may register identical (dishonest)
key material σ under different key indexes ν and ν′ via oracle SetKey; we only disallow the adversary
to duplicate entire inputs (σ, c) via requirement reqNoDColl, but here only the context information may,
for instance, change. Fortunately, our reduction B4 to the pseudorandomness of Expand can easily
track such cases, since the key material contents of dishonest keys are known. Hence, adversary B4 can
define a mapping of indexes (v1, v2) passed to oracle Ro$-KDF to the corresponding key pair identifier,
Kmap(v1, v2) = (j1, j2); for dishonest keys it even knows the key material σ in addition to the index.

With game G4 we next replace all evaluations of the variable-output-length PRF Expand in the
simulated calls of A to oracle Ro$-KDF by random values (but consistently). To argue the validity of
this modification, we can build an adversary B4 against the (multi-user) security of Expand. Adversary B4

creates a new key in its game via a call for New for each pair (v1, v2) mapping to a new pair Kmap(v1, v2).
Since each of the entries in the source vector z can be assigned only once to a key position, and adversary A
sets at most qSetKey(A) dishonest keys, there can be at most u ·qSetKey(A) keys in B4’s game. Adversary
B4 then maps the pair Kmap(v1, v2) in A’s attack to one of these generated keys. Algorithm B4 simply
uses oracle access to the volPRF security game to simulate the game of A now, encoding the (public)
context information as part of the label. It eventually outputs 1 iff A wins.

Note that B4 has another stipulation (only) in case of a XOF, namely, that it never repeats the same
query (i,L) for key index i and label L for different length parameters. We argue that this must be the
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ITS-KDF[F]((σ1, c1), . . . , (σn, cn),L, `)

� Assume σn = σkdf
n ‖σits

n where |σn| = `its ≥ `
1 k ← F((σ1, c1), . . . , (σkdf

n , cn),L, `)

2 Return k ⊕ σits
n [1..`]

Figure 11: Construction ITS-KDF[F] based on KDF F, achieving information-theoretic security.

case if A successfully plays against the KDF of type XOF. To this end we observe that requirement
reqXOF for A demands that in any two calls to the Ro$-KDF oracle the pairs (v,L), (v′,L′) differ. If
the labels L,L′ in such queries are distinct, then the label field in B4’s calls (encoding L, c1, and c2 in a
recoverable way) must also be distinct. Assume next that the labels L = L′ match, such that the indexes
must differ. Then, adversary B4 will only map this to the same key index i in its simulation via Kmap if
both indexes include dishonest indexes vb 6= v′b at the same position b, holding the same key material
σ. But then requirement reqNoDColl for XOF KDFs ensures that the context information c for both keys
must differ (because position and key material already match). This, however, implies that B4 encodes
different values in its label 〈L, c1, c2〉 for both queries, such that it does not violate the XOF property in
its pseudorandomness game.

We conclude that pseudorandom answers of B4’s evaluation oracle correspond then to G3, and random
answers to game G4, and that B4 successfully distinguishes the cases if A wins in the corresponding game:

Pr [ G3 ]− Pr [ G4 ] ≤ Advvol-prf
Expand,T(B4).

Note that in the final game, all of the responses of oracle Ro$-KDF are random and correspond to
Gkdf-0

BC-KDF[BC,Expand],Σ,req. This proves the theorem.

We observe that the above construction can be generalized to accommodate more keys. Given that
one has already applied the key mixing step for n− 1 keys, then one processes the resulting key with
the final key in an additional key mixing step. That is, one first combines the first two keys and then
combines the result with the third key, and so on. The more direct alternative is to use a scheduling of
keys in order σ1, σ2, . . . , σn, σ1, . . . , σn−1 and apply the blockcipher for this sequence.

7.2 Achieving Information-Theoretic Security

We propose here a simple construction for combining two or more cryptographic keys. This construction
might be of special interest to Quantum Key Distribution (QKD) networks and similar scenarios where
one source generates truly random output but is hedged by also using classical and/or post-quantum
cryptographic key exchange mechanisms on top. The interesting feature of our construction is that the
resulting key is truly random, as long as at least one dedicated source (say, Σn for the sake of concreteness)
of keying material is truly random. Needless to say, this key material can only be used once. Besides
achieving this stronger security guarantee, the construction preserves the common feature of combiners:
If at least one source is (computationally) secure, then so is the combined key, even if the key material is
used multiple times.

The construction is depicted in Figure 11. The idea is to split the potential information-theoretically
secure key material σn into two parts, one short part σkdf

n of `kdf bits entering the key combiner with
the other key material, and the other part σits

n of `its which is then added to the output of the combiner.
Note that it is necessary to include some input of the source σn into the combiner evaluation, otherwise
the adversary could leave the honest key material σn fixed and change the other n − 1 keys using the
SetKey oracle to distinguish two answers by from random.

The proof follows by reduction to the security of the underlying n-KDF, using only the portion σkdf
n

of this source as input. For a source collection Σ, we thus define a collection Σ′ where we (a) truncate
the outputs zi[j].σ for i = 1, 2, . . . ,u of each source Σi with i = Σ-map(n) to the first `kdf bits, and (b)
augment the respective auxiliary information zi[j].α by the remaining `its bits. Note that, in general, the
key material parts can be correlated, although they are independent in the information-theoretic case.
This is why we make the additional data available in α.

Theorem 17 (KDF security of ITS-KDF). Let F be a n-KDF with requirements req, and consider
ITS-KDF[F]. Then, for any source collection Σ and any adversary A against the kdf security of ITS-KDF[F],
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there exists an adversary B such that

Advkdf
ITS-KDF[F],Σ,req(A) ≤ Advkdf

F,Σ′,req(B) ,

where Σ′ is defined as above. Adversary B has roughly the same running time as A.

Proof. Consider adversary A attacking ITS-KDF[F]. Assume that, for each oracle query of A to Ro$-KDF
we instead give a random answer. We construct an adversary B against F and source collection Σ′ showing
that this is indistinguishable. The main task of the reduction is the translation between Σ and Σ′, which
is dependent on the position where the key material is used. To this end, B forwards all of A’s queries to
the NewKey oracle as well as the SetKey oracle to its own respective oracles, but retains a local copy
of the queries.

When B receives a query to the Ro$-KDF or the KDF, it first checks which key material is used in
position n (which we fixed as the position containing the possibly uniform key material). This results in
one of two cases:

� If A is using key material it set using the SetKey, B retrieves this key material from its local copy
of earlier queries and translates it to Σ′ by splitting σn into the first `kdf bits σkdf

n and the remaining
`its bits σits

n . B then queries its own SetKey oracle with (σkdf
n , c, (α, σits

n )). It also modifies A′s
query such that it now refers to this newly set key in position n.

� If A is using honestly generated key material in position n, then B forwards all buffered queries
to SetKey oracle that are required for this query. Per definition of σ′, B receives as answer the
leakage α, which contains the key material σits

n used for the one time pad

In both cases, B has obtained the value σits
n required for simulating the one-time pad. Now, B forwards

the (potentially modified) Ro$-KDF or KDF query to its own corresponding oracle, receiving the output
k. Before forwarding this to A, B augments k by calculating k′ ← k ⊕ σits

n and finally answers A’s query
with k′.

Once Algorithm A halts and returns a bis d∗, B also halts and outputs the same bit. Note that B
satisfies the requirements req iff A does. Furthermore, if the Ro$-KDF returns the correct F values
(d = 1 in B’s attack), then B perfectly simulates A’s attack for genuine answers of ITS-KDF[F]. If, on the
other hand, B’s oracle Ro$-KDF gives random answers instead, then B adds the value σits to this value,
but this remains an independent and random response. Hence, B perfectly simulates the modified game
above in which we replace all answers of Ro$-KDF in A’s attack by random. Hence,

Advkdf
ITS-KDF[F],Σ,req(A) ≤ Advkdf

F,Σ′,req(B),

as claimed.

