

Préparée à Inria Paris

A Verification Framework

for Secure Group Messaging

Soutenue par

Théophile Wallez

Le 24/06/2025

Ecole doctorale n° 386

Ecole Doctorale de Sciences

Mathématiques de Paris-

Centre

Spécialité

Informatique

Composition du jury :

Cas, CREMERS

Professor, CISPA Rapporteur

Stéphanie, DELAUNE

Directrice de recherche, CNRS Rapportrice

Joel, ALWEN

Chief Cryptographer, AWS Wickr Examinateur

Céline, CHEVALIER

Maîtresse de conférences, ENS - PSL Examinatrice

Véronique, CORTIER

Directrice de recherche, CNRS Examinatrice

Bruno, BLANCHET

Directeur de recherche, Inria Paris Directeur de thèse

Karthikeyan, BHARGAVAN

Chief Research Scientist, Cryspen Co-Directeur de thèse

Jonathan, PROTZENKO

Principal Researcher, Microsoft Azure Research Co-Directeur de thèse

Abstract

Messaging applications are nowadays pervasively used to communicate with each other, in particular using
group conversations to connect people within a social circle. This is a potential threat for privacy, for example
if the messaging application servers were to have access to the conversation content. To address this issue,
modern messaging applications provide end-to-end encryption, meaning that messages are encrypted by the
sender device and decrypted by the receiver device, so that their content stays hidden from the messaging
application servers. Such end-to-end encryption is a feature of cryptographic protocols, whose design is
notoriously error-prone. This begs the following question: are secure messaging applications actually secure? In
this thesis, we develop a novel methodology to analyze the secure group messaging protocol Messaging
Layer Security (MLS) by using formal methods on bit-precise specifications in the symbolic model, and
ultimately helped to fix design flaws in MLS before its standardization.

The first axis of this thesis is developing tools to analyze cryptographic protocols, on bit-precise specifications.
To handle the complexities exhibited by MLS, such as dynamic group size or recursive data structures, we
present several key improvements to DY∗, a symbolic analysis framework written in the F∗ proof assistant.
To write bit-precise specifications of cryptographic protocols and handle their precise message formats, we
introduce Comparse, a tool to specify and prove properties on message formats in F∗. In the process, we
study the broad class of message formatting attacks, and derive criteria cryptographic protocols should obey to
avoid such attacks.

The second axis of this thesis is applying the tools we developed on MLS. We present a novel modularization of
MLS to decompose it into three sub-protocols, thereby allowing us to analyze each sub-protocol independently.
We then analyze and produce a machine-checked proof for two out of three sub-protocols, TreeSync
and TreeKEM. Our specification for MLS is bit-precise, executable and interoperable with other MLS
implementations. During our analysis, we found several design flaws and proposed fixes to the Working
Group in charge of its design at the Internet Engineering Task Force (IETF), which were integrated in the
MLS standard.

Résumé

Les applications de messagerie sont de nos jours utilisées de façon généralisée pour communiquer, en
particulier en utilisant les conversations de groupe pour relier les personnes d’un cercle social. C’est une menace
potentielle pour la vie privée, par exemple si les serveurs de l’application de messagerie ont accès au contenu
des conversations. Pour résoudre ce problème, les applications de messagerie modernes fournissent du
chiffrement de bout en bout, ce qui veut dire que les messages sont chiffrés par l’appareil de l’expéditeur et
déchiffrés par l’appareil du destinataire, de manière à ce que les serveurs de messagerie ne puissent pas
connaître le contenu des messages. Un tel chiffrement de bout en bout est de façon plus générale un protocole
cryptographique, dont la conception est notoirement sujette aux erreurs. Cela soulève la question suivante:
les applications de messagerie sécurisée sont-elles réellement sécurisées ? Dans cette thèse, nous développons
une nouvelle méthodologie permettant d’analyser le protocole de messagerie de groupe Messaging Layer
Security (MLS) en utilisant les méthodes formelles sur des spécifications précises à l’octet près dans le
modèle symbolique et, ultimement, nous aidons à corriger des problèmes de conception dans MLS avant sa
standardisation.

Le premier axe de cette thèse est le développement d’outils d’analyse de protocoles cryptographiques, sur des
spécifications précises à l’octet près. Pour traiter les complexités liées à MLS, telles que la taille dynamique
des groupes ou l’utilisation de structures de données récursives, nous présentons de multiples améliorations
essentielles à DY∗, un cadriciel d’analyse symbolique écrit dans l’assistant de preuve F∗. Afin d’écrire des
spécifications de protocoles cryptographiques précises à l’octet près et capturer précisément leurs formats de
message, nous introduisons Comparse, un outil pour spécifier et prouver des propriétés sur des formats de
message en F∗. Dans le processus, nous étudions la large classe des attaques exploitant les formats de message
et dérivons divers critères que les protocoles cryptographiques doivent suivre afin de résister à de telles
attaques.

Le second axe de cette thèse est l’application des outils que nous avons développés sur MLS. Nous présentons
une nouvelle modularisation de MLS pour le décomposer en trois sous-protocoles, ce qui nous permet de les
analyser de manière indépendante. Ensuite, nous analysons et produisons une preuve vérifiée par ordinateur
pour deux sur trois sous-protocoles, que nous avons nommés TreeSync et TreeKEM. Notre spécification de
MLS est précise à l’octet près, exécutable et intéropèrable avec les autres implémentations de MLS. Durant
notre analyse, nous avons trouvé plusieurs défauts de conception et nous avons proposé des corrections au
groupe de travail en charge de la conception de MLS à l’Internet Engineering Task Force (IETF), qui ont été
intégrées au standard de MLS.

Acknowledgements

Traditionally, this section of thesis manuscript contains multiple variants of “this thesis wouldn’t have
been possible without X”. Unfortunately, I really enjoy noticing the “butterfly effect” on my own life, so I
will first go through the random facts of life that led me to do this PhD, before jumping into the proper
acknowledgements.

I couldn’t have done this PhD without my parents, first for the obvious reason that without them, I wouldn’t
have been born in the first place, second because they were prominent in providing me cultural heritage,
especially about science and mathematics (e.g. I vividly remember being explained as a kid how a mentalist
managed to guess a number in the head of people in the crowd, ultimately explaining why 2𝑥+8

2 − 𝑥 simplifies
to 4, although we would learn algebra with unknown variables only several years later in school). My brother
definitely played a role in leading me to program during my childhood, first by showcasing how cool it was
to write computer programs through a series of world-class games, such as “Bob the fish” where you would
shoot bubbles at jellyfishes (only writing these lines I realize, fishes in real life don’t make any bubbles??) or
the “Jeu du chasseur” where you would hunt rabbits (while being extra careful around the ninja rabbits that
throw shurikens, of course); and maybe more importantly when before going to a dentist appointment he sat
me in front of his computer and showed me a tutorial on writing HTML code (on “Le site du Zéro”, RIP in
peace). I really enjoyed it, it was 20 years ago when I was 9 (time flies) and haven’t stopped programming
since then. I don’t know how my current life would look without this single event, would I eventually have
started programming at some point anyway, or not? Fast-forward to the “classes préparatoires”, I must
warmly thank my mathematics teachers Romain Bondil and Michel Alessandri, who taught me how to do
rigorous mathematical proofs for the first time in my life, as well as my physics teacher Véronique Chireux,
who, although I kind of sucked at physics, was an excellent mentor during these years. Altogether, they in a
way gave birth to the scientist in me. Fast-forward again during my Master’s degree, I would encounter a
blog post by Denis Merigoux on using SMT solvers on tax code to automatically find corner cases in the law.
That looked fun, so when I would look for a research internship, I sent him an email, to which he answered
something along the lines of “too late, I already have an intern, but since I see you have background on
computer security and formal verification, ask my advisor Karthikeyan Bhargavan for an internship!” I didn’t
know this guy, neither did he know me, but still, I did my research internship with him, and eventually
continued into a PhD. One of the reasons I continued into a PhD is because the lab environment was especially
friendly, and for that I must warmly thank Denis, who in addition to his email-forwarding abilities made
outstanding efforts to make me feel included in the team during Covid times despite the work-at-home policy,
although we barely knew each other. Finally, last but not least, the fact that I did this PhD is certainly helped
by the fact that I am a white cis male born in a family full of engineers, teachers and doctors, in a country that
is wealthy thanks to its colonization past. Of course, these five attributes about myself are not enough for me
to do a PhD, but statistics show that each of these five attributes improve the probabilities I start and succeed
through a PhD, because of the privileged position they incur to me in our society. I find it is important to
acknowledge this.

The paragraph above summarizes the random events in life that led me to start this PhD in this area of research,
now, onto the people who played a role during the PhD itself. I am deeply grateful to my PhD advisors,
Karthikeyan Bhargavan and Jonathan Protzenko, I really couldn’t have dreamed of better supervision for
my PhD as they both consistently provided excellent advices, both on the short term and the long term,
always finding the perfect balance between allowing myself to get distracted and putting me back on tracks
when it was needed. I don’t know if a single human being can tick all the boxes to be a perfect advisor, but
I know that together, this duo did tick all the boxes. Special mentions to Karthik, who developed striking
creativity in finding places to meet, be it online, in a café, in an art gallery, in the Paris Métro (in three different
lines), in his house (in three different countries), or in a {French, Indian} restaurant in {France, India} (all four
possibilities), as well as a PMU (a widespread chain of working-class bars in France, also better known to
feature gambling on horse races), and last but not least, in his office while other colleagues left for lunch,
apparently a prominent time of the day to have deep discussions about my long-term future (thankfully,
gathering his wisdom was certainly worth postponing the lunch). Special mentions to Jonathan, who I met
online almost every week of my PhD (despite the 9 hours of timezone that separated us), of course to discuss
science, but also, among other things, to get opinions on hiking gear, gather precious knowledge about

Chartreuse or even learn new references to “La Classe américaine” (now I think about it each time I eat
chocolate mousse). A truly enjoyable moment, every week, where you additionally gather insights to progress
in your thesis, what else can you ask for? But I should probably stop my praise here, as I also learned during
these weekly meetings, “la flatterie ne me mènera nulle part”. So I will instead praise Laptop, Jonathan’s
big hairy orange cat, who would sometimes intrude during our meetings, and whose magnificence would
shatter ability to speak unless I made the conscious effort to would look somewhere else. After noticing this
phenomenon, Jonathan began to send me photos of Laptop upon showing progress in my thesis, this was
extremely effective, so I guess we can say that Laptop was my muse during this PhD. Note that Karthik and
Jonathan were not my only PhD advisors: the careful reader would have noticed that the front page also
mentions Bruno Blanchet, who had to take over the administrative works when Karthik left for a sabbatical. I
have to thank Bruno for taking over this unpleasant burden, but also for carefully answering my scientific
questions when I had some for him, be it on cryptography, on the subtleties of the symbolic model or on the
inner workings of ProVerif. In the lab, Bruno was not the only victim of my questions, and I must also thank
Adrien and Charlie for taking the time to answer numerous the questions I had about cryptography in the
computational model, although it is not strictly in the scope of my PhD, I feel having knowledge in this area
definitely helped me to grow in the field of cryptography. The person I definitely spent the most time with is
Son, with whom I not only shared an office during most of my PhD, but also had an excellent trip to India
when Karthik kindly invited us to visit him there, always patiently bearing with my silliness, such as getting
extra dirty from climbing a tree hours before going to one of the fanciest restaurants of Delhi (although we
certainly stood out with our hobo-looking clothes and our squeaky shoes, it is still today among the best
restaurant experiences I had). I really wish we had time to work on the symbiotic project of using your tools
to verify an MLS implementation in Rust against my verified specification, but as always, research projects
take more time we initially expect. Finally, Son would regularly remind me that my own struggles with my
PhD were not that bad, by shouting in the office (yes, of course with a very soft voice) something along the
lines of “oh, mais c’est insupportable !” When Son left for his post-doc, he was replaced with Vincent, who
happened to make different kind of noises by quietly playing the soft music of FIP on a speaker (best radio
ever). My PhD wouldn’t have been the same without Aymeric (also known as “MC Fromherz” since his
impressive delivery on rap songs in Japanese karaokes), a true genius, although sometimes misunderstood
(seriously, in what universe is it a good idea to dip cookies into beer?) Even more impressive is his ability to
find bad puns in every possible scenario (“pain pont”), so that it feels at least 10% of his brain is devoted to
this task; thankfully this sometimes leads to actual good puns by pure accident (“c’est fâcheux”). I am lucky
to have met Lucas during my PhD, first because he is an extremely nice person, second because his hacking
skills are beyond my understanding, and third because he is easily nerd-snippable; these three properties
were quite useful during my PhD, should a feature be missing in F∗, I would only need to complain about
it during a break, and a pull request would appear the next day, authored by the mighty W95Psp. Truly
amazing. Conversely, I myself was nerd-sniped by Louis, who kindly brought puzzles to the lab, or as he said,
“nerd traps”, and Louis also sniped me with arrows when playing Towerfall late in the afternoon (although
the frequent games allowed me to progress and fight back!) Finally, I have to thank every other person that
worked at Prosecco during the time of my PhD, I will not risk myself into trying to write an exhaustive list,
but you all contributed to the great atmosphere that motivated me to go work on-site every day.