We can also show security for unbounded adversaries A if we assume that σn is truly uniform. In this
case we would require A to adhere to predicate req1×Key({i}) where source i is placed in position n. The
desired result follows immediately, as the xor operation with a one-time uniform key is a one-time pad,
making the output of ITS-KDF indistinguishable from a randomly sampled string of the same length.

8 From KDF Security to Key Exchange Security

We conclude by putting our KDF notion to action, demonstrating that it can elegantly cover the core
of a passive security proof of a KEM+KEM-combiner key exchange protocol, such as the one given in
Figure 12. We first give a definition of KEM sources and show (in Appendix A.4) that IND-CPA-secure
KEMs yield pseudorandom sources. Then, we reduce the key exchange security of the combiner to KDF
security.

Definition 18 (p × s KEM source). A p × s KEM source for a key encapsulation mechanism KEM =
(KGen,Encaps,Decaps) with key length m is the correlated probability distribution over {0, 1}m×{0, 1}∗×
Aux generated by a sampler Σ with sample size u = p · s for p, s ∈ N, with the following properties:

1. Σ samples (pki, ski)←$ KEM.KGen(), for i ∈ [p].

2. Σ computes (ci,j ,Ki,j)←$ KEM.Encaps(pki), for (i, j) ∈ [p]× [s].

3. Σ outputs
(
(K1,1, (pk1, c1,1), α1,1), (K1,2, (pk1, c1,2), α1,2), . . . , (Kp,s, (pkp, cp,s), αp,s)

)
.
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Party A (knows pkB) Party B (knows skB)

(pkA, skA)←$ KEM.KGen()

(cB ,KB)←$ KEM.Encaps(pkB)
pkA,cB−→ KB ← KEM.Decaps(skB , cB)

KA ← KEM.Decaps(skA, cA)
cA←− (cA,KA)←$ KEM.Encaps(pkA)

K ← 2-KDF((KA, (pkA, cA)), (KB , (pkB , cB)), ”key”, kl)

Figure 12: Simple KEM+KEM-combiner key exchange protocol KEKEM+KEM applying a 2-KDF for key
derivation to combine two keys KA and KB resulting from an ephemeral resp. static KEM.

We call a KEM source “single-pk” if p = 1 and its auxiliary information “publicly computable” if there is
a function f such that f(i, j, pki, ci,j) = αi,j .

Consider a passive key exchange security game Gpsv-ke-d
KE,p , where an adversary interacts with p parties

(whose public keys it is given at the outset of the game) and has access to three oracles: a Run oracle
running the key exchange protocol KE for users of its choice and returning the communication transcript
to the adversary, a Reveal oracle that returns the established session key of such run, and a Test oracle
that returns either the real session key or a random key for a run, depending on the hidden challenge
bit d. (Calling both Reveal and Test is forbidden, being a trivial attack.) The adversary’s task is to

determine d, measured as Advpsv-ke
KE = Pr

[
Gpsv-ke-1

KE

]
− Pr

[
Gpsv-ke-0

KE

]
. We provide the formal game in

Figure 16 in Appendix A.5.
We show that the security of the KEM+KEM-combiner key exchange in Figure 12 directly reduces to

the security of the used 2-KDF for KEM sources.

Theorem 19 (KEM+KEM-combiner key exchange security). Let Σe be a n× 1 KEM source and Σs

be a p × s KEM source. Let KEKEM+KEM be the key exchange protocol given in Figure 12 using a KDF
2-KDF admitting output length kl and defined wrt. (2, 2)-source collection Σ = (Σe,Σs) with Σ-map being
the identity function.

Then, for any adversary A in the passive key exchange security game for KEKEM+KEM, where p is the
number of parties, s the number of protocol runs any single party is involved in, and n = qRun(A) ≤ p · s
is the number of protocol runs overall, there exists an adversary B such that

Advpsv-ke
KEKEM+KEM,p

≤ Advkdf
2-KDF,Σ,req(B),

where the KDF can be of either type (req ∈ {reqX , reqN}). Adversary B makes qNewKey(B) ≤ p + 2 ·
qRun(A), qKDF(B) = qReveal(A), and qRo$-KDF(B) = qTest(A) number of queries and runs in about the
same time as A.

The following proof shows essentially that the NewKey, KDF, and Ro$-KDF oracles can be used
to simulate the key exchange security oracles Run, Reveal, and Test, respectively.

Proof. In simulating Gpsv-ke-d
KEKEM+KEM , adversary B first initializes an ephemeral-key counter ctre and a

static-key counter ctru for each party u ∈ [p]. It then calls NewKey for source i = 2 and index
j = (u− 1) · s once for each party u ∈ [p], remembering the returned ciphertext for later and taking the
obtained public key pku as the public key for party u, which it then gives to A.

Whenever A calls its Run oracle, B registers two new keys via NewKey: one in each position of
the KDF, from Σe and Σs, respectively. For the first, it simply picks the next index je = ctre via the
counter ctre, for the second, it picks the index as js = (u − 1) · s + ctru, where u ∈ [p] is an index
associated with party B of the key exchange and ctru a per-party counter. It then increments both ctre
and ctru by 1 each. (Note that for the very first query, B already queried that index during initialization
and uses the remembered values from that call.) It uses the first’s context as (pkA, cA) and the second’s
context ciphertext as cB to form the transcript to be returned to A. For each such Run oracle call, it
records the used source key indexes (je, js).

When A makes a Reveal query for some protocol run, B computes the session key by calling its
KDF oracle on inputs ((je, js), ”key”, kl), where (je, js) are the source key indexes used for that protocol
run. Likewise, B answers a Test query in the same way, except by using its Ro$-KDF oracle instead.
The queries B makes are permissible wrt. both NOF and XOF requirements (req ∈ {reqN , reqX}), as B
only uses honest source key indexes and does not reuse them between KDF and Ro$-KDF queries, since
A is not allowed to make both a Reveal and Test query to the same protocol run.
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This means means that B simulates Gpsv-ke-d
KEKEM+KEM for A with d = 1 or d = 0 depending on the bit in

the KDF security game, establishing the claim.
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Game Gprf-d
F :

Finalize(d∗)

1 Return d∗ = d

New()

2 ν ← ν + 1

3 xν ←$ X

Fn(i, y)

4 If T[i, y] = ⊥ then:

5 If d = 1: T[i, y]← F(xi, y)

6 Else: T[i, y]←$ Z
7 Return T[i, y]

Figure 13: Game defining PRF security for function F : X × Y → Z.

Game Gvol-prf-d
F∗,type :

Finalize(d∗)

1 If type = XOF:

2 If (i, x, `), (i, x, `′) ∈ Q for ` 6= `′:

3 Return 0

4 Return d∗ = d

New()

5 ν ← ν + 1; kν ←$ {0, 1}κ

Fn(i, x, `)

6 Q ← Q∪ {(i, x, `)}
7 If T[i, x, `] = ⊥ then:

8 If d = 1: T[i, x, `]← F∗(ki, x, `)

9 Else: T[i, x, `]←$ B`

10 Return T[i, x, `]

Figure 14: Game defining variable-output-length PRF security for function F∗ : {0, 1}κ×X ×N→ {0, 1}∗
for extendable (type = XOF) resp. non-extendable (type = NOF) outputs.

A Basic Lemmas and Definitions

A.1 PRF and swap-PRF Security

First, we recap the multi-user PRF and swap-PRF [10] security for a function F : X × Y → Z, where the
swapped function F̄ : Y × X → Z for F is defined as F̄(y, x) = F(x, y).

Definition 20 (PRF and swap-PRF security). Let F : X ×Y → Z be a function and let F̄(y, x) = F(x, y).
We define the advantage of an adversary A against the PRF and swap-PRF security of F as

Advprf
F (A) = Pr

[
Gprf-1

F (A)
]
− Pr

[
Gprf-0

F (A)
]
, resp. Advswap-prf

F (A) = Advprf

F̄
(A),

where game Gprf-d
F is given in Figure 13.

A.2 Variable-Output-Length Pseudorandom Functions and Extendable-Output
Random Oracles

We follow the idea in [48] to define variable-output-length pseudorandom functions (volPRF). These are
functions F∗ : {0, 1}κ × X × N → B∗ that take as input a key from {0, 1}κ, some input x (such as the
label in a KDF), and an output length parameter ` ∈ N, and return a pseudorandom string of length `.
The task of the adversary is to distinguish such outputs from random for adaptively chosen inputs (x, `)
when the key is random and secret. Analogously to KDFs, we can define volPRFs as XOF or NOF. The
former additionally restricts the adversary from querying both (x, `) and (x, `′) for ` 6= `′.

Definition 21 (volPRF security). Let F∗ : {0, 1}κ×X ×N→ B∗ be a function such that F∗(k, x, `) ∈ B`
for any k ∈ {0, 1}κ, x ∈ X and ` ∈ N. We define the advantage of an adversary A against the vol-prf
security of F∗ for extendable (type = XOF) and non-extendable (type = NOF) outputs as

Advvol-prf
F∗,type(A) = Pr

[
Gvol-prf-1

F∗,type (A)
]
− Pr

[
Gvol-prf-0

F∗,type (A)
]
,

where game Gvol-prf-d
F∗,type is given in Figure 14.

For an extendable-output version of a volPRF we penalize the adversary for querying a prefix of
another query. An alternative approach, not punishing the adversary at all, would be to truncate previous
answers (in case a query for a longer length parameter was made before) resp. to fill up the undetermined
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HXOF(x, `)

11 `x ← |T[x]| � initially empty entry T[x] = ε

12 If `x < ` then

13 y←$ B`−`x

14 T[x]← T[x]‖y
15 Return T[x][1..`]

Figure 15: Extendable-output random oracle HXOF.

bits with random values instead (in case only shorter queries about the same key-input pair have been
made before). This approach is equivalent via a reduction B which for each query (i, x, `) of the adversary
A first queries (i, x, `max(A)) for an upper bound `max(A) over all query lengths of A and then truncates
for each answer. We also note that the idea of filling up unspecified parts of the output gives rise to a
definition of extendable-output random oracles:

Definition 22 (Extendable-Output Random Oracles). An extendable-output random oracle HXOF is
defined in Figure 15.

A.3 Properties of Pseudorandom Sources

Next, we observe that pseudorandom sources, as introduced in Definition 4 are also unpredictable.

Lemma 23 (Pseudorandom sources are unpredictable). Let Σ be a key material source over Skm ×
Ctx× Aux for Skm ⊆ {0, 1}m, with sample size u. Let A be an adversary against the predictability of Σ,
making at most qPredict(A) queries to oracle Predict. Then there exists an adversary B, running in
approximately the same time as A, such that

Advup
Σ (A) ≤ (qPredict(A) + u2) · 2−m + Advpr

Σ (B).

Hence, any (t, ε)-pseudorandom source Σ is (t′, ε′)-unpredictable for t′ ≈ t and ε′ = ε+ (qPredict(A) +
u2) · 2−m,

Proof of Lemma 23. Adversary B initially receives a vector z of tuples z[i] = (σi, ci, αi), where σi is either
a genuine sample (if the secret bit d in B’s game is 1) or a truly random string (if d = 0). It invokes
adversary A against the unpredictability game in a black-box simulation by handing over all auxiliary
data αi. Whenever A calls its Predict about values (i, σ∗), then B checks if σ∗ = σi or not. Return the
answer to A and continue the simulation. If B in the simulation encounters a match σ∗ = σi at some
point or σi = σj for i 6= j at the beginning, then it outputs 1 as its guess in the pseudorandomness game,
else it returns 0.

Adversary B clearly runs in about the same time as A, and perfectly simulates the unpredictability

game if d = 1 in its own game. Hence, Pr
[

Gpr-1
Σ (B)

]
= Pr [ Gup

Σ (A)⇒ 1 ] = Advup
Σ (A). Furthermore,

Pr
[

Gpr-0
Σ (B)

]
= (qPredict(A)+u2)·2−m, since the secret value σi is sampled independently and uniformly

at random from {0, 1}m in Gpr-0
Σ , such that the probability that there exists the first match in the i-th

query is at most 2−m for each i. Furthermore, the probability of a collision among the random values is
at most u2 · 2−m. Subtracting case d = 0 from case d = 1 gives the bound from the lemma.

A.4 KEM Sources are Pseudorandom

We show that KEM sources are pseudorandom.

Lemma 24 (KEM sources are pseudorandom). Let Σ be a p × s KEM source with sample size u = p · s
and publicly computable auxiliary information for a key encapsulation mechanism KEM with key length m.
Let A be an adversary against the pseudorandomness of Σ. Then there exist adversaries B1, B2 such that

Advpr
Σ (A) ≤ Advind-cpa

KEM (B1) ≤ p · s ·Advind-cpa
KEM (B2),

where B1 is a multi-user, multi-challenge IND-CPA adversary that makes p · s challenge queries to p
users, and B2 is a (classic) single-user, single-challenge IND-CPA adversary.
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Game Gpsv-ke-d
KE,p :

Initialize()

1 d←$ {0, 1} ; s← 0

2 For i = 1 to p do:

3 (pki, ski)←$ KE.KGen()
� generate parties’ key pairs

4 Return (pk1, . . . , pkp)

Finalize(d∗)

5 Return d∗ = d

Run(i, j)

6 s← s+ 1 � increment session counter

7 (Ks, Ts)←$ KE.Run(i, j, pki, ski, pkj , skj) � execute
the key exchange protocol KE between users i and j,
resulting in a session key Ks and transcript Ts

8 Return Ts

Reveal(s)

9 If querieds then: return ⊥
10 querieds ← 1 � mark sth session queried

11 Return Ks � reveal sth session key Ks

Test(s)

12 If querieds then: return ⊥
13 querieds ← 1 � mark sth session queried

14 If d = 1:

15 Then: K ← Ks

16 Else: K ← {0, 1}|Ks|

17 Return K � real-or-random key

Figure 16: Game Gpsv-ke-d
KE,p defining passive key exchange security for a key exchange protocol KE =

(KGen,Run).

Proof. The multi-user, multi-challenge reduction B1 creates p users, obtaining their public keys pki. It then
issues s encapsulation challenge queries against each of them, obtaining real-or-random shared secrets Ki,j
and ciphertexts ci,j . It populates the key material vector z with corresponding entries (Ki,j , (pki, ci,j), αi,j),
using that the auxiliary information is publicly computable. When A outputs its bit guess, B1 forwards
this as its own. Depending on its challenge bit, B1 simulates Gpr-1

Σ or Gpr-0
Σ , establishing the first part of

the bound.
The second part follows via a standard hybrid argument from multi-user, multi-challenge IND-CPA

security to the classic, single-user, single-challenge version.

A.5 Passive Key Exchange Security

Figure 16 formalizes passive key exchange security for a key exchange protocol KE = (KGen,Run), where
KE.KGen() generates a user key pair (pk, sk) and KE.Run(i, j, pki, ski,pkj , skj) executes the key exchange
protocols between two users with identity i resp. j taking their key pairs as input.

B Extendable and Non-extendable Output Functions

Some applications such as TLS 1.3 [57] bind the input key material to its intended output length,
effectively transforming a XOF-KDF to a NOF-KDF. We now provide a formal justification of this
strategy and show that including ` in the label turns a XOF-KDF into a NOF-KDF. We finally argue
that one can turn any NOF-KDF into a XOF-KDF if there is a reasonable upper bound `max on the
output length: simply generate the maximal-size output in each call and truncate to the desired length `.

We will now formalize these definitions and provide proofs for our claims.