There are also many people outside the lab I wish to thank. First, I am deeply grateful to Cas Cremers and
Stéphanie Delaune, who agreed to carefully read this manuscript, as well as Joel Alwen, Céline Chevalier
and Véronique Cortier who agreed to be on the jury and patiently listen to a 45-minutes long monologue
about my thesis. I need to acknowledge everyone in the MLS Working Group at the IETF, as my PhD required
to regularly interact with them, and although it was certainly scary to the young PhD student I was at the
beginning, they were eventually extremely nice people who took the time to thoroughly discuss my pull
requests and accept my ideas when they were agreed to be good, while still challenging them when it was
needed, allowing me to refine my arguments and mature my thoughts. Every year of my PhD was punctuated
with traveling to the Real World Crypto Symposium, it is in my heart one of the best events of the year and I
warmly thank all the people in this community who make this event so special.

As the proverb goes, “all work and no play makes Jack a dull boy”, and I need to thank all the people with
whom I did non-PhD-related things, allowing myself to keep my sanity. First I need to thank my family, who
in addition to make me who I am today (as written earlier) are still constantly there in my life; it really eases
the mind to know that I can rely on your support whatever happens in my life. Big up to my brother who, 20
years later, is still a source of inspiration, plus, life wouldn’t be the same without the weekly chocolatine
hunting followed by the well-stirred coffee brewed in a space rocket. Thank you to all the friends of ENS (&

co) who kept close contact with me during these years, such as Luc (aka “l’artiste des plans foireux”), Pablo
(the gardener of formal logic), Paul-Nicolas (the only guy on earth who is actually passionate about CI??) and
Thibaut (I’m glad you are still alive despite your apparent lack of self-preservation instincts); as well as friends
who kept regular contact with me (less frequently, but still highly enjoyable), such as Béranger, Camille,
Erkan, Étienne, Louise, Lucas, Mathieu, Michele, Samuel, Simon and Théophile. Another saying is “a healthy
mind in a healthy body”, so I need to thank all the friends who I practice parkour with, such as Christophe,
François, Guillaume, Marie, Mathilde, Mathilde (another one!), Nicolas, Pierre-Alain, Rubing and Thibaud. I
would not have been able to practice parkour without my physiotherapist Larissa, who patiently repaired the
various injuries I had (editor’s notes: mostly stemming from a bicycle accident, not from practicing parkour).
Although my PhD was already filled with trees (sync, kem and dem), I am glad to have met the Parisian free
solo tree climbing community, in particular Garance and Hubert, the driving forces of the group, this has
been a huge amount of fun, and I cannot forget the amazing views we had on Paris from the top of oak trees.
My daily life was punctuated by the practice of piano, and for that I warmly thank my piano teacher Marion
who allowed me to progress faster than I could fathom. Another source of fun in my life has been to try-hard
baking french pastries, and I could not have learned this skill without Simon and Théophile (yes, another
one). Speaking of baking, I am grateful for the Matfer Bourgeat brand of kitchen ustensils, they are truly the
greatest and an immense joy to use every day (I really couldn’t have guessed that a bowl scrapper could be
this great). Finally, I need to thank the public radio FIP that brings me great (although sometimes surprising)
music every day of my life, and especially the program “Transe Fip Express” as well as the program “[DEEP]
Search” by Laurent Garnier. I am really glad that my taxes pay for this kind of service.

Contents

1 Introduction 1

1.1 Cryptography and secure messaging . 1
1.2 Rigorous mathematical proofs . 9
1.3 Machine-checked analysis of cryptographic protocols . 12
1.4 This thesis . 13

Developing tools and proof techniques for symbolic analysis at scale 16

2 DY
∗
: Security proofs in the Dolev-Yao model, using F

∗
(background) 17

2.1 Background on symbolic analysis . 17
2.2 Symbolic analysis with DY∗ . 20
2.3 Security proofs with DY∗, an example . 41

3 DY
∗
: Security proofs in the Dolev-Yao model, using F

∗
(contributions) 48

3.1 Modular protocol invariants . 48
3.2 Renovating the label construction . 56
3.3 Making labels erasable . 63
3.4 Making key usage an invariant . 67
3.5 Quality of life and proof engineering . 69
3.6 Conclusion . 74

4 Comparse: Provably Secure Formats for Cryptographic Protocols 75

4.1 Introduction . 75
4.2 The Essence of Secure Formats . 78
4.3 Verified Formats in F∗ . 84
4.4 Verified Formats for TLS and cTLS . 91
4.5 Embedding Comparse in DY∗ . 95
4.6 Discussion . 98
4.7 Related work . 99
4.8 Conclusion . 101

The Messaging Layer Security protocol, and its security analysis in the symbolic

model 102

5 TreeSync: Authenticated group synchronization 103

5.1 Introduction . 103
5.2 MLS: TreeKEM, TreeDEM, and TreeSync . 106
5.3 A Formal Specification of TreeSync . 109
5.4 A security proof of TreeSync . 116
5.5 Implementation . 123
5.6 Impact . 125
5.7 Related Work . 126
5.8 Conclusion . 127

6 TreeKEM: Efficient continuous group key establishment 129

6.1 Introduction . 129
6.2 The MLS TreeKEM Protocol . 132
6.3 An executable specification of TreeKEM . 139

6.4 A security theorem for TreeKEM . 142
6.5 Proof methodology . 147
6.6 Discussion . 151
6.A Lack of epoch authentication in Welcome . 153

Final words 154

7 Related work 155

7.1 Analysis of MLS . 155
7.2 Computer-aided analysis of messaging protocols . 157
7.3 Analysis of executable specifications . 157
7.4 Tools for analyzing cryptographic protocols . 158

8 Conclusion 159

8.1 Impact on MLS . 159
8.2 Insights for Protocol Design and Analysis . 160
8.3 Limitations and Future Work . 161

Bibliography 162

List of Figures

1.1 A scytale. 1
1.2 Caesar cipher. 2
1.3 Example of using Caesar cipher. 2
1.4 Forward secrecy diagram. 6
1.5 Post-compromise security diagram. 6

2.1 The index function, with refined types. 19
2.2 Trace property using refined types. 19
2.3 Definition of symbolic bytes in F∗ . 23
2.4 Definition of the trace in F∗. 25
2.5 Semantics of Bb. 25
2.6 Semantics of Pbb. 25
2.7 Semantics of �P. 26
2.8 The “fresh randomness” constructor of bytes. 26
2.9 Definition of the trace monad. 26
2.10 Generic Later inference rule . 26
2.11 Semantics of attacker knowledge . 27
2.12 Example instances of the Att-F rule, for symmetric encryption and decryption. 27
2.13 Monotonicity lemma for the attacker knowledge . 27
2.14 Inference rules for labels . 30
2.15 Type in F∗ for key usages. 33
2.16 Computing key usages, in F∗. 34
2.17 The “later” rule for bytes invariant. 34
2.18 Every cryptographic function must preserve publishability. 34
2.19 The bytes invariant has the rough shape of an induction principle. 35
2.20 The bytes invariant ensures that we use keys with correct usage. 35
2.21 The bytes invariant ensures that plaintexts are less secret than keys used to encrypt them. . . . 35
2.22 The bytes invariant ensures that participants only sign messages that satisfy some (user-provided)

predicate. 36
2.23 Bytes invariant rules for AEAD encryption and decryption. 36
2.24 Implementation of the bytes invariant in F∗. 37
2.25 Trace invariant when sending a message. 37
2.26 Trace invariant when storing state. 38
2.27 Trace invariant when logging custom protocol event. 38
2.28 Trace invariant when generating fresh randomness or compromising principals. 38
2.29 The Attacker Knowledge Theorem. 38
2.30 Example of a protocol secure in the symbolic model, but easily broken in the real world. 40
2.31 Signed Diffie-Hellman key exchange, borrowed from [65]. 42
2.32 Various types we define in F∗ to represent the objects manipulated by the SignedDH specification. 43
2.33 Specification in DY∗ of the server protocol step depicted in Figure 2.31. Only slightly simplified. 43
2.34 The client forward secrecy theorem for SignedDH, in DY∗. 45
2.35 The event invariant of SignedDH. 46
2.36 The signature predicate of SignedDH. 47

3.1 Type for signature predicate, and protocol trace invariant blueprint. 48
3.2 Example of global invariant that dispatches to local invariants using key usages. 49
3.3 Example of global invariant that dispatches to local invariants using a domain separator. . . . 49
3.4 Example of local invariants list for Figure 3.2. 51
3.5 Specification of our simplified HPKE model. 52

3.6 Compilation of a global HPKE predicate to a local AEAD predicate. 53
3.7 Graphical depiction of the cryptographic invariants required by HPKE. 54
3.8 Graphical depiction of the protocol invariants required by TreeKEM. 54
3.9 The F∗ types of the various ingredients to build labels. 56
3.10 Inductive type for labels. 57
3.11 Definition of labels in DY∗ . 58
3.12 Example of labels as trace predicates . 58
3.13 Storing label in fresh random bytestring constructor. 59
3.14 The trace type with labels as trace predicates. 59
3.15 The new definition of can_flow, with labels as trace predicates. 59
3.16 Precise label for a signature private key of principal p corresponding to the public verification key

vk. 60
3.17 Implementation of guard. 60
3.18 Implementation of event_label. 61
3.19 Implementation of unbounded join. 61
3.20 Storing label in fresh random bytestring constructor. 63
3.21 The new bytes type, without label or usage: just time of generation, and length. 64
3.22 Modification of get_label to fetch the label in the trace. 64
3.23 Well-formedness predicate on bytestrings. 65
3.24 Various lemmas to reason with well-formedness. 65
3.25 New type of label to represent an indirection, and corresponding modification of is_corrupt. . . 65
3.26 Type of a function has_label. 66
3.27 The hierarchy of protocols invariants, and various invariant-related functions. 71
3.28 Example code of typeclasses in a functional language that has no native support for typeclasses. 71

4.1 Translation of TLS 1.3 ClientHello in F∗. 84
4.2 The Handshake message format, as defined in TLS 1.3 [75]. 87
4.3 A common format for TLS 1.0-1.2 signature inputs [91, 93]. 92
4.4 Compression templates for Compact TLS 1.3 . 93

5.1 Diagram representing TreeKEM . 106
5.2 Diagram representing an MLS tree. 112
5.3 Implementation of the apply_path function. 114

6.1 A Modular Treatment of Messaging Layer Security: TreeSync, TreeKEM, and TreeDEM 130
6.2 Evolution of a group’s tree in TreeKEM. 134
6.3 Cryptographic operations performed during A’s path update in Figure 6.2b. 134
6.4 Cryptographic operations performed in the key schedule of TreeKEM and Welcome. 137
6.5 Implementation of the decrypt_path_secret function, simplified. 141

List of Tables

2.1 Some numbers on the SignedDH security proof in DY∗. 47

4.1 Evaluation over a set of protocol case studies. 98
4.2 Related features of other verified parser frameworks. 99

5.1 Verification and coding effort for MLS. 123
5.2 Performance comparison between this paper and two other implementations of MLS. 124

Introduction 1

1.1 Cryptography and secure

messaging 1

1.2 Rigorous mathematical

proofs 9

1.3 Machine-checked analysis

of cryptographic protocols 12

1.4 This thesis 13

This thesis lies at the intersection of two research areas: cryptography,
and computer-checked mathematical proofs. In this section, we will first
introduce the cryptographic and mathematics concepts relevant to this
thesis (§1.1 and §1.2), then, show how these two research areas intersect
(§1.3), finally, describe the goal of this thesis (§1.4).

1.1 Cryptography and secure messaging

It would be a cliché to start this dissertation with “since the dawn of
humanity, mankind had the desire to ensure confidentiality of its com-
munications”. However, as we shall see, the concept of secure messaging
traces all the way back to the Roman Empire and Ancient Greece.

1.1.1 Pre-computer cryptography

Anyone, from the most clueless amateur to the best cryptographer, can
create an algorithm that he himself can’t break.

Bruce Schneier, “Memo to the Amateur Cipher Designer”, 1998

Although “cryptography” nowadays rhymes with “computer”, humans
didn’t wait for the advent of computers to use cryptographic techniques.
A recurrent scenario is the following: a military general wants to send a
message to another military general, but fears that the message might be
intercepted by the enemy. To avoid this risk, the military generals agree
beforehand on a way to transform messages so that the enemy cannot
extract any useful information from a transformed message, but that
other military generals can recover the message before its transformation.
This process of “transforming” messages is known as encryption; in
modern terms, the military general encrypts the message before sending
it, afterward the other military general will decrypt the message to recover
its original content.

Scytale. The Ancient Greeks and Spartans are believed to have used
a “scytale” to encrypt messages, by winding a strip of paper around
a cylinder, writing their message, and unwind the strip of paper, as
depicted in Figure 1.1. As a result, the letters of the messages are shuffled
around, so that “attack at dawn” becomes “acdtkatawatn”.

a t t a
c k a t
d a w n

↓

a c d t k a t a w a t n

Figure 1.1: A scytale, believed to be
used by the anciant Greeks and Spartans.
The message “attack at dawn” becomes
“acdtkatawatn”.

1 Introduction 2

Caesar cipher. Julius Caesar is believed to have encrypted messages
by shifting each letter by three positions in the alphabet, that is, “d”
becomes “a”, “e” becomes “b”, etc (as depicted in Figure 1.2), so that the
text “attack at dawn” becomes “xqqxzhxqaxtk” (see Figure 1.3).

a b c d e f g h i . . .
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
x y z a b c d e f . . . Figure 1.2: Caesar cipher.

a t t a c k a t d a w n
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
x q q x z h x q a x t k

Figure 1.3: Using Caesar cipher, the
message “attack at dawn” becomes
“xqqxzhxqaxtk”.

Kerckhoffs’s principle. In 1883, Auguste Kerckhoffs publishes an article
entitled “Military Cryptography” [1], which states six design principles [1]: Kerckhoffs (1883), La cryptographie

militairethat military cryptographic systems should obey. One of the principles
states that “it should not require secrecy, and it should not be a problem
if it falls into enemy hands”.1 Notably, the scytale and Caesar cipher don’t 1: originally, “Il faut qu’il n’exige pas le

secret, et qu’il puisse sans inconvénient
tomber entre les mains de l’ennemi”

obey this design principle, whose security depends on their mechanism
remaining unknown to the enemy.

To obey Kerckhoffs’s design principle, encryption mechanisms are
parametrized by a cryptographic key, so that their security depend only on
the secrecy of this cryptographic key, even if the encryption mechanism
itself is known to the enemy. This design principle is nowadays a fun-
damental principle of modern cryptography, as opposed to “security by
obscurity”.

Cryptanalysis and security of cryptographic systems. Because cryp-
tography is used to encrypt sensitive messages, the use of cryptographic
systems systematically comes with attempts to break them, that is, to
decrypt encrypted messages without knowing the corresponding crypto-
graphic key: this is the process of cryptanalysis. By Kerckhoffs’s design
principle, we must assume that the enemy knows the cryptographic
system, hence may perform cryptanalysis on it. Therefore, to ensure the
security of cryptographic systems, their designers must also perform
cryptanalysis on them: a cryptographic system is then assumed to be
secure when the best cryptanalysis does not succeed in breaking the
cryptographic system in practice.

Enigma. More recently, during World War II, Nazi Germany used the
Enigma machine to encrypt their military communications. Therefore,
their enemies (the Allies) worked on its cryptanalysis, as decrypting their
messages would offer a military advantage. To hinder these cryptanalysis
attempts, the German military worked under the assumption that it
would take more than a day for the Allies to recover the cryptographic
key being used, hence the German military changed their cryptographic
key every day. To do so, they sent in advance sheets of paper containing
one key to use each day to the Enigma operators within their military. If
their enemies were to obtain these sheets of paper, they would be able
to decrypt messages encrypted using these keys: this includes messages
that will be sent in the future, and also messages that were sent in the past.
To protect messages from the past, Enigma operators were instructed
to cut off and destroy keys used for the previous days [2]. Nowadays, [2]: (1944), The US 6812 Division Bombe

Report Eastcote 1944this technique is modernly known as “key erasure” and aims to provide
“forward secrecy”. To protect messages that will be sent in the future is
less convenient: the only solution would be to send new sheets of paper
with fresh key material.

1 Introduction 3

1.1.2 Post-computer cryptography

I told her that we were headed into a world where people would have
important, intimate, long-term relationships with people they had never
met face to face. I was worried about privacy in that world, and that’s
why I was working on cryptography.

Whitfield Diffie, to his wife

To ensure the practicality of cryptographic techniques, it is crucial that
we can use them efficiently: for example, Enigma was designed as a
typewriter with 26 lights, so that when a key is pressed, one light
illuminates, corresponding to the letter of the encrypted or decrypted
message. This notion of “efficiently” changes over time as technology
evolves, notably with the invention of the computer. As a result, the advent
of computers allowed for the proliferation of cryptographic techniques:
although before the focus had been on symmetric encryption, that is, rely
on a secret key shared beforehand to both encrypt and decrypt messages,
we now have access to a broader set of cryptographic techniques.

Key distribution. A major inconvenience in the use of symmetric
encryption is that it requires the distribution of the secret key to all the
intended recipients; but how do we securely distribute the key, without
revealing it to eavesdroppers, given that we cannot use symmetric
encryption to protect the key distribution as this would create a chicken-
and-egg problem? In a seminal paper [3], Whitfield Diffie and Martin [3]: Diffie et al. (1976), New directions in

cryptographyHellman proposed in 1976 a solution to the key distribution problem:
what we nowadays call a “Diffie-Hellman key exchange” allows two
parties to exchange a key so that a passive eavesdropper listening to their
communications cannot recover the key.

Short digression: we can describe their solution to key distribution
right now, because it is so elegant and only requires to understand
undergraduate-level mathematics. First, the two parties agree on a cyclic
group 𝐺 with generator 𝑔 (similarly to how they would agree on an
encryption algorithm to use). Then, party A generates 𝑥 (to be kept secret)
and sends 𝑔𝑥 to party B, similarly party B sends 𝑔𝑦 to party A. At the
end, both parties can compute the shared key 𝑔𝑥𝑦 =

(
𝑔𝑥
) 𝑦

=
(
𝑔𝑦

)𝑥 ,
because we can efficiently compute 𝑔𝑥 from 𝑔 and 𝑥. However, a passive
eavesdropper cannot compute 𝑔𝑥𝑦 from 𝑔𝑥 and 𝑔𝑦 , because computing
𝑥 from 𝑔 and 𝑔𝑥 is more difficult: this is known as computing a “discrete
logarithm”, and the security of the Diffie-Hellman key exchange depends
(in part) on the difficulty to compute a discrete logarithm. Originally, the
group 𝐺 was the cyclic group (ℤ/𝑝ℤ,×), nowadays, we rely on elliptic
curves to define 𝐺.

Although this solves the problem of key distribution in the presence
of passive eavesdroppers, that is, eavesdroppers who listen to the con-
versation but don’t interfere with it, the Diffie-Hellman key exchange
is not secure against active adversaries that may tamper the messages.
Indeed, when party A initiates a key exchange with party B, an active
adversary could block all messages and themselves do a key exchange
with party B: if afterward party B encrypts secrets using this key, the
adversary will be able to decrypt them. The fundamental problem here is
that party B cannot distinguish between doing a key exchange with party
A or with an active adversary. One way to solve this problem is to use a
cryptographic equivalent to signatures, so that party B can distinguish

1 Introduction 4

between messages coming from party A (the signature is authentic) or
from an adversary (the signature is wrong).

Signatures. In a seminal paper [4], Ron Rivest, Adi Shamir and Leonard [4]: Rivest et al. (1978), A method for ob-
taining digital signatures and public-key
cryptosystems

Adleman proposed in 1978 a cryptographic equivalent to signatures. The
system works with two keys: a signature key, and a verification key. The
signature key is kept private (hence is also called a “private key”), and the
verification key is made available publicly (hence is also called a “public
key”). We can then use the signature key to produce a signature for this
message, afterward another party may use the verification key to check
the signature authenticity. Furthermore, if the message is modified after
being signed, the signature verification will fail: a signature is bound to
a message, unlike traditional handwritten signatures.

In the same paper, they also introduce a technique for asymmetric en-
cryption, where one key (made public) is used to encrypt messages,
and another key (kept private) is used to decrypt them, unlike sym-
metric encryption which relies on the same key both for encryption and
decryption.

Combining cryptographic components. The creation of new crypto-
graphic components allows for secure messaging techniques with better
practicality and better security. As a recap, we started with symmetric
encryption, which allows sending messages so that their content stay con-
fidential even if an adversary listens to our communication channel, but
comes with the drawback that we must beforehand distribute a shared,
secret key; we then plugged-in the Diffie-Hellman key exchange procedure
to do the key distribution on a communication channel that is passively
listened to, but noticed that it is insecure when an adversary tampers with
the communication channel; we finally used cryptographic signatures to
ensure the authenticity of messages sent on the communication channel
and detect such a tampering.

Cryptanalysis of cryptographic protocols. We assembled together many
cryptographic components (e.g. symmetric encryption, key exchange,
signatures) to create larger systems, which are named cryptographic proto-
cols. These cryptographic protocols provide a large surface area to find
flaws: there may of course be flaws in each of the cryptographic com-
ponents we use (which may in turn be used to attack the cryptographic
protocol), but importantly, there may also be flaws in the cryptographic
protocol itself. Indeed, it may be that cryptanalysis found no flaws in
any of the cryptographic components we use, but that cryptanalysis of
the entire cryptographic protocol find flaws in the way cryptographic
components are assembled together, especially in the presence of active
adversaries that may tamper messages sent over the communication
channel. Thankfully we now know methods to ensure that we don’t intro-
duce vulnerabilities in the way we assemble cryptographic components
to create a cryptographic protocol; we shall discuss them in §1.1.4.

1 Introduction 5

1.1.3 Secure messaging

Privacy in an open society also requires cryptography. If I say
something, I want it heard only by those for whom I intend it. If the
content of my speech is available to the world, I have no privacy.

Eric Hughes, “A Cypherpunk’s Manifesto”, 1993

As we have seen, the roots of cryptography are deeply tied with the
military. However, with the advent of the Internet, cryptography gained
traction outside the military. Indeed, regular people began to communi-
cate over the Internet, using email or instant messaging services; some
of them worried that their Internet or email provider could read the
content of their communications, thereby hindering their privacy. It was
therefore natural to start using cryptographic techniques to hide the
content of their messages, through secure messaging techniques. In this
section, we shall give a broad overview of the history and challenges of
secure messaging; we refer the reader to [5] for a detailed survey. [5]: Unger et al. (2015), SoK: Secure Mes-

saging

Pretty Good Privacy (PGP). In 1991, Philip Zimmermann created the
computer program Pretty Good Privacy (PGP), that aimed to encrypt and
authenticate emails, using asymmetric encryption and cryptographic
signatures. PGP was soon uploaded into a Usenet newsgroup [6]. Unfor- [6]: Zimmermann (2001), PGP Marks 10th

Anniversarytunately because of the origins of cryptography being tied to the military,
the United States had strict export restrictions on cryptography: soon
after, Zimmermann became the target of a criminal investigation by the
United States Government for “munitions export without a license” [7]. [7]: Zimmermann (1995), Author’s preface

to the book: "PGP Source Code and Inter-
nals"

Zimmermann then invoked the First Amendment of the United States
Constitution, namely freedom of speech and of the press, and published
a book (therefore not subject to export restrictions) containing the source
code of PGP [8]. The case was later dropped in 1996 [9]. [8]: Zimmermann (1995), PGP source code

and internals
[9]: Zimmermann (1996), Significant Mo-
ments in PGP’s History: Zimmermann Case
Dropped

Bernstein v. United States. Early in the 1990s, Daniel J. Bernstein, back
then a mathematics PhD student, designed an encryption algorithm and
wanted to publish it online, however, to do so, the United States laws
required him to register as an arms dealer, and apply for an export license.
In 1995, Bernstein, with the help of the Electronic Frontier Foundation
(EFF), sued the United States Government, and also invoked the First
Amendment [10]. In 1999, the United States Court of Appeals declared [10]: Dame-Boyle (2015), EFF at 25: Re-

membering the Case that Established Code
as Speech

that software source code was speech protected by the First Amendment,
therefore that the export restrictions preventing its publication were
unconstitutional [11]. [11]: (1999), U.S. Court of Appeals for the

Ninth Circuit: Bernstein v. USDOJ

Cryptography and law, nowadays. The legal battles during the 1990s
are not the end of the story: nowadays, cryptography is still regularly
challenged by lawmakers, especially in the context of secure messaging. As
a recent example: during the writing of these words, French legislators are
debating a law to force the insertion of backdoors into secure messaging
applications, so that the police can decrypt messages in order to help
fighting against drug trafficking [12]. Such a backdoor, as we shall see, [12]: (2025), Narcotrafic : le Sénat autorise

les services de renseignement à accéder aux
messageries cryptées

directly goes against the goals of secure messaging applications.