Definition 25 (XOF/NOF KDF). Let F be an n-KDF and let (σ1, c1), . . . , (σn, cn) be a tuple of secrets
and contexts generated by the sources in a source collection and let `1, `2 ∈ F.KLout. Let

K1 ← F((σ1, c1), . . . , (σn, cn),L, `1) and

K2 ← F((σ1, c1), . . . , (σn, cn),L, `2)

If `1 ≤ `2 =⇒ K1 4 K2 for all inputs, then we say that F is an extendable-output n-KDF (XOF-n-KDF).
If there exists some inputs and lengths `1 ≤ `2 such that K1 is not a prefix of K2, then we instead call F
a non-extendable output n-KDF (NOF-n-KDF).

The security that we expect from NOF-n-KDFs is slightly stronger than for XOF-n-KDFs. For a
NOF-n-KDF, we require that the output of the function is always indistinguishable from random, even
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given outputs of the KDF on related inputs. For XOF-n-KDFs, this clearly will not be the case due to the
extendable outputs. Hence, we weaken the security notion by imposing more restrictions on the adversary
to obtain XOF KDF security. In the XOF version, we prohibit queries (v,L, ∗) to the Ro$-KDF oracle
that only differ in the output-length compared to previous queries to either the KDF or Ro$-KDF oracle.
Since we expect XOF KDF outputs to be prefixes of each other for such inputs, repeating them across
oracles would trivially allow for distinguishing the outputs. Formally, we have modeled this by leveraging
different freshness requirements reqNOF and reqXOF for NOF-n-KDF and XOF-n-KDF, respectively. Note
that this freshness property alone does not rule out trivial attacks, such as an adversary evaluating the
KDF exclusively on adversarially provided key material. A secure NOF-n-KDF fulfills the predicate reqN
while a secure XOF-n-KDF fulfills the predicate reqX

The following proposition states that any secure NOF-n-KDF is also a secure XOF-n-KDF, whereas
the converse is, in general, not true.

Proposition 26 (NOF-n-KDF-security is strictly stronger than XOF-n-KDF-security).

1. For any n-KDF F, any source collection Σ, any req, and any adversary A we have
Advkdf

F,Σ,reqXOF∧req(A) ≤ Advkdf
F,Σ,reqNOF∧req(A).

2. For any XOF-n-KDF XF with `1 < `2 ∈ KLout and any source collection Σ, there exists an adversary
A such that Advkdf

XF,Σ,reqN
(A) ≥ 1− 2−`1 .

Proof.

1. Note that reqXOF =⇒ reqNOF, because if all entries (v,Li, ∗), (v,Lj , ∗) are distinct for i 6= j
according to reqXOF, then they are distinct, too, when taking the length values `i, `j into account as
required by reqNOF. That is, an adversary that satisfies XOF freshness also satisfies NOF freshness.
Hence for any n-KDF F, source collection Σ, any requirement req, and any A,

Advkdf
F,Σ,reqXOF∧req(A) ≤ Advkdf

F,Σ,reqNOF∧req(A) .

2. Adversary A initializes n keys via oracle NewKey. He then queries oracle Ro$-KDF using the
generated keys in their according positions as mapped by Σ-map associated with Σ. It makes the
two valid queries (v,L, `1) and then again on (v,L, `2) where `1 < `2 ∈ KLout.

Then, it checks whether the first response is a prefix of the second one, and only outputs 1 if this is
the case. Since the queries do not infringe predicate reqN , the adversary always outputs 1 if oracle
Ro$-KDF returns the actual KDF value, and with probability at most 2−`1 if both answers are
random. This yields a distinguishing advantage of 1− 2−`1 .

Note, however, that while any XOF-n-KDF that is secure under reqN is also secure under reqX , this
does not make it a XOF-n-KDF, since it does not exhibit the extendable-output property. Yet, we observe
that any XOF-n-KDF can be turned into a NOF-n-KDF by encoding the output length as part of the
label. Formally, we show that there exists a transform XtoN such that for any secure XOF-n-KDF XF, the
resulting XtoN[XF] is a secure NOF-n-KDF. This transform matches, for instance, the strategy employed
by TLS 1.3 [57] where the desired output length of HKDF becomes part of Hkdflabel. More formally,
the label consists of the length value ` encoded with two octets, the encoding of the constant "tls13 "

followed by context information. Our result for injective encodings thus confirms that this provably turns
the XOF-n-KDF HKDF into a NOF-n-KDF-version.

Definition 27 (XOF-to-NOF transform XtoN). Let XF be a XOF-n-KDF. Then for all inputs
(σ1, c1), . . . , (σn, cn),L, ` and ` ∈ XF.KLout, we let

XtoN[XF]((σ1, c1), . . . , (σn, cn),L, `) := XF((σ1, c1), . . . , (σn, cn), 〈L, `〉, `) ,

where 〈L, `〉 is an injective encoding which ensures that if L 6= L′ or ` 6= `′, then 〈L, `〉 6= 〈L′, `′〉. The
resulting n-KDF XtoN[XF] output length set XF.KLout.

Proposition 28 (XtoN preserves KDF security). Let XF be a XOF-n-KDF and let F := XtoN[XF]. Then
for any source collection Σ and any adversary A against the kdf security of F, there exists an adversary
B such that

Advkdf
F,Σ,reqN∧req(A) ≤ Advkdf

XF,Σ,reqX∧req(B) .

where req can be one of the requirements given in Table 1 or true.
Adversary B has roughly the same running time as A and makes the same number of queries to each

of the oracles.
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Proof. Adversary B runs adversary A, simulating access to the oracles in game Gkdf
F,Σ,reqN∧req as follows.

For oracles NewKey and SetKey, B simply relays the queries to its own corresponding oracles. If A
issues a query with inputs (v,L, `) to oracle Ro$-KDF or KDF, adversary B queries the corresponding
oracle in its game on input (v, 〈L, `〉, `). When adversary A halts and outputs a bit d∗, adversary B also
halts and returns d∗.

This way, B perfectly simulates game Gkdf
F,Σ,reqN∧req for A. Additionally, if the queries issued by A

fulfill requirement reqNOF, then the queries made by adversary B fulfill reqXOF. For this, we observe that
for each query with inputs (v,L, `) by adversary A to oracle Ro$-KDF and each other query to oracle
Ro$-KDF or KDF with inputs (v′,L′, `′), reqNOF means that (v,L, `) 6= (v′,L′, `′), implying that either
v 6= v′, L 6= L′, or ` 6= `′. Thanks to the injectivity of the encoding scheme in the XtoN transform, this
implies that (v, 〈L, `〉) 6= (v′, 〈L′, `′〉), which is equivalent to reqXOF.

Since reqNOF vs. reqXOF is the only difference from reqN to reqX , B wins whenever B wins and hence
Advkdf

F,Σ,reqN
(A) ≤ Advkdf

XF,Σ,reqX
(B). For the (optional) additional requirement req, observe that an

adversary A against Gkdf
F,Σ,reqN∧req must adhere to them in the same way adversary B against Gkdf

F,Σ,reqX∧req.
In combination with the previous observation that B fulfills reqN , this establishes the claim.

The other direction holds conditionally. That is, a NOF-n-KDF F can be turned into a XOF-n-KDF
XF if there exists a reasonable upper bound `max on the output key length. For example, HKDF, despite
being a XOF-n-KDF, returns keys of at most 255 hash outputs such that `max = 255 · hl. The key
derivation functions in NIST’s standard SP800-108 [24], all NOF-n-KDFs, put an upper limit of 232− 1 of
pseudorandom function outputs, but allow applications to enforce smaller upper bounds. The transformed
NtoX[NF] now simply computes NF for length `max and then truncates the result to the required output
length.