Design flaws of PGP. After all these legal battles, let’s go back to PGP
and focus on another question, more central to this thesis: is PGP a good
solution toward secure messaging? Unfortunately, PGP suffers from several
design flaws. One of the design flaws is its bad usability: it is barely usable
by the average computer user [13], however a secure messaging system [13]: Whitten et al. (1999), Why Johnny

can’t encrypt: a usability evaluation of PGP
5.0

1 Introduction 6

must be used in order to achieve its security goals. Another design
flaw is the lack of forward secrecy (see Figure 1.4): if an adversary were to
obtain the PGP private decryption key, they could use it to decrypt any
message intended for this private key. In other words, when we use PGP
to encrypt a message with a public encryption key, we must take into
account the possibility that the corresponding private decryption key
may be compromised by an adversary in the future. This design flaw is
unacceptable by modern standards,2

2: and also by older standards, recall
(§1.1.1) that Enigma was operated in a
way to guarantee forward secrecy

therefore led to the design of better
secure messaging protocols, with the aim to provide forward secrecy.

compromise

time

still secure
Figure 1.4: Forward secrecy: when an ad-
versary compromises a participant and
obtains cryptographic keys they store,
they cannot decrypt messages sent in the
past.

compromise

time

still securehealing
Figure 1.5: Post-compromise security:
when an adversary compromises a par-
ticipant and obtains cryptographic keys
they store, they will not be able to de-
crypt messages sent in the future, after a
short period of healing.

Off The Record (OTR). In response to the lack of forward secrecy in PGP,
Ian Goldberg and Nikita Borisov designed in 2004 the Off The Record
(OTR) messaging protocol [14], whose goal is to mimic the same security [14]: Borisov et al. (2004), Off-the-record

communication, or, why not to use PGPguarantees as an actual face-to-face conversation in a room.

To achieve forward secrecy (see Figure 1.4), OTR does not rely on asym-
metric encryption for confidentiality: instead, it performs frequent Diffie-
Hellman key exchanges to derive keys, which are then used with sym-
metric encryption to protect messages. When OTR exchanges a new
symmetric key, the previous one as well as every other material involved
for its computation is securely deleted. Thanks to this mechanism, OTR
achieves forward secrecy: if in the future an adversary compromises one
of the parties, because they will have deleted the key material of previous
conversations, the adversary will not be able to decrypt them.

OTR also provides post-compromise security (see Figure 1.5): if an adversary
compromises the cryptographic keys stored by one of the parties, the
adversary will be able to decrypt messages sent using these keys, but
because parties will rapidly perform new Diffie-Hellman key exchanges
before encrypting next messages, the adversary will not be able to decrypt
messages that will be sent in the future.

Short digression: OTR further provides deniability, meaning that when
you send a message to someone, the recipient is cryptographically
guaranteed that you sent this message, but cannot prove it to someone
else, similarly to face-to-face conversations. However, nowadays, it seems
that users of secure messaging protocols actually prefer non-repudiation
rather than deniability, that is, the recipient of your message can prove to
someone else that you sent the message [15]. Choosing between these [15]: Yadav et al. (2023), Cryptographic

Deniability: A Multi-perspective Study of
User Perceptions and Expectations

two properties depends on who you want to protect: deniability protects
senders of messages, non-repudiation protects receiver of messages.
Therefore deniability and non-repudiation will not be in the scope of this
thesis.

One drawback of OTR is that it is a synchronous protocol: it requires the
two parties of a conversation to be online at the same time, similarly to

1 Introduction 7

face-to-face conversations. This means, for example, that OTR cannot be
used as a replacement for Short Message Service (SMS) on mobile phones,
because SMSes are asynchronous: one may send an SMS to someone
who is offline, this person will receive it when they come back online.

Signal Protocol. In 2013, Trevor Perrin and Moxie Marlinspike pub-
lished the TextSecure Protocol, an improvement over OTR to support
asynchronous messaging [16], which was later renamed to the “Signal [16]: Marlinspike (2013), Forward Secrecy

for Asynchronous MessagesProtocol”. They notice that OTR is synchronous only at the initialization
(when a participant starts a conversation with another), however the
rest of the protocol (sending messages) is asynchronous; therefore, only
the initialization needs to be made asynchronous. They manage to do it
through a change of paradigm: usually, long-term keys (e.g. signature
keys associated to your identity) are published on servers, so that people
can obtain them when you are offline, however short-term keys (e.g.
Diffie-Hellman keys) are only used in a synchronous fashion; instead,
the Signal protocol publishes on a server a large amount (e.g. 100) of
short-term keys (called “pre-keys”), so that other people can initiate a
conversation with you while you are offline. Furthermore, the server
deletes pre-keys after they are issued so that they are only used once,
and participants would refuse to use the same pre-key twice, there-
fore providing the same security guarantees as if the initialization were
synchronous.

Nowadays, the Signal Protocol is considered to be a state-of-the-art secure
messaging protocol: it has been thoroughly analyzed [17–19]

[17]: Cohn-Gordon et al. (2017), A Formal
Security Analysis of the Signal Messaging
Protocol
[18]: Alwen et al. (2019), The Double
Ratchet: Security Notions, Proofs, and Mod-
ularization for the Signal Protocol
[19]: Bienstock et al. (2022), A More Com-
plete Analysis of the Signal Double Ratchet
Algorithm

, and has been
deployed in Signal itself, as well as WhatsApp, Facebook Messenger, and
Skype. However, it does not provide a final answer to the secure messaging
problem: indeed, the Signal Protocol is a secure messaging protocol
between two persons, whereas modern messaging applications allow for
group conversations. Although we may implement group conversations
by having group participants encrypt their messages separately to each
group member [20], this does not scale well: sending a message to a group [20]: Marlinspike (2014), Private Group

Messagingof 𝑛 participants would require 𝑛 times more computation and bandwidth
than sending a message to only one person. The Sender Keys protocol
(hinted in [20]) improves this scaling issue when sending of messages, but
not when healing from a compromise. More generally, secure messaging
in the context of groups comes with additional requirements, such as
supporting dynamic groups (participants may join and leave the group
at any time), which causes additional security challenges that must be
tackled with a new protocol.

Messaging Layer Security (MLS). In 2018, the Internet Engineering
Task Force (IETF), a standards organization for the Internet, convened a
working group tasked with designing a new secure group messaging
protocol, dubbed Messaging Layer Security (MLS), with the ambition
to scale well for large groups (e.g. thousands of participants) while
providing strong security guarantees. In 2023, the MLS protocol is
finalized and published in the RFC 9420 [21]. The MLS protocol is one [21]: Barnes et al. (2023), The Messaging

Layer Security (MLS) Protocolof the objects of study of this thesis, aiming to answer the question: is
MLS really secure? To provide an answer, we will need to define what
“secure” means, furthermore, as we shall see in the next section, a positive
answer to this statement always comes with fine print: indeed, we can
rarely attest with 100% confidence the security of a cryptographic system.
However, we have a variety of techniques to increase our confidence that
a cryptographic system is indeed secure.

1 Introduction 8

1.1.4 Security of cryptographic systems

In 1949, Claude Shannon proved that symmetric encryption achieves
perfect confidentiality only when the key is longer than the message it
encrypts [22], or in other words, a system in which we may have 100% [22]: Shannon (1949), Communication the-

ory of secrecy systemsconfidence in its security must be impractical. Therefore, because we
cannot have a complete confidence in the security of practical crypto-
graphic systems, we must rely on other methods to raise our confidence
in their security. Different methods exist depending on the cryptographic
system.

Cryptanalysis. One way is to have many people try to break the cryp-
tographic system: then, if no one succeeds after several years, we guess
it’s probably secure. This method works for any cryptographic system,
but it does not provide the highest level of confidence: it may be that
nobody managed to break the cryptographic system because we didn’t
put enough resources into trying to break it, or because everyone who
tried was not clever enough. Thankfully, for many cryptographic systems,
we have better ways to raise our confidence.

Proving the absence of some attacks. A complementary method is to
collect general classes of attacks against the cryptographic system under
study, and mathematically prove that these types of attacks do not work.
For example, on symmetric encryption algorithms, it is customary to
prove that they resist against differential cryptanalysis [23]. [23]: Biham et al. (1993), Differential crypt-

analysis of the data encryption standard

Reduction proofs. On some cryptographic systems, especially on cryp-
tographic protocols that assemble other cryptographic components (such
as symmetric encryption, signatures, etc), we can mathematically prove
that the security of the whole system reduces to the security of each
cryptographic component. Informally, the mathematical proof says the
following: if you show me how to efficiently break the security of my cryp-
tographic system, I can use this knowledge to show you how to efficiently
break the security of one of its cryptographic components. Because the
cryptographic components are believed to be secure (e.g. because they
resisted cryptanalysis so far), this implies that the cryptographic system
is also believed to be secure.

Trade-offs in security proofs. When possible, reduction proofs are
considered to be the gold standard. However, when it is too difficult to
do such a proof, it is common to make stronger assumptions about the
security of cryptographic components: for example, the Random Oracle
Model [24] assumes that cryptographic hash functions are “perfect”. [24]: Bellare et al. (1993), Random oracles

are practical: a paradigm for designing effi-
cient protocols

One may say that cryptographic hash functions are not perfect, therefore
these proofs have no value; however we argue that a proof with strong
assumptions is better than no proof at all. In the end, this is a trade-off
between the strength of the security theorem and the practical doability
of its proof.

Symbolic proofs. If we push the trade-off cursor further and make the
strongest assumptions, we obtain what is called the “symbolic model”.
Informally, security theorems in the symbolic model prove that it is im-
possible for an adversary to break the whole cryptographic system when
the adversary only has black-box access to cryptographic components, or
in other words, if we assume that the cryptographic components being
used in the system are “perfect”. Again, these are strong assumptions,
but a proof with strong assumptions is better than no proof at all.

1 Introduction 9

Another way to understand the symbolic model is that it only considers
adversaries that perform logical attacks, namely attacks that only have
a black-box use of cryptographic components. Therefore, the symbolic
model proves the absence of the whole class of logical attacks.

Computer-checked proofs. As we shall see in the next section, mathe-
matical proofs may contain errors and security proofs are no exception,
furthermore that we can rely on computers to raise our confidence that
our mathematical proof is free of errors, by having the computer to
mechanically verify each step of the proof.

In this thesis, we will perform computer-checked security proofs in the
symbolic model.

1.2 Rigorous mathematical proofs

In §1.1, we have seen that we want to ensure that cryptographic protocols
are secure. To do that, we can rely on mathematics, which can be used to
define abstract objects (e.g. cryptographic protocols) and guarantee that
they obey properties (e.g. they are secure). This guarantee is ensured by
a “proof”, which is in essence a detailed argument that aims to convince
someone that the property indeed holds.

The history of mathematics has seen several crises of rigor, which led
mathematicians to accept bogus proofs, or worse, false statements. In
this section, we will discuss three of them.

1.2.1 Mathematical proofs, with pen and paper

Since people have tried to prove obvious propositions, they have found
that many of them are false.

Bertrand Russell, Mathematics and the Metaphysicians

In the early 20th century, Bertrand Russell discovered that a standard
reasoning technique in mathematics3 led to a contradiction, now known 3: known as “unrestricted comprehen-

sion principle”as Russell’s paradox, or in everyday terms, the barber paradox. In short,
mathematics could prove the existence of a barber who “shaves all those,
and those only, who do not shave themselves”. However, the existence
of such a barber is paradoxical when we ask: does the barber shave itself?
Indeed, it is impossible that the barber shaves itself, because it “shaves
only those who do not shave themselves”, and it is also impossible that the
barber does not shave itself, because it “shaves all those who do not shave
themselves”. Using mathematical notations, mathematicians could define
the set 𝑅 = {𝑥|𝑥 ∉ 𝑥}, which is paradoxical because 𝑅 ∈ 𝑅⇐⇒ 𝑅 ∉ 𝑅.

Axioms. Such paradoxes are unacceptable in mathematics, which seeks
to establish what is true and what is not. When we prove that some
statement is true, we must rely on the knowledge that other statements
are true: indeed, it is impossible to attest that something is true out of
thin air. But how do we know these statements on which we rely on
are indeed true? These could also be mathematically proved, but they
themselves must also rely on other statements, etc. If we dig deeper and
deeper into the dependencies of our proof, we must necessarily obtain
statements that we assume to be true, but for which we don’t have a

1 Introduction 10

corresponding proof: these are called axioms. Such axioms are supposed
to be “obviously true”, for example it is obviously true that any number
𝑥 must be equal to itself (i.e. 𝑥 = 𝑥). An axiom naturally arises several
kinds of questions. First, is this axiom really “obviously true”? Indeed,
“obviously true” axioms led to Russell’s paradox, which proved that
they were actually wrong. Second, do we really need this axiom in our
reasoning? Could we instead prove it using even more obviously true
axioms? Third, is this axiom compatible with other axioms we use? That
is, even if axioms may not create paradoxes when used alone, can they
create paradoxes when used together?

The incompatibility of axioms is problematic when approaching math-
ematics as a community effort: it may be possible that two different
mathematicians use incompatible axioms, so that we cannot combine
their results without risking creating paradoxes.

Principia mathematica. In 1910, Bertrand Russell and Alfred North
Whitehead published Principia Mathematica [25]. In there, they define a [25]: Russell et al. (1910), Principia Mathe-

matica Vol. Ismall set of axioms, and aim to prove as much mathematics as they can;
furthermore they do not use informal prose in their proofs, instead they
rely on a symbolic approach where theorem statements and proofs are
written precisely using symbols. Their goal is to ensure that each theorem
they prove depends on a clear set of axioms, therefore ensuring that they
do not rely on theorems that use incompatible axioms. Furthermore, each
proof can be verified mechanically, through manipulation of symbols. In
the end, they obtain highly rigorous mathematical proofs, however it
is labor-intensive: infamously, they prove, after 360 pages of definitions
and intermediate lemmas, that 1 + 1 = 2.

Social aspect of mathematics. In 1979, Richard DeMillo, Richard Lipton
and Alan Perlis argued that successful mathematics are part of a social
process [26], whereas Principia Mathematica views mathematics as a [26]: De Millo et al. (1979), Social processes

and proofs of theorems and programscold, formal and mechanical process. In their view, the main achievement
of Principia Mathematica is to show how far we could go with a formalist
approach to mathematics, which is, they argue, not very far. They explain
that a highly detailed proof that can be mechanically verified does
not necessarily help to understand it and gain insights into why the
theorem statement is true, and that the latter is what makes a proof to be
believed correct by the mathematical community. In short, they argue
that the belief that a mathematical proof is correct by the mathematical
community is a social process; a mathematical proof is a lively object that
evolves: the insights of the proof are first explained to colleagues through
informal blackboard discussions and seminars, then the proof is written
and submitted for publication, it is then reviewed, published, and read
by a wider audience of mathematicians that begin to internalize it, before
it is finally used as a lemma in other theorems. After it stood the test
of time, a proof is finally believed to be correct by the mathematical
community.

We shall see that this social approach to mathematics is fallible, hence the
formalist approach made a comeback by using computers to mechanically
check that a proof is correct, to be used in parallel of the social process.

1 Introduction 11

1.2.2 Proof assistants

A technical argument by a trusted author, which is hard to check and
looks similar to arguments known to be correct, is hardly ever checked
in detail.

Vladimir Voevodsky, “Univalent Foundations”, 2014

In 2017, the mathematician Kevin Buzzard had a midlife crisis and losed
faith in the social process that makes the mathematical community to
believe a proof is correct [27]: he noticed that proofs which are accepted [27]: Buzzard (2021), Formalizing 21st cen-

tury mathematics in Leanby the mathematical community and used to prove other theorems are
sometimes incomplete or sometimes contain reasoning errors, and upon
such discoveries, the mathematical community accepts when the elders
of the field say “it is fixable”. Furthermore, he noticed that peer-reviewed
theorems are sometimes in direct contradiction with other peer-reviewed
theorems, so that one of them must be wrong, but none of the theorems
have been retracted.

Proof assistants. To work against this crisis, Kevin Buzzard decided
to formalize mathematics from first principles in the Lean proof assis-
tant [28], a computer program that can mechanically verify that each [28]: Moura et al. (2021), The Lean 4 Theo-

rem Prover and Programming Languagestep of a mathematical proof is correct. Buzzard then became involved in
the development of mathlib [29], a project to formalize a significant part [29]: Community (2020), The lean mathe-

matical libraryof modern mathematics using Lean. This project has been successful in
finding and fixing mistakes in mathematical theories: in 2023, Terence
Tao used Lean and the mathlib project to formalize a theorem he recently
proved on paper [30], and found a mistake in his proof while formalizing [30]: Tao (2023), A Maclaurin type inequal-

ityit in Lean [31] (which he then fixed); in 2024, Kevin Buzzard started to
formalize Fermat’s Last Theorem [32] in Lean along with the mathemat- [32]: Buzzard (2024), Fermat’s Last Theo-

rem — how it’s goingical theories on which it depends, soon after, he and his collaborators
found that a key lemma of a theory on which Fermat’s Last Theorem
depends, seemed to be incorrect. Fortunately, experts of the field pointed
them to an alternative presentation of the mathematical theory, which
they successfully managed to formalize.

Outside pure mathematics. Proof assistants have also been used with
success outside pure mathematics, in domains that require mathematical
reasoning. Such domains include proving properties of programs, or, more
in the scope of this thesis, of cryptographic protocols. We shall discuss the
use of computers to verify the security of cryptographic protocols more
thoroughly in §1.3.

1.2.3 Cryptographic proofs

In 2004, Mihir Bellare and Phillip Rogaway called for a crisis of rigor in
security proofs of cryptographic systems [33]: they noted that proofs [33]: Bellare et al. (2004), Code-Based

Game-Playing Proofs and the Security of
Triple Encryption

in cryptography have grown so complex and tedious that they “have
become essentially unverifiable”. To tackle this issue, they proposed to
structure security proofs as a sequence of “game-hops”, also pioneered
by Victor Shoup [34], arguing that it makes cryptographic proofs easier [34]: Shoup (2004), Sequences of games: a

tool for taming complexity in security proofsto verify, by, among other things, taming tedious probability calculations.
They further suggested that the game-hopping technique could pave the
way to making these proofs verified by a computer, also argued by Shai
Halevi [35]. [35]: Halevi (2005), A plausible approach

to computer-aided cryptographic proofs

1 Introduction 12

Nowadays, the game-hopping technique is pervasive in reduction proofs,
and as we will see in the next section, has been successful in helping to
make cryptographic proofs verifiable by computers.

1.3 Machine-checked analysis of cryptographic

protocols

The use of computers to mechanically verify the security of cryptographic
systems has been successful in the past decades, we now give an overview
of what may be achieved using these techniques.

1.3.1 Computer-aided cryptographic proofs

In this section, we give a broad overview of the tools that aim to mechan-
ically verify the security of cryptographic systems; we refer the reader to
[36] for a detailed survey. [36]: Barbosa et al. (2021), SoK: Computer-

Aided Cryptography

In the computational model. Several tools perform traditional reduction
proofs in what is called the “computational model”. For example, Easy-
Crypt [37] allows verifying game-hopping proofs written similarly to pen [37]: Barthe et al. (2011), Computer-Aided

Security Proofs for the Working Cryptogra-
pher

& paper proofs; CryptoVerif [38] is designed with automation in mind,

[38]: Blanchet (2007), CryptoVerif: Com-
putationally sound mechanized prover for
cryptographic protocols

and aims to automatically find and verify game-hops; Squirrel [39] relies

[39]: Baelde et al. (2021), An interactive
prover for protocol verification in the compu-
tational model

on the Bana-Comon logic [40] to provide computational guarantees.

[40]: Bana et al. (2012), Towards Uncon-
ditional Soundness: Computationally Com-
plete Symbolic Attacker

In the symbolic model. We introduced the symbolic model in §1.1.4, in
which we consider an adversary that uses cryptographic functions as
black-boxes. Several tools exist to prove security of cryptographic proto-
cols in the symbolic model, which furthermore provide high automation:
given a cryptographic protocol description, they either find an attack, or
prove that the protocol is secure in the symbolic model. However, there is
a catch: it may be that the analysis takes too much time, or uses too much
memory, but when they don’t, they show to be effective tools. Examples
of such tools are ProVerif [41], in which we specify protocols as processes [41]: Blanchet et al. (2016), Modeling and

verifying security protocols with the applied
pi calculus and ProVerif

running in parallel; and Tamarin [42] in which we specify protocols as

[42]: Meier et al. (2013), The TAMARIN
prover for the symbolic analysis of security
protocols

state machines.

In this thesis. To prove secure messaging protocols, we will use DY∗ [43],

[43]: Bhargavan et al. (2021), DY*: A Mod-
ular Symbolic Verification Framework for
Executable Cryptographic Protocol Code

a recent tool which aims to provide more scalability and tackle protocols
where ProVerif or Tamarin may otherwise timeout, at the expense of
being less automated; in other words, DY∗ explores different trade-offs in
the design space of symbolic analysis. We will present DY∗ in full details
in Chapter 2, along with the improvements we made in the process of
analyzing the secure messaging protocol MLS in Chapter 3.

1.3.2 A case study: TLS 1.3

Everybody knows the padlock symbol in web browsers, or the https:// at
the start of website addresses: this indicates that the connection with the
website is secured via the cryptographic protocol named Transport Layer
Security (TLS). As such, TLS is a wildly used cryptographic protocol, and
we better hope it is indeed secure.

1 Introduction 13

Attacks on TLS 1.2. TLS is a protocol with a rich history that spanned
multiple versions, and aims to fit into the constraints requested by the
industry that will eventually use it. As a result, TLS includes many
modes of operation, backward compatibility mechanisms, etc. This leads
to a broad attack surface, hence TLS went through many cycles of
finding attacks and deploying mitigations [44]. Even the most thorough [44]: Sheffer et al. (2015), Summarizing

Known Attacks on Transport Layer Security
(TLS) and Datagram TLS (DTLS)

analysis of TLS 1.2 (e.g. [45]) did not consider every mode of operation

[45]: Krawczyk et al. (2013), On the Se-
curity of the TLS Protocol: A Systematic
Analysis

of TLS, which led to miss for example the Triple Handshakes Attack [46]

[46]: Bhargavan et al. (2014), Triple Hand-
shakes and Cookie Cutters: Breaking and
Fixing Authentication over TLS

that exploits a subtle combination of session resumption and session
renegotiation, two extensions of TLS.

With all the lessons learned by previous attacks of TLS 1.2 [44], the
Internet Engineering Task Force (IETF), the standards organization in
charge of TLS, started to work on a new version, now known as TLS 1.3.