Definition 29 (NOF-to-XOF transform). Let NF be a NOF-n-KDF with maximal output length
`max ∈ NF.KLout. Then for all inputs(σ1, c1), . . . , (σn, cn),L, ` where ` ∈ NF.KLout, we let

NtoX[NF]((σ1, c1), . . . , (σn, cn),L, `) := NF((σ1, c1), . . . , (σn, cn),L, `max)[1..`].

The resulting n-KDF NtoX[NF] has output length set NF.KLout.

It is straightforward to see that the transformed function NtoX[NF] adheres to the extendable output
property. For any inputs (v,L, `1), (v,L, `2) for `1 ≤ `2 the first output is a prefix of the second one
since in both cases the function is evaluated for the same input (v,L, `max) and truncates the output to
`1 resp. `2 characters.

Proposition 30 (NtoX preserves KDF security). Let NF be a NOF-n-KDF with maximal output length
`max, and let F := NtoX[NF]. Then for any source collection Σ, any requirements req and any adversary
A against the kdf security of F, there exists an adversary B such that

Advkdf
F,Σ,reqXOF

(A) ≤ Advkdf
NF,Σ,reqNOF

(B) .

Adversary B has roughly the same running time as A and makes the same number of queries to each of
the oracles.

Proof. Adversary B once more runs adversary A, simulating access to the oracles named in game
Gkdf

F,Σ,reqXOF
via its own oracles. Adversary B keeps track of A’s queries to oracles Ro$-KDF and KDF

in lists Q$ and Qr. Whenever A makes a query (v,L, `) to oracle Ro$-KDF or KDF, adversary B first
checks if (v,L, ∗) has been recorded in the correspond list with response K ; if so B returns the `-bit prefix
of this value K . Else, B calls its oracle about (v,L, `max) to get a response K . It stores the query and
the answer in the corresponding list Q$ or Qr and returns the `-bit prefix of K . Adversary B eventually
returns A’s output bit upon termination.

Observe that B perfectly emulates the NtoX[NF] transform. Furthermore, B only queries its oracles
Ro$-KDF and KDF about A’s values (v,L) for the same length parameter `max. Hence, if A adheres to
the requirements reqX , then so does B for requirement reqN . The bound now follows.

If the source collection Σ consists solely of uniform sources, then a more efficient transform exists. The
idea, which already appears in many designs like HKDF, is to generate some fixed-length pseudorandom
output via the NOF-n-KDF and to iterate the NOF-n-KDF sufficiently often to (deterministically)
stretch this pseudorandom value to the desired length. Let κ be the length of the keys in Skm1 ∈ Σ
and let ˆ̀∈ N be some fixed length. To compute XF((σ1, c1), . . . , (σn, cn),L, `), first compute PRK ←
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F((σ1, c1), . . . , (σn, cn),L, κ), then iterate ki ← F((PRK , ε), (0, ε) . . . , (0, ε), 〈L, i〉, ˆ̀) for i = 1 to d`/ˆ̀e,
and then return k1‖k2‖ . . . truncated to ` bits. Note that if one is willing to assume the existence and
availability of a PRF, then the iterated calls to F can be replaced by iterated computations of the PRF
instead.

Specific Transformation for HKDF. Recall that the HKDF expansion function HKDF.Expand com-
putes the output for the pseudorandom key material PRK and the context information c as

T (0) = ε

T (i) = HMAC(PRK , T (i− 1)||c|| [i]1) for i = 1, 2, . . . , N = d`/hle.

where the counter value i is encoded as a single octet. The procedure returns the first ` octets of
T (1)‖T (2)‖ . . . ‖T (N), yielding an extendable output function.

One option to turn HKDF into a non-extendable output function is to use our general result and
include the length parameter ` in the context information c. This route is, for example, taken by TLS 1.3
[57], carefully ensuring that the number of internal hash evaluations for HMAC is still optimal. Another
option, which we suggest here and which is currently not covered by the standard, is to use the empty
label T (0) instead to encode the length parameter (with at most hl characters). That is, define the
expansion step as

T (0) = [`]hl
T (i) = HMAC(PRK , T (i− 1)||c|| [i]1) for i = 1, 2, . . . , N = d`/hle.

Because HKDF requires ` ≤ 255 · hl for the fixed-length encoding of the counter value i, encoding the
length value with hl octets in T (0) is feasible for any practical parameter choices. One can also use shorter
encodings of ` in T (0) if key derivation only requires shorter outputs. The advantage of this method is
that the users do not need to put the length parameter themselves into the context information.

C Proof of Proposition 7 (Eliminating the KDF Oracle)

Proof. For this proof we have to distinguish between non-extendable output KDFs and extendable output
KDFs, characterized by the predicates reqNOF or reqXOF, respectively. As discussed in Section 4.2, the
requirements predicate always contains at least one of the two terms in order to obtain a meaningful
definition.

NOF KDFs. We start with the case where reqNOF is included in req. Assume w.l.o.g. that adversary
A never repeats the same query to oracle Ro$-KDF or KDF. If it did, it would either receive the
same response (for repeated queries to oracle KDF), or violate the NOF freshness condition reqNOF (for
repeated queries to Ro$-KDF). Hence, we can construct an almost as efficient adversary with the same
or higher advantage which does not repeat queries. Furthermore, assume that A does not make any
“unnecessary” queries to oracle KDF for which it already knows all of the input secrets. This is also
w.l.o.g., as A could compute the response to such queries by itself. Finally, we assume that A adheres to
the requirement req, as A would lose the game otherwise. In summary, we assume that all queries to
oracles Ro$-KDF and KDF by A are distinct, contain at least one honest input secret, use all honest
secrets in valid positions, and that there are no dishonest key collisions.

The proof proceeds via a sequence of games G0–G2, where G0 is Gkdf-1
F,Σ,req (that is, the “real” KDF

game). Let G1 be equivalent to Gkdf-0
F,Σ,req (the “random” KDF game), except that oracle KDF also

responds to all valid queries with freshly sampled random strings of the required output length. That is,
in G1, both oracle Ro$-KDF and oracle KDF return random responses. We construct an adversary B1

such that
Pr [ G0(A) ]− Pr [ G1(A) ] ≤ Advkdf

F,Σ,req∧reqNoReal
(B1). (3)

Adversary B1 runs adversary A, acting as the challenger in game G0 and simulates access to oracles
NewKey, SetKey, and Ro$-KDF by relaying the queries to its own corresponding oracles. To
simulate oracle KDF, adversary B1 forwards the query to oracle Ro$-KDF in its own game. This
gives adversary B1 query count qOr(B1) = qOr(A) for Or ∈ {NewKey,SetKey}, and qRo$-KDF(B1) =
qRo$-KDF(A) + qKDF(A). When A halts and returns, B1 halts and returns the same output. Depending
on the bit d in the game played by B1, this simulates either game G0 (if d = 1) or G1 (if d = 0).

By assumption, all of the queries by A satisfy the requirements req, hence adversary B1 also satisfies
req. Furthermore, adversary B1 makes no queries to oracle KDF, thereby satisfying reqNoReal. Hence
Pr[Gkdf-d

F,Σ,req∧reqNoReal
(B1)] = Pr [ G1−d(A) ]. Subtracting case d = 0 from case d = 1 yields Equation (3).
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Next, let game G2 be identical to G1, except that oracle KDF once again returns computations of F
rather than random strings. We construct an adversary B2 such that

Pr [ G1(A) ]− Pr [ G2(A) ] ≤ Advkdf
F,Σ,req∧reqNoReal

(B2). (4)

Adversary B2 acts like the challenger in game G1.
B2 simulates oracles NewKey and SetKey by forwarding the queries to its own corresponding oracles

and and returns their outputs. When receiving queries to Ro$-KDF, B2 returns uniformly random
strings of appropriate length. To simulate responses to KDF queries, adversary B2 forwards them to its
Ro$-KDF oracle and returns the output. When A halts and returns d∗, B2 also halts and outputs the
same bit d∗.