TLS 1.3. Previous versions of TLS relied on a reactive approach toward
protocol design: they were standardized and deployed, only afterward
the academics studied the protocol and found attacks, that would either
be mitigated via patches or fixed in the next versions. The design of TLS 1.3
relied on a proactive approach where the cycle of breaking and fixing by
the academics happened during the design phase [47]. Furthermore, the [47]: Paterson et al. (2016), Reactive and

Proactive Standardisation of TLStooling to mechanically verify the security of protocols was ready, and
applied on TLS 1.3 during its standardization: for example, [48] analyzes [48]: Cremers et al. (2016), Automated

Analysis and Verification of TLS 1.3: 0-RTT,
Resumption and Delayed Authentication

draft 10 using Tamarin, [49] analyzes draft 18 using both ProVerif and

[49]: Bhargavan et al. (2017), Verified Mod-
els and Reference Implementations for the
TLS 1.3 Standard Candidate

CryptoVerif, and [50] analyzes draft 21 using Tamarin; each of these

[50]: Cremers et al. (2017), A Comprehen-
sive Symbolic Analysis of TLS 1.3

analysis uncovered design flaws that were subsequently fixed.

1.4 This thesis

Secure-messaging is the most fundamental privacy problem in
cryptography: how can parties communicate in such a way that nobody
knows who said what.

Phillip Rogaway, The Moral Character of Cryptographic Work

In this thesis, we set out to do a proactive analysis of the secure group
messaging protocol MLS by performing a machine-checked security
proof.

1.4.1 New challenges in cryptographic protocol analysis

However, performing a machine-checked security analysis of secure
group messaging protocols presents unique challenges.

Secure group messaging. In §1.1.3 we have seen several design goals
of secure messaging protocols, and how the Signal Protocol provides
an answer for one-to-one conversations. The setting of secure group
messaging comes with further challenges that MLS aims to solve. First,
MLS supports the following features:

▶ asynchronous: participants may sometimes be offline (discussed in
§1.1.3)

▶ dynamic groups: people may join and leave the group at any time
▶ efficient sending of messages: the amount of computation when

sending or receiving a message does not depend on the group size

1 Introduction 14

▶ efficient group update: the amount of computation when updating
the group state (e.g. by adding or removing people) scales less than
linearly with the group size

Second, MLS aims to have the following security guarantees:

▶ forward secrecy: if an adversary compromises the cryptographic keys
of a participant, they should not be able to decrypt messages sent
in the past (discussed in §1.1.3)

▶ post-compromise security: if an adversary compromises the crypto-
graphic keys of a participant, they should not be able to decrypt
messages that will be sent in the future (discussed in §1.1.3)

▶ add security: when a participant joins the group, they are not able
to decrypt messages that were sent before they joined the group

▶ remove security: when a participant leaves the group, they are not
able to decrypt messages that will be sent after they leave the group

▶ group membership agreement: every member of the group agrees on
who is in the group, in particular this precludes an adversary being
in the group without your knowledge

The MLS working group was created in 2018, the same year the IETF
standardized TLS 1.3. After the success of proactive protocol design with
TLS 1.3 (see §1.3.2), the MLS working group decided to use the same
approach.

In the following years, several works analyzed MLS using the traditional
method of proving its security on pen & paper (e.g. [51] and [52]). They [51]: Alwen et al. (2022), On The Insider

Security of MLS
[52]: Brzuska et al. (2022), Security Anal-
ysis of the MLS Key Derivation

were successful to reveal attacks and design flaws in the intermediate
designs of MLS, and helped the MLS working group to fix them. Unfor-
tunately, the use of machine-checked security proofs was initially absent
from the picture.

Towards a machine-checked security proofs for MLS. The goal of
security proofs is to raise the confidence in the security of a cryptographic
protocol, and successfully manage to do so under three conditions:

1. the proof is free of any mistakes
2. the protocol being analyzed is actually the protocol we want to

have guarantees on (e.g. MLS)
3. the security properties being proved actually correspond to the

security properties we want (e.g. forward secrecy, etc)

With machine-checked security proofs, we can immediately gain confi-
dence in the first two conditions: first, the proof is mechanically verified
by a computer, which makes it unlikely to contain mistakes; second, we
can make our protocol specification executable and test it for interoperabil-
ity to ensure we analyze the correct protocol. Therefore, when reviewing
such a machine-checked security proof, the focus can be made on the
security properties being proved.

Challenges in analyzing MLS. Despite their advantages, no such
machine-checked security proofs were performed on MLS, the reason
being that it was at the time too difficult: indeed, MLS is based on Signal’s
double ratchet [53] but made more complex to account for groups, [53]: Perrin et al. (2016), The Double

Ratchet Algorithmand at the time the best machine-checked analysis of Signal could
only account for two messages [54]. Indeed, analyzing Signal (hence [54]: Kobeissi et al. (2017), Automated ver-

ification for secure messaging protocols and
their implementations: A symbolic and com-
putational approach

also MLS) comes with the unique challenge that a single session (i.e.
conversation) involves encrypting an unbounded number of messages,
whose keys are derived through a recursive chain of hashes. Furthermore,
analyzing MLS comes with the unique challenge that there may be an

1 Introduction 15

unbounded number of participants within a single session (i.e. group
conversation) which furthermore may vary dynamically throughout the
lifetime of a messaging group, as participants join and leave the group.
Finally, an additional challenge posed by MLS is that to handle many
participants in a group conversation, MLS internally relies on binary
trees to compute its cryptography, whereas neither TLS 1.3 nor Signal
use complex datastructures within their protocol specification.

1.4.2 Our solutions

This thesis aims to address the above challenges by providing the first,
comprehensive, bit-precise, symbolic security analysis of the MLS proto-
col.

New tools for analyzing secure group messaging protocols. We saw in
§1.4.1 that analyzing a protocol with the complexity of MLS was beyond
the current state-of-the-art, therefore, a prerequisite for this work was to
improve the foundation of tools and libraries to be able to conduct our
proof over MLS.

In Chapter 3, we will first present the significant redesign and improve-
ments we have made to the symbolic analysis framework DY∗ [43], [43]: Bhargavan et al. (2021), DY*: A Mod-

ular Symbolic Verification Framework for
Executable Cryptographic Protocol Code

which allowed us to tackle more complex invariants, thus increasing the
expressive power of DY∗ so that MLS could be reasoned about.

In Chapter 4, we will then present Comparse, a framework to specify
and analyze message formats used in cryptographic protocols: this is an
essential tool when analyzing a bit-precise specification. Furthermore,
we will see that having a bit-precise specification was crucial not only
to find previously-overlooked attacks, but also to find implementation
flaws in existing implementations.

First machine-checked proofs for MLS. In the second part of this thesis,
we use the tools we developed to proactively analyze MLS during its phase
of standardization, and do so by analyzing a bit-precise, executable,
interoperable specification.

In Chapter 5, we will show how to modularize MLS into three sub-
protocols, which we name TreeSync, TreeKEM, and TreeDEM. We then
analyze TreeSync, and prove that it allows MLS to provide group member-
ship agreement. This is a prerequisite before proving any confidentiality
property, because we cannot ensure the confidentiality of messages sent
in the group if we don’t agree with other participants on who is in the
group. During the analysis, we initially found an attack on MLS that we
reported to the MLS working group and helped to fix.

In Chapter 6, we will analyze TreeKEM, the sub-protocol in charge of
continuously establishing a secret group key, and show that it provides
forward secrecy, post-compromise security, add security and remove security.
During the analysis, we found that forward secrecy and post-compromise
security relied on application policies that were not enforced by the
architecture document of MLS [55] and notified the working group. [55]: Beurdouche et al. (2025), The Mes-

saging Layer Security (MLS) Architecture
The only sub-protocol left out of our analysis is TreeDEM, which we
unfortunately had to leave it as future work. Still, our analysis demon-
strates that the tools we developed can be used to successfully analyze
secure group messaging protocols, furthermore our analysis of MLS
found several design flaws which we were able to report in time to the
working group.

Developing tools and proof techniques

for symbolic analysis at scale

DY
∗
: Security proofs in the

Dolev-Yao model, using F
∗

(background) 2

2.1 Background on symbolic

analysis 17

2.2 Symbolic analysis with DY
∗
20

2.3 Security proofs with DY
∗
,

an example 41

The symbol is the tool which gives man his power, and it is the same
tool whether the symbols are images or words, mathematical signs or
mesons.

Jacob Bronowski, “The Reach of Imagination” (1967)

In this chapter, we give background on DY∗, a tool recently developed to
conduct symbolic security proofs using the F∗ proof assistant. As such,
this chapter does not contain scientific contributions, which we reserve
for the next chapter (Chapter 3).

In here, I will distill three years of personal insights of using and develop-
ing DY∗. Therefore, although the purely scientific content of this section
is not a contribution, how it is explained is a contribution.

Outline. In this chapter, we first give background on symbolic security
analysis (§2.1), then on DY∗ (§2.2), and finally give a concrete example of
security proof in DY∗ (§2.3).

2.1 Background on symbolic analysis

In this section, we explain what is symbolic security analysis, describe
how the landscape looks like, and show where DY∗ belongs in this
landscape.

2.1.1 The symbolic model

When we use a cryptographic protocol, we want to be sure it is secure.
But what does “secure” means? For example, “secure” against whom?
With what kind of capabilities? To answer these questions, we must come
up with an attacker model, before proving that our cryptographic protocol
is secure against this class of attackers.

The Dolev-Yao attacker. In their seminal work, Dolev and Yao [56] [56]: Dolev et al. (1983), On the security of
public key protocolsintroduce, influenced by the work of Needham and Schroeder [57], an
[57]: Needham et al. (1978), Using Encryp-
tion for Authentication in Large Networks of
Computers

attacker model which is nowadays called “the Dolev-Yao attacker”. In
short, the Dolev-Yao attacker is an active attacker with a black-box usage
of cryptography.

An active attacker. We consider that the attacker is in charge of connecting
protocol participants with each other. The attacker can thereby decide
whether to be evil or not, for example by dropping messages, sending
some messages twice, or modifying them on the fly. More precisely,
when a participant sends a bytestring to the attacker (the network), this
extends the knowledge of the attacker with this bytestring, and when
a participant receives a bytestring from the attacker (the network), this
bytestring must be known by the attacker.

With a black-box usage of cryptography. The attacker doesn’t only know
bytestrings sent on the network: they can also compute cryptographic

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 18

functions using the bytestrings they already know. For example, if the
attacker knows a key, and an encryption of a plaintext with that key, the
attacker can use the decryption function to gain the knowledge of the
plaintext. However, if the attacker doesn’t know the key, the ciphertext
(thankfully) does not reveal the plaintext.

Symbolic model. Security proofs that prove a protocol secure against
the Dolev-Yao attacker are also said to be done “in the symbolic model”.
This is because cryptographic functions are used in a black-box fashion,
thus can be treated as uninterpreted symbols; the only thing we know
about them is that the underlying cryptographic functions are correct,
hence must obey some equations (e.g. decrypting an encrypted message
with the same key yields the same message). We will develop this notion
further in §2.2.3 where we will explain how we model bytestrings in
DY∗.

Machine-checked proofs. In the original work of Dolev and Yao [56], the
symbolic model was used to conduct pen & paper security proofs. Since
then, the symbolic model enjoyed a lot of success with machine-checked
proofs, which led to the creation of a whole bazaar of tools. One of these
tools is DY∗ [43], a recent contender which blends two approaches toward [43]: Bhargavan et al. (2021), DY*: A Mod-

ular Symbolic Verification Framework for
Executable Cryptographic Protocol Code

symbolic security proofs, that we describe in §2.1.2 and §2.1.3.

2.1.2 Trace-based symbolic proofs

Before proving the security of a protocol in the symbolic model, we
must first properly specify the cryptographic protocol in question, and
precisely write the security guarantees we want to prove. One way to do
that is by using trace semantics; this is the approach used by ProVerif [41] [41]: Blanchet et al. (2016), Modeling and

verifying security protocols with the applied
pi calculus and ProVerif

and Tamarin [42].

[42]: Meier et al. (2013), The TAMARIN
prover for the symbolic analysis of security
protocols

State machines. Participants in cryptographic protocols are specified as
state machines, that receive some data from the network, modify their
internal state, send back a message on the network, then wait for the next
message.

The trace. To reason on the behavior of protocol participants, we will
not actually have them perform impure actions (i.e. actions that are not
the result of computing pure mathematical functions), such as sending
messages on the actual network or generating actual fresh random
bytestrings. Instead, we will store an entry corresponding to this impure
action in a global, shared, append-only trace. The trace is therefore a
log of every impure action that happened during a protocol execution.
We can deduce from the trace all the bytestrings known by the attacker
(which can be used to express confidentiality properties), or see whether
Alice thinks she is talking with Bob (which can be used to express
authentication properties).

Security properties. We can use the trace to define security properties,
in particular reachability properties, which says that no matter how
the attacker behaves, every trace they may reach by interacting with
protocol participants must obey some security properties. These security
properties are therefore stated as properties of the reachable traces,
and will depend on the protocol being analyzed; some usual security
properties are confidentiality (the attacker cannot know some secret
value) or authentication (if Alice responds to Bob, then Bob initiated
conversation with Alice before).

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 19

Tools such as ProVerif and Tamarin can also prove equivalence properties,
but it is out of scope for DY∗ hence we will not explain these properties
further.

Trace-based tools. Several tools (e.g. ProVerif [41] and Tamarin [42])
allow doing security proofs in the symbolic model in a highly automated
fashion. They rely on trace semantics to automatically explore all possible
behaviors of the attacker, allowing them to either find an attack, or prove
that the protocol is secure (if they find none). This high automation
however comes with drawbacks: another possibility is that the analysis
takes too much time, or uses too much memory. It is therefore useful to
consider other approaches toward symbolic analysis, such as type-based
symbolic proofs.

2.1.3 Type-based symbolic proofs

Another line of work [58, 59] leverages types (especially refinement types) [58]: Bengtson et al. (2008), Refinement
Types for Secure Implementations
[59]: Bhargavan et al. (2010), Modular ver-
ification of security protocol code by typing

to guarantee security in the symbolic model.

val index:
a:array 𝛼 → i:int{0 ≤ i < len a}→
𝛼

let f (a:array 𝛼) (i:int) =
let x1 = index [10;11;12] 5 in // fail
let x2 = index [10;11;12] 1 in // ok
let y1 = index a i in // fail
if 0 ≤ i < len a then
let y2 = index a i in // ok
...

else
...

Figure 2.1: The index function, with re-
fined types.

Refinement types. In mainstream programming languages, types are
a tool to ensure that some behaviors never happen, e.g. that we never
compute the addition of a number and a string, because in this case
addition is not defined. However, in some scenarios these types may
be too coarse-grained, for example, consider array indexing: how do
we ensure, within the type system, that the index is within the array
bounds? In mainstream programming languages, the array index is
simply an integer, hence we cannot ensure that it is within the array
bounds; however, in programming languages with refinement types, we
can refine the integer with the property that it is within the array bounds
(see Figure 2.1). When using this array indexing function with refined
types, the typechecker will try to prove that the index is within bounds,
and will give a type error if it doesn’t succeed to prove so. We give
examples of using this index function with refined types in Figure 2.1,
and point where it would successfully typecheck and where it would
fail.

val validate_message:
m:msg→
unit{message_validated m}

val process_message:
m:msg{message_validated m}→
...

Figure 2.2: Trace property using refined
types.

Trace properties from refined types. We can (ab)use refinement types
to prove trace properties, as we show in Figure 2.2. Imagine we receive
messages, and we can validate or process them. One may want to prove
the trace property: if a participant processes a message, then it must
have validated the same message before. We can prove this property
using refinement types: the function validate_message will return a
refined type that tells the message has been validated, then the function
process_message relies on refinement types to only accept messages
that have been validated before. We can adapt this methodology to
cryptographic functions to prove security properties on cryptographic
protocols; we will show how when presenting DY∗ in §2.2.

Modular verification. One advantage of type-based symbolic proofs is
that the verification is modular: indeed, the typechecker verifies each func-
tion independently, unlike trace-based tools like ProVerif and Tamarin
that perform whole-protocol analysis.

Executable specification. In type-based symbolic proofs, the protocol
specification is a program that implements the cryptographic protocol.
Therefore, another advantage of type-based symbolic proofs is that the

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 20

specification can be executed, thereby obtaining a reference implementa-
tion.

From types to trace semantics. The soundness of the type of crypto-
graphic functions (that is, how they use refinement types) is proved on
pen and paper. It means that when extending the system, this pen and
paper proof must be updated: this is risky, because a mistake there might
make the overall approach unsound. Thankfully, DY∗ proposes a solution
to this problem by proving the soundess directly within F∗.

2.1.4 DY
∗
, type-based proofs with trace semantics

DY∗ [43] is a recent tool that combines the two aforementioned approaches: [43]: Bhargavan et al. (2021), DY*: A Mod-
ular Symbolic Verification Framework for
Executable Cryptographic Protocol Code

DY∗ users do type-based symbolic proofs (see §2.1.3) but obtain security
guarantees expressed with trace semantics (see §2.1.2) without relying
on an extra pen & paper proof to ensure its soundness, because the
soundness proof is mechanized within the F∗ proof assistant. In short,
DY∗ defines trace semantics within F∗, which allows stating security
properties using trace semantics, as with ProVerif or Tamarin. These
security properties are then proved using type-based symbolic proof
techniques, which are proven sound within F∗.

Because the soundness theorem is machine-checked, this allows to gain
confidence when extending the feature set of DY∗, these extensions then
allows to have better expressivity than previous type-based approaches.

Dynamic compromise. DY∗ has native support for dynamic compromise,
therefore can reason on forward secrecy or post-compromise security.
This is difficult to express in type-based symbolic proofs where the only
way to encode trace properties is using refinement types.

Equational theories. DY∗ can reason on cryptographic functions that
rely on equational theories, such as Diffie-Hellman which exhibits a
commutative-like behavior.

Mutable state. DY∗ supports reasoning on protocols with mutable state.
This is a requirement to prove forward secrecy or post-compromise
security properties on ratcheting protocols.

All of these features will be crucial when conducting security proofs for
Messaging Layer Security [21] in Chapter 5 and Chapter 6. [21]: Barnes et al. (2023), The Messaging

Layer Security (MLS) Protocol

2.2 Symbolic analysis with DY
∗

This section explains the inner workings of DY∗ when I started using it.
Even if this section describes the work from the original DY∗ paper [43], [43]: Bhargavan et al. (2021), DY*: A Mod-

ular Symbolic Verification Framework for
Executable Cryptographic Protocol Code

we will use notations and terminology from the new version of DY∗ we
developed and will describe in Chapter 3.

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 21

2.2.1 Cryptographic protocols in DY
∗

Each tool has its own way to specify protocols and represent an attacker,
in this section we describe how DY∗ does it.

Protocol participants in DY
∗
. Recall (§2.1.2) that protocol participants

are state machines that may perform impure actions (i.e. actions that are
not the result of computing pure mathematical functions, such as sending
a message, storing state, or generating fresh randomness), and that these
impure actions are performed by writing them in a trace: a global, shared,
append-only log of every impure action that happened during a protocol
execution. In DY∗, we specify protocol participants by implementing their
state machine via a set of effectful functions that perform the transition
from one state to another. The effect of these functions is handled by
reading and modifying the trace: protocol participants can read messages
from the network or retrieve states by obtaining them from the trace,
they can send messages on the network or store states by appending
corresponding entries in the trace.

Compromise. In the real world, secret state stored by a participant may
leak to the attacker (e.g. a telephone is seized by the police, or a laptop is
hacked using a zero-day exploit). To capture this, the DY∗ attacker may
compromise the state of protocol participants, thereby extending their
set of known bytestrings. Therefore, all security properties are expressed
"modulo compromise", for example we do not say that the attacker never
knows a secret value, we say that the attacker needs to perform some
compromise in order to know a secret value. To express this kind of
property, the compromise is represented as an entry in the trace.

The DY
∗
attacker. The attacker is then an F∗ function that can call any cryp-

tographic functions and can call the various effectful functions defined
by the protocol specification. Any symbolic attack can be represented by
such an F∗ program.

2.2.2 Proving trace properties with DY
∗

In this section, we give an overview of the techniques used by DY∗ to
prove trace properties, which will be further developed in later sections.

Suppose we defined a protocol specification in DY∗, and we know that
symbolic attackers for this protocol are F∗ programs that are restricted to
use a specific API (computing cryptographic functions, and interact with
the protocol). We now want to prove that all traces reachable by such
attackers satisfy some security properties.

Trace invariant. To do so, DY∗ requires users to strengthen the desired
security properties to obtain a trace invariant, then prove that every
reachable trace satisfies this trace invariant. We do so by requiring DY∗
users to prove that every effectful protocol function preserves the trace
invariant, then, because every function used by the attacker preserves the
trace invariant, the attacker function has no choice but to also preserve
the trace invariant. This concludes that the attacker can only reach traces
that satisfy the security properties. For usability, DY∗ doesn’t actually
require users to provide full-fledged trace invariant; instead DY∗ provides
a basic skeleton for trace invariant, and allows users to complete it with
protocol-specific invariants. This also allows DY∗ to prove once and for
all that when the attacker receives messages or compromises states,

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 22

computes cryptographic functions and sends the result on the network,
this preserves the trace invariant. See §2.2.9 for more details about the
trace invariant.

Bytes invariant. A key ingredient of the trace invariant is the bytes
invariant, which describes what is a “hygienic use of cryptography” by
honest participants; for example they may only sign bytestrings that
verify some property (which is specific to each protocol, and captures the
meaning of the signature), or they may only encrypt messages to keys
that are “more secret” than the message (to ensure the attacker cannot
use the ciphertext and the key they know to learn something they are not
allowed to). The bytes invariant is an invariant on all the bytes that appear
in the protocol, whether computed by honest protocol participants or
by the attacker. The bytes invariant relies on lower-level tools described
below, such as labels or key usages. See §2.2.8 for more details about the
bytes invariant.

Labels. Sharing ideas with Information Flow, labels capture what it
means for a bytestring to be “more secret” than another. Every bytestring
is associated with a label, and two labels can be compared to determine
whether one is more secret than the other. The order between labels
depends on the compromise events in the trace: when an attacker com-
promises the state of a principal, the label corresponding to this state will
become equivalent to the public label. Then, the Attacker Knowledge
Theorem (described below) will guarantee that any bytestring known by
the attacker has a label equivalent to the public label. See §2.2.6 for more
details about labels.

Key usage. Security proofs (whether symbolic or computational) often
rely (sometimes implicitly) on the fact that some keys are distinct from
each other. For example, if we prove a security theorem on TLS, we
implicitly assume that we are not using the same long-term keys (say) in
SSH. Indeed, if TLS and SSH were to share long-term keys, we would
need to do a combined security proof to ensure there is no cross-protocol
attack. Another example, computational security proofs rely on the fact
that signature keys are not used to encrypt: doing so would prevent
applying the standard EUF-CMA security assumption. In more generality,
it is good hygiene to make sure a key is used with only one cryptographic
primitive. In DY∗, cryptographic keys are associated with a usage, which
ensures that two keys with different purposes are distinct. See §2.2.7 for
more details about key usages.

Attacker knowledge theorem. A key ingredient to prove confidentiality
theorems is the Attacker Knowledge Theorem, which states that the attacker
only knows bytestrings (1) that satisfy the bytes invariant, and (2) whose
label is equivalent to the public label. This allows to prove confidentiality
properties as follows: if the attacker knows some secret key (of which we
know the label, e.g. only Alice is supposed to know that key), then by the
Attacker Knowledge Theorem, the label of that key is equivalent to the
public label, which can only happen if some compromise has happened
(e.g. the attacker has compromised Alice). See §2.2.10 for more details
about the Attacker Knowledge Theorem.

Outline. We just gave an overview of DY∗, the rest of this section will
explain DY∗ in details and proceed as follows:

▶ define symbolic bytes (§2.2.3)
▶ define the trace (§2.2.4)

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 23

▶ define attacker knowledge (§2.2.5)
▶ define labels (§2.2.6)
▶ define key usages (§2.2.7)
▶ define the bytes invariant (§2.2.8)
▶ define the trace invariant (§2.2.9)
▶ state the attacker knowledge theorem (§2.2.10)
▶ and discuss (§2.2.11)

2.2.3 Symbolic bytes

// Step 1: define the bytes type and equality predicate

type bytes =
| SymEnc: key:bytes→ plaintext:bytes→ bytes
| SymDec: key:bytes→ ciphertext:bytes→ bytes
// ...

let bytes_equal (lhs:bytes) (rhs:bytes): prop =
// ...