Hence, qOr(B2) = qOr(A) for Or ∈ {NewKey,SetKey}, and qRo$-KDF(B2) = qKDF(A). This way,
adversary B2 simulates game G1 or G2 for A depending on the value of the bit d in its own game. Since
it makes no queries to oracle KDF, B2 trivially satisfies reqNoReal. Furthermore, in order to succeed
adversary A has to satisfy req, which means B2 making the same queries also satisfies req.

Therefore, we obtain Pr[Gkdf-0
F,Σ,req∧reqNoReal

(B2)] = Pr[G1(A)] as well as the equation Pr[Gkdf-1
F,Σ,req∧reqNoReal

(B2)] =

Pr[G2(A)]. Subtracting the two values yields Equation (4).
Combining Equation (3) and (4) with standard rewriting of the definition of Advkdf

F,Σ,req(A), we obtain

Advkdf
F,Σ,req(A) ≤ Advkdf

F,Σ,req∧reqNoReal
(B1) + Advkdf

F,Σ,req∧reqNoReal
(B2) . (5)

Finally, we construct adversary B by running one of B1 and B2 at random, such that

Advkdf
F,Σ,req∧reqNoReal

(B1) + Advkdf
F,Σ,req∧reqNoReal

(B2) = 2 ·Advkdf
F,Σ,req∧reqNoReal

(B) , (6)

with qOr(B) = max(qOr(B1),qOr(B2)) = qOr(A) for oracle Or ∈ {NewKey,SetKey}, qRo$-KDF(B) =
max(qRo$-KDF(B1), qRo$-KDF(B2)) = qRo$-KDF(A) + qKDF(A). Combining Equations (5) and (6) yields
the claim for NOF KDFs.

XOF KDFs. Now we look at the second case where req contains reqXOF. This case works similarly to the
NOF case, but we have to modify the behavior of the reductions to account for the prefix property. It is
important to observe, that while querying the Ro$-KDF with identical inputs but different output lengths
violates the freshness requirement reqXOF, such queries to the “regular” KDF are, in fact, admissible.
For this case, we assume the existence of some maximum length for queries to Ro$-KDF and KDF,
which we call `max(A). While longer queries are possible in theory, the assumption is that no adversary
will execute such a query. As a result, reductions can simulate answers to the oracle KDF by modifying
the length to be `max(A) and then relaying the query to its own Ro$-KDF oracle. The response is then
stored and truncated to the length that was initially requested. For any future queries to Ro$-KDF or
KDF with the same input but a different length, the reductions do not utilize their own oracles, but
truncate the stored values to the appropriate length.

We assume again, w.l.o.g., that adversary A never repeats the same query to oracle Ro$-KDF or
KDF A and does not make any “unnecessary” queries to oracle KDF for which it already knows all of
the input secrets. Additionally, assume A does not query Ro$-KDF or KDF with ` > `max(A), i.e., we
assume that `max(A) is the maximum length value over all of A’s queries (which is upper bounded by the
maximal admissible key length `max of the KDF, but can be smaller).

Once again, we use a sequence of games G0–G2, where G0 is Gkdf-1
F,Σ,req. Let G1 be equivalent to

Gkdf-0
F,Σ,req, except that oracle KDF responds to all valid queries with freshly sampled random strings of the

required output length. That is, in G1, both oracle Ro$-KDF and oracle KDF return random responses
while also respecting the XOF prefix property. Meaning, the output for queries of the type (v,L) are
randomly sampled once for `max(A), but for all following queries with a different length value, the outputs
are prefixes of each other.

We construct an adversary B1 such that

Pr [ G0(A) ]− Pr [ G1(A) ] ≤ Advkdf
F,Σ,req∧reqNoReal

(B1), (7)

Adversary B1 runs adversary A, acting as the challenger in game G0 and simulating access to oracles
NewKey, SetKey, and Ro$-KDF by relaying the queries to its own corresponding oracles. Recall that
repeated queries only differing in length to the Ro$-KDF are disallowed by reqXOF. As such we have to
manually preserve the prefix property for such calls to KDF.

For queries to KDF, that by definition consist of the tuple (v,L, `), B1 first checks, if the same query,

but with a different length, has been made before: (v,L, ∗)
?
∈ Q$ ∪Qr. If this is the case, B1 retrieves the
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response it previously received from its own Ro$-KDF oracle and truncates the value to the requested
length `. Otherwise, B1 modifies the ` input by replacing it with `max(A) and forwards the resulting
query (v,L, `max(A)) to its own Ro$-KDF oracle. It stores the response but returns the `-bit prefix.
This procedure ensures that the freshness property for XOF is achieved while replies consistently exhibit
the XOF property.

This gives adversary B1 query count qOr(B1) = qOr(A) for oracle Or ∈ {NewKey,SetKey}, and
qRo$-KDF(B1) ≤ qRo$-KDF(A) + qKDF(A). When A halts and returns, B1 halts and returns the same
output. Depending on the bit d in the game played by B1, this simulates either game G0 (if d = 1) or G1

(if d = 0).
By assumption, all of the queries by A to both Ro$-KDF and KDF satisfy the provided requirement

req Furthermore, B1 does not query the real KDF oracle KDF, thus additionally satisfying reqNoReal. We
get Pr[Gkdf-d

F,Σ,req∧reqNoReal
(B1)] = Pr[G1−d(A)]. Subtracting case d = 0 from case d = 1 yields Equation (7).

Next, we modify G1 such that the KDF oracle always outputs real values, while the Ro$-KDF oracle
still outputs random values only and call the resulting game G2. Note that G2 is identical to Gkdf-1

F,Σ,req.
Now we construct an adversary B2 such that

Pr [ G1(A) ]− Pr [ G2(A) ] ≤ Advkdf
F,Σ,req∧reqNoReal

(B2), (8)

Adversary B2 acts like the challenger in game G1, but simulates oracles NewKey and SetKey by
forwarding the queries to its own corresponding oracles. For queries to the Ro$-KDF oracle, it samples
a uniformly random string of length `max(A), stores the resulting string, and returns a truncation to the
requested length. If the same (note that “same” in the context of XOF KDFs means the length might be
different) input has already been queried B2 retrieves the corresponding random string it stored earlier
and returns the truncated version. To simulate responses to KDF queries, adversary B2 forwards requests
to its Ro$-KDF.

Eventually, A terminates and outputs a bit b. B2 now evaluates req using the lists k′,Q′$,Q
′
r it

accumulated during A’s execution. If the requirement evaluates to false, B2 return 0, otherwise it forwards
b.

Hence, qOr(B2) = qOr(A) for Or ∈ {NewKey,SetKey}, and we also get qRo$-KDF(B2) ≤ qKDF(A).
B2 now simulates either G1 or G2 depending on the value d in its own game. By modifying the

output length of queries by A to Ro$-KDF and KDF, outputs of B2 also exhibit the prefix property,
which we expect of its answers. Lastly, since no queries to the real KDF oracle KDF are made, B2 also
satisfies reqNoReal.

Combining Equation (7) and (8) with standard rewriting of the definition of Advkdf
F,Σ,req(A), we obtain

Advkdf
F,Σ,req(A) ≤ Advkdf

F,Σ,req∧reqNoReal
(B1) + Advkdf

F,Σ,req∧reqNoReal
(B2) . (9)

Finally, we construct adversary B from B1 and B2 (by running one of them at random) such that

Advkdf
F,Σ,req∧reqNoReal

(B1) + Advkdf
F,Σ,req∧reqNoReal

(B2) = 2 ·Advkdf
F,Σ,req∧reqNoReal

(B) , (10)

with, qOr(B) = max(qOr(B1),qOr(B2)) = qOr(A) for oracle Or ∈ {NewKey,SetKey}, as well as
qRo$-KDF(B),= max(qRo$-KDF(B1), and qRo$-KDF(B2)) = qRo$-KDF(A) + qKDF(A). Combining Equa-
tions (5) and (6) yields the same bound as we have achieved in the case for NOF KDFs.

For the final bound we have to merge the bounds we have shown for the NOF and the XOF case.
Since these are identical, they consitute the claimed bound.

D Deferred Details of Constructions

D.1 Signal X3DH

Lemma 31 (ΣG,p,s,t
X3DH is unpredictable). Let ΣG,p,s,t

X3DH be the DH source underlying X3DH for group G with
sample size u = p2t + p2s + p2st + ps2 for p parties with s sessions and t semi-static keys each, as
described above. Let A1, A2 be adversaries against the multi-challenge unpredictability of ΣG,p,s,t

X3DH , with A1

making only a single query to Predict. Then there exist adversaries B1, B2 against the computational
Diffie–Hellman and gap Diffie–Hellman problem in G, respectively, such that

Advup
Σ (A1) ≤ Advcdh

G (B1) + u2

|G| and Advup
Σ (A2) ≤ Advgapdh

G (B2) + u2

|G| ,

The adversaries B1, B2 have running time roughly the same as A1, A2, respectively, plus O(u), and
qDDH(B2) = qPredict(A2).
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A E E B
(authenticates) (authenticates)

−−−−−−−→ −−−−−−−→
←−−−−−−− ←−−−−−−−
−−−−−−−→ −−−−−−−→
←−−−−−−− ←−−−−−−−

secretA,E transcA,E secretA,E secretE,B transcE,B secretE,B

K ← KDF(secretA,E , transcA,E) K ← KDF(secretE,B , transcE,B)

Figure 17: Unknown key share attack of adversary E on key exchange protocol: B assumes to share the
key K with E but instead shares it with A.

Proof. We leverage the random self-reducibility of CDH and GapDH [51].
For the first case, given the CDH challenge gx, gy, algorithm B1 sets the DH shares making up the

source key material of z[i] at position i as (gx)ri , (gy)si , where it samples and stores ri, si←$ Zq, and
outputs these shares as the auxiliary information to A1. (If any randomizer values collide (i.e., risi = rjsj
for i 6= j), we have B1 immediately abort; by the birthday bound, this happens with probability at most
u2

|G| .) Upon A1’s (single) Predict(i, σ∗) query, algorithm B outputs (σ∗)r
−1
i s−1

i as its CDH solution. If

A1’s prediction was correct, then (σ∗)r
−1
i s−1

i = (gxriysi)r
−1
i s−1

i = gxy, and B1 succeeds.
For the second case, algorithm B2 likewise re-randomizes the GapDH challenge gx, gy to form the key

material vector z (and aborts upon collisions). Upon a Predict(i, σ∗) query by A2, B2 calls its DDH

on the triple ((gx)ri , (gy)si , σ∗). If the answer is 1, B2 outputs (σ∗)r
−1
i s−1

i as its solution, otherwise it
returns win = 0 to A2. If any of A1’s predictions are correct, then B2 succeeds.

E Collision Resistance

We argue here that collision resistance is a desirable security feature of key derivation functions and, thus,
of combiners. This property says that it is infeasible to find distinct inputs for the key derivation function
resulting in the same key. Note that this property does not follow from the pseudorandomness of the key
derivation function. The latter property only ensures random-looking outputs if the key material input
has sufficient entropy. In the collision-resistant setting, however, there may be no entropy in the inputs.
Collision resistance of HKDF.Expand is, for example, explicitly stated as a requirement in the TLS 1.3
standard [57]: “In some of the uses of HKDF in this document (e.g., for generating exporters and the
resumption master secret), it is necessary that the application of HKDF-Expand be collision resistant”.

E.1 Collision Resistance as a Useful Feature

We give an example of why collision resistance is a useful property for key derivation functions. We
discuss this for the case of a plain key derivation function but the idea applies equally to combiners.
Our example is based on implicitly authenticated key exchange protocols and unknown key share (UKS)
attacks [15] (also known as identity-misbinding attacks [47]). In a UKS attack the adversary E aims to
make a party B believe that it shares a derived key with E while it actually shares the key with another
honest party A. A formalization of security against such attacks can be found in [30]: If a session of an
honest party B accepts and the intended (possibly malicious) partner E has authenticated, then there
cannot be any other session for a different honest party A which holds the same session key as B.

The attack is depicted in Figure 17. We assume that in each execution between two parties, only
the left party authenticates (unilateral authentication). The adversary E engages in an execution with
party A, resulting in an intermediate secret secretA,E , like a Diffie-Hellman share, and a communication
transcript transcA,E . We assume that the key derivation function KDF now applies secretA,E with input
transcA,E to derive the session key. The same happens (concurrently, intertwined, or afterwards) on the
right-hand side in an execution between E and party B, yielding a derived key KDF(secretE,B , transcE,B).
The goal of the attacker E is to ensure that both executions end up with the same session key K .

Observe that E actively participates in both executions and may thus influence the inputs to the
key derivation function, potentially being able to force colliding session keys despite different transcripts
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Game Gcr
F :

Finalize((σi, ci)i=1..n,L, `, (σ′i, c
′
i)i=1..n,L

′, `′)

1 Return F((σi, ci)i=1..n,L, `) = F((σ′i, c
′
i)i=1..n,L

′, `′)
∧ ((σi, ci)i=1..n,L, `) 6= ((σ′i, c

′
i)i=1..n,L

′, `′)

Figure 18: Game defining collision-resistance of an n-input KDF F.

transcA,E and transcE,B on both sides. If we now conservatively assume that the key derivation function is
collision resistant then E’s attack strategy is invalidated: It is reasonable to assume that the authenticating
party transmits some identifying information like a certified public key with a unique serial number. Then
the two transcripts must be distinct, and collision resistance of the key derivation function ensures that
the session keys cannot match. Let us finally remark that key exchange protocols may still withstand
UKS attacks even if the key derivation is not collision resistant. But then this must be ensured by the
protocol itself and does not follow immediately from the security of the KDF.

E.2 Definition

We define collision resistance in a straightforward way, bounding the probability of an adversary A
outputting two distinct lists of values(

(σ1, c1), . . . , (σn, cn),L, `
)
6=
(
(σ′1, c

′
1), . . . , (σ′n, c

′
n),L′, `′

)
which the n-KDF F maps to the same key output. Collision resistance applies to both NOF-n-KDF and
XOF-n-KDF key derivation functions. Since there always exists an adversary outputting such collisions,
we follow the human-ignorance approach [58] and bound the probability of a specific adversary finding
such a collision. However, for a reasonable notion, one usually requires that the set KLout of admissible
output lengths ` enforces a non-trivial lower bound.

Definition 32 (KDF Collision Resistance). Let F be an n-KDF. We define the advantage of an
adversary A against the collision resistance of F as

Advcr
F (A) = Pr [ Gcr

F (A) ] .

E.3 Examples

We consider here the previously investigated examples in light of collision resistance. One may suspect
that HKDF-based constructions inherit collision resistance from the underlying hash function, and this
is indeed true if one restricts S inputs to fixed lengths (see also [33]). Blockcipher-based constructions
like the ones based on CMAC are, in general, not collision-resistant, as we explain for the case of the key
derivation function in Bluetooth Low Energy. As for our new constructions, the information-theoretical
one is provably not collision resistant. For the blockcipher-based construction, the question remains open.

HKDF. Recall from the analysis of the proposed ETSI-CatKDF in Section 5.3 that HMAC and thus HKDF
is not collision resistant. Any short or long salt value S in the extraction step HKDF.Extract(S, σ, ) =
HMAC(S, σ) is either padded with 0-bytes or hashed first:

PoH(S) :=

{
S‖(0x00)B−|S| if |S| ≤ B

H(S)‖(0x00)B−hl otherwise.

Collisions like S and S′ = S‖0x00 for short values S with |S| < B, and S and S′ = H(S) for values S with
|S| > B can easily be constructed. This means that one needs to put further restrictions on inputs used
as the key in HMAC, for example, only allowing fixed-length inputs or always hashing the data first.

For HKDF, the HMAC properties directly translate into HKDF being collision resistant if and only
if salts are either fixed-length or strictly longer than block-length B bits. To see this, observe that
HKDF.Extract(S, σ) = HMAC(S, σ) maps inputs S and σ to a unique pseudorandom key PRK (unless a
collision occurs in HMAC). This pseudorandom key is then used in HKDF.Expand(PRK , c, `), iterating
T (i) = HMAC(PRK , T (i − 1)||c||i) for T (0) = ε and counter i = 1, 2, . . . represented as a fixed-length
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octet. Once more, unless one finds a collision in the underlying hash function, all outputs T (i) are unique
if PRK and c are different. In summary, any collision (σ, S, c) 6= (σ, S, c) for “feasible” salts S, S′ yields
a collision for the underlying hash function H in HMAC. This holds also for varying length parameters
`, since for identical (σ,S, c) = (σ′,S′, c′) but different length inputs ` 6= `′ HKDF produces outputs of
different length, which cannot collide.

MLS PSK combiner. The MLS n-KDF for PSK combination from Figure 5 is collision resistant if the
hash function H underlying HMAC is. For distinct values pski, the extracted values psk extractedi must
be distinct (since HMAC is applied in a collision-resistant way). Hence for distinct values (pski, ci,L) 6=
(psk′i, c

′
i,L
′), we also have that the derived values differ, psk inputi 6= psk input′i (except for an HMAC

collision and thus a H collision). Finally, distinct psk inputi values being folded into the final psk secretn
output also do not collide, except if an HMAC collision occurs.

ETSI-CatKDF. Let us now look into ETSI-CatKDF, which computes the key as HKDF(secret,L, fcontext, `).
Note that fcontext = f(c,MA,MB) encodes the input tuple (c,MA,MB) injectively. In contrast, the
source key material secret = psk||k1|| . . . ||kn simply concatenates the provided sub keys, with psk being
potentially the empty string. The standard does not specify that the number of sub-keys is fixed, nor that
the length of the keys is. We thus state this explicitly as a requirement to achieve collision resistance:

1. Labels L in ETSI-CatKDF shall be of fixed length.

2. The number n of sub keys ki and their individual lengths must be fixed.

Under these stipulations, all inputs to HKDF are unique. It follows that protocol ETSI-CatKDF is
collision-resistant due to the collision resistance of HKDF.

Signal X3DH. Signal’s key derivation function is generally not collision resistant since the context
information does not enter the key derivation. If we assume that all context values ci are always empty,
then Signal inherits collision-resistance from HKDF. It merely inserts the concatenated key material
values and constants, especially the all-zero salt, into the computations such that collision resistance of
the underlying hash function ensures that distinct inputs are mapped to distinct outputs.

Blockcipher-based key derivation in Bluetooth Low Energy. The Bluetooth Low Energy
[16] key derivation function, denoted as f5, takes as input the 256-bit x-coordinate W of an elliptic-curve
Diffie-Hellman share, computed jointly by the two parties during Secure Simple Pairing, and first computes

T = CMAC(S,W )

for the constant 128-bit salt S = 0x6C888391 AAF5A538 60370BDB 5A6083BE. Here, CMAC is the AES-
CMAC algorithm according to RFC 4493 [62]. The algorithm computes a CBC-MAC for the all-zero
initialization vector IV = 0128, where the last message block is first xored with sub key K1 if it is full
block length resp. padded with 10j and xored with sub key K2 if it is not aligned to block length. The
sub-keys are derived from the AES key K (the details are irrelevant to us here). More concretely, let
M = M1||M2|| . . . ||Mn with Mi ∈ {0, 1}128 for i = 1, 2, . . . , n−1 and Mn ∈ {0, 1}≤128. Set M ′n = K1⊕Mn

if |Mn| = 128 and M ′n = K2 ⊕Mn||10|Mn|−1 if |Mn| < 128. Then

CMAC(K,M) = AES(K,M ′n ⊕ yn−1)

where y0 = 0128, yi = AES(K,Mi ⊕ yi−1) for i = 1, 2, . . . , n− 1.

In the second step, one computes two keys, one for message authentication during the Secure Simple
Pairing, and one as the session key. Here we only consider the derivation of the session key (with prefix
0x01 instead of 0x00 for the MAC key):

k = CMAC(T, 0x01||keyID||N1||N2||A1||A2||0x0100)

where keyID = 0x62746C65 is the 32-bit ASCII representation of the string ’btle’, N1, N2 are the 128-bit
nonces exchanged in the Secure Simple Pairing, and A1, A2 are the 56-bit encodings of the Bluetooth ad-
dresses of the involved parties. Hence, the overall input length equals 424 bits, yielding four AES evaluations
for inputs M1 = 0x01||keyID||N1[1..88], M2 = N1[89..128]||N2[1..88], M3 = N2[89..128]||A1||A2[1..32]
and M4 = A2[33..56]||0x0100||1087.

The Bluetooth Low Energy key derivation is not collision-resistant due to the deployment of the
block cipher. We can use the idea of the BlueMirror reflection attack on Bluetooth [25]—which considers
mirroring the data sent by an honest user and thus does not touch collision-resistance immediately. An
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adversary can first pick regular data W,N1, N2, A1, A2 and then computes T (with sub-keys T1, T2) and
the session key k according to the scheme. In particular, the result of the first block in the computation
equals y1 = AES(T, 0x01||keyID||N1[1..88]). Let y2, y3, y4 denote the other intermediate blocks. Then
the adversary picks a fresh W ∗ 6= W , and computes T ∗ with sub-keys T ∗1 , T

∗
2 . It now computes

y∗1 = AES(T ∗,M1) and then “backwards” y∗3 = AES−1(T ∗, y4)⊕T2 ∗⊕M4, y∗2 = AES−1(T ∗, y∗3)⊕M3, and
M∗2 = AES−1(T ∗, y∗2)⊕y∗1 . The adversary sets N∗1 [89..128]||N∗2 [1..88] = M∗2 , and otherwise N∗1 , N

∗
2 , A

∗
1, A

∗
2

coincide with the values N1, N2, A1, A2. In particular, the adversary only needs to adapt the input block
M∗2 , but the other input blocks M1,M3,M4 remain identical. If one now computes the values in
forward direction for T ∗ then y∗1 = AES(T ∗,M1), y∗2 = AES(T ∗,M∗2 ⊕ y∗1), y∗3 = AES(T ∗,M3 ⊕ y∗2) and
y∗4 = AES(T ∗,M4 ⊕ y∗3 ⊕ T ∗2 ) = y4. Hence, the adversary is always able to find a collision.

Our blockcipher-based construction. Recall that we apply the blockcipher BC first via

k ← BC(σ1,BC(σ2,BC(σ1, 0
bl))

to compute a key, and then call the volPRF Expand for inputs k and (c1, c2), L and `. Even if we assume
collision resistance of the function Expand, then this implies that the only chance to find an input collision
is to make two distinct key pairs (σ1, σ2), (σ′1, σ

′
2) collide to yield the same value k. We are not aware if

this task is feasible for the chain evaluations of the blockcipher, and leave this as an open question.

Our Information-theoretically secure construction. The information-theoretically secure con-
struction is certainly not collision resistant. Given arbitrary inputs (σ1, c1), . . . , (σn, cn),L, ` and (σ′1, c

′
1), . . . ,

(σ′n, c
′
n),L′, `′ with ` = `′, one can set the information-theoretic part σits

n
′

in σ′n to

σits
n

′ ← σits
n ⊕ F((σ1, c1), . . . , (σkdf

n , cn),L, `)

⊕ F((σ′1, c
′
1), . . . , (σkdf

n

′
, c′n, ),L

′, `′)

such that the outputs of both evaluations collide.
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