// Step 2: define encryption and decryption functions

let sym_enc (key:bytes) (plaintext:bytes): bytes =
SymEnc key plaintext

let sym_dec (key:bytes) (ciphertext:bytes): bytes =
SymDec key ciphertext

// Step 3: prove the reduction rule for symmetric encryption.

val decrypt_encrypt_equal:
key:bytes→ plaintext:bytes→ Lemma (
bytes_equal
(sym_dec key (sym_enc key plaintext))
plaintext

)

(a) Straightforward definition for symbolic bytes. The reduc-
tion lemma uses a custom equality relation (bytes_equal). The
symmetric encryption and decryption are only wrappers
around constructors of bytes.

// Step 1: define the bytes type and equality predicate

type bytes =
| SymEnc: key:bytes→ plaintext:bytes→ bytes
| SymDec: key:bytes→ ciphertext:bytes→ bytes
// ...

// no ‘bytes_equal‘, we rely on F*’s standard equality (==)

// Step 2: define encryption and decryption functions

let sym_enc (key:bytes) (plaintext:bytes): bytes =
SymEnc key plaintext

let sym_dec (key:bytes) (ciphertext:bytes): bytes =
match ciphertext with
| SymEnc key’ plaintext→
if key = key’ then plaintext
else SymDec key ciphertext

| _→ SymDec key ciphertext

// Step 3: prove the reduction rule for symmetric encryption.

val decrypt_encrypt_equal:
key:bytes→ plaintext:bytes→ Lemma (
sym_dec key (sym_enc key plaintext)
==
plaintext

)

(b) More usable definition for symbolic bytes. The reduction
lemma uses F∗’s built-in equality (==). To do that, symmetric
decryption checks whether the ciphertext is a symmetric
encryption under the key that was used for encryption.

Figure 2.3: Definition of symbolic bytes in F∗

We now describe how DY∗ models symbolic bytestrings. As a running
example, we will show how to model symmetric encryption (without
nonces nor additional data, for simplicity).

Concrete cryptography. To understand symbolic cryptography, we must
first put it in contrast with concrete cryptography. In the real world, when
we use an encryption function to encrypt some data with some key, the
key and data are concrete sequences of bytes (that you can e.g. print
out), and the output is another concrete sequence of bytes. The actual
result will depend on the encryption algorithm being used, however,
any encryption algorithm must ensure that when we use the decryption

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 24

function on the encrypted data with the same key, we will obtain the
original data back. This property is a functional correctness property, and
is crucial to ensure that the encryption algorithm is actually useful.

Symbolic cryptography. In the symbolic world, cryptographic functions
are uninterpreted. For example, when using an encryption function,
we do not actually compute the actual encryption algorithm, we simply
remember that the output is the encryption of a given data with a given
key. Because of this uninterpreted nature, symbolic bytestrings are often
called “terms”.1 Despite being uninterpreted, symbolic cryptographic 1: e.g. both in the ProVerif manual and

the Tamarin manualfunctions must obey some properties, namely the functional correctness
properties. For symmetric encryption, this property is:

sym_dec(k, sym_enc(k,msg)) == msg

In the symbolic world, it is the only property obeyed by symmetric
encryption, hence the only way to recover the plaintext from a ciphertext
is to decrypt it with the corresponding key, or in other words, it is
impossible to decrypt an encrypted message without the key.

Straightforward F
∗

definition. In Figure 2.3a we do a naive attempt at
implementing symbolic bytestrings in F∗. We implement bytestrings as an
inductive type that describes how cryptographic functions were used to
obtain the bytestring. With this approach, encryption and decryption do
not satisfy the functional correctness property of symmetric encryption,
because in F∗, SymDec key (SymEnc key msg) is different from msg. To
solve this problem, we introduce a custom equality relation named
bytes_equal. With this new notion of equality between bytestrings, we
can now ensure that encryption and decryption satisfy the functional
correctness property of symmetric encryption.

Proofs and bytes_equal. This new equality on bytestrings must satisfy In the notes below, we will temporarily
write 𝑥 ≃ 𝑦 for bytes_equal x ythe standard properties of equality, namely reflexivity,2 symmetry,3
2: ∀𝑥.𝑥 ≃ 𝑥
3: ∀𝑥, 𝑦. 𝑥 ≃ 𝑦 ⇒ 𝑦 ≃ 𝑥

transitivity,4 and congruence.5 There are two problems with this approach.

4: ∀𝑥, 𝑦, 𝑧. 𝑥 ≃ 𝑦 ∧ 𝑦 ≃ 𝑧 ⇒ 𝑥 ≃ 𝑧
5: ∀ 𝑓 , 𝑥, 𝑦. 𝑥 ≃ 𝑦 ⇒ 𝑓 (𝑥) ≃ 𝑓 (𝑦) (and
same for functions with arity ≥ 2)

First, it means that the designers of DY∗ must prove these properties on
bytes_equal, which can be tedious (especially for the congruence property
that must be stated for every cryptographic function). Second, it means
that DY∗ users need to rely on these properties when doing security
proofs. This introduces an additional burden on the user, which we can
avoid.

Better F
∗

proof-engineering. In Figure 2.3b we show how to better
implement symbolic bytestrings in F∗. Now, the decryption function
checks whether the ciphertext is an encryption under the good key. When
this is the case, it returns the corresponding plaintext, otherwise it uses
SymDec as before. Doing this allows to state the functional correctness
property of symmetric encryption using F∗’s built-in equality (==). The
benefit is that F∗ reasons natively, automatically and efficiently on the
reflexivity, transitivity and congruence of its built-in equality.

Normal form of bytestrings. This approach requires finding a normal
form for every bytestring, so that two equal bytestrings have the same
normal form; and requires every cryptographic function to keep the bytes
in normal form. This requirement is easy to satisfy in practice, for example
by using the encryption / decryption trick explained above. For crypto-
graphic functions that feature commutativity (such as Diffie-Hellman), it
suffices to use an arbitrary comparison function on bytestrings and sort
the operands of this cryptographic function. Note that we can do this

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 25

because our bytes term is fully concrete: it doesn’t contain any variable
term that could be instantiated later, unlike the bytes terms in ProVerif
or Tamarin.

2.2.4 Trace

We now describe how traces are represented in DY∗.

List of impure actions. The trace is the list of impure actions that
happened throughout the protocol execution. In Figure 2.4, we define
the trace as a list of trace entries and trace entries as a sum type for each
entry type. We will describe the various actions (hence each entry type)
in the next paragraphs and define notation that we will use throughout
the rest of the chapter.

By convention, we will use the letter 𝜏 to note traces. Several propositions
will depend on an ambient trace 𝜏, when this is the case, we will use
the notation 𝜏 ⊢ · · · to say that propositions in “· · · ” rely on the trace
𝜏, for example 𝜏 ⊢ F(𝑥) is another way of writing that the proposition
F(𝜏, 𝑥) is true. We may sometimes omit 𝜏 ⊢ and keep it implicit to avoid
cluttering formulas. We will also write 𝜏++ · · · when we extend the trace
with new entries.

type trace_entry =
| SendMsg: bytes→ trace_entry
| SetState: principal→ state_id→ bytes→ trace_entry
| Compromise: principal→ trace_entry
| RandGen: nat→ label→ usage→ trace_entry
| CustomEvent: principal→ string→ bytes→ trace_entry

type trace = list trace_entry
Figure 2.4: Definition of the trace in F∗.

Sent-SendMsg

𝜏++SendMsg(b) ⊢Bb

Sent-Append
𝜏 ⊢Bb

𝜏++entry ⊢Bb

Figure 2.5: Semantics of Bb.

Sending and receiving message on the network. Protocol participants
communicate with each other by sending messages on one end and
receiving them on the other end. When a participant sends a message,
the trace is extended with a SendMsg entry. However, when receiving
messages, the trace is not extended: instead, participants receive a message
corresponding to a SendMsg entry. We model the fact that the attacker is
active using the fact that the attacker can read any message sent on the
network, that they can themselves send messages on the network, and
that they choose which message sent on the network protocol participant
will actually receive. When a message b was sent on the network (with
respect to a trace 𝜏), that is, 𝜏 contains the entry SendMsg b, we write
𝜏 ⊢Bb. We show its precise semantics in Figure 2.5.

Stored-SetState

𝜏++SetState(P, sid, b) ⊢ Pbb

Stored-Append
𝜏 ⊢ Pbb

𝜏++entry ⊢ Pbb

Figure 2.6: Semantics of Pbb.

Setting and retrieving state. Protocol participants can store state, for
example short-term keys when waiting for the response of other par-
ticipants, or long-term keys that are used in multiple sessions. When
a participant stores state, the trace is extended with a SetState entry.
Similarly to receiving messages, when participant retrieve some previ-
ously stored state, they receive a bytestring corresponding to a SetState
entry. Participant differentiate between their multiple states using a state
identifier, which acts as a pointer. When a principal P stored a bytestring b
(with respect to a trace 𝜏), that is, 𝜏 contains the entry SetState P sid b for
some state identifier sid, we write 𝜏 ⊢ Pbb (we omit the state identifier
for simplicity). We show the semantics of state storage in Figure 2.6.

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 26

Compromised-Compromise

𝜏++Compromise(P) ⊢ �P

Compromised-Append
𝜏 ⊢ �P

𝜏++entry ⊢ �P

Figure 2.7: Semantics of �P.

Compromise. The attacker can compromise the state of any principal.
When they do so, the trace is extended with a Compromise entry which
contains the identity of the compromised principal. When the state of
a principal 𝑃 has been compromised (with respect to trace 𝜏), we write
𝜏 ⊢ �P We show the semantics of compromise in Figure 2.7.

In reality, the Compromise entry also contains the state identifier that was
compromised, we chose to omit it from this presentation for simplicity.
In later version of DY∗ (Chapter 3) the Compromise entry will be even
more fine-grained and point to specific SetState entry.

type bytes =
| Rand:

timestamp→
nat→ label→ usage→
bytes

| ...

Figure 2.8: The “fresh randomness” con-
structor of bytes.

Generating fresh randomness. Protocol participants and the attacker
can generate fresh random bytestrings. When they do so, the trace is
extended with a RandGen entry. This entry contains various properties
of the bytestring: its length, its label and its usage. Looking at the bytes
type (Figure 2.8), the Rand constructor also contains the properties of
the bytestring, as well as a timestamp: this is the index in the trace of
the corresponding RandGen entry. This ensures that two fresh random
bytestrings with the same properties will be different, because they will
contain different timestamps.

Later, in §3.3, we will revisit the Rand constructor of bytes so that it only
contains its timestamp and length, but in the original DY∗ (hence this
section) it also contains the label and usage.

Logging protocol-specific event. Finally, protocol participants can log
custom, protocol-specific events, for example “I am Alice, I finished a
handshake with Bob and obtained the key 𝑘”. Such events are crucial
to state authenticity theorems, which are usually of the form “if Alice
logged the event that she finished a handshake with Bob, then before,
Bob must have logged the event that he initiated a handshake with Alice”.
Logging an event extends the trace with a CustomEvent entry.

type traceful (a:Type) =
trace→ (a & trace)

let send_msg (b:bytes): traceful unit =
𝜆 tr→ ((), (SendMsg b)::tr)

Figure 2.9: Definition of the trace monad.

Implementing protocol steps in F
∗
. Now that we defined the trace

and showed how we model participants doing impure actions, we can
implement protocol steps in F∗ as functions that work in a state monad,
where the state is a trace. Furthermore, the state is monotonic, because
the trace only grows. We show a slightly simplified definition of the trace
monad in Figure 2.9. In practice, when implementing protocol steps, the
trace is hidden from DY∗ users thank to helper functions that abstract
the trace away: for example, when sending messages on the network,
DY∗ users are not expected to manually append SendMsg entries, instead,
they will rely on a function send_msg that will append the corresponding
SendMsg entry. In the end, when implementing protocol steps, DY∗ user
will never manipulate the trace directly, they will always do so using
helper functions similar to send_msg and combine traceful functions
without relying on the actual definition of traceful.

Prefix. During the protocol execution, the trace is extended with every
impure action performed by participants or by the attacker. Hence, if at
some point in the protocol execution, the trace is 𝜏1, and later on, the
trace is 𝜏2, it must be that 𝜏1 is a prefix of 𝜏2, which we write 𝜏1⊆𝜏2.
When 𝜏1⊆𝜏2, we say that 𝜏2 is “later” than 𝜏1. · · · -Later

𝜏1 ⊢ · · · 𝜏1⊆𝜏2

𝜏2 ⊢ · · ·

Figure 2.10: Generic Later inference rule,
that will be found in most predicates and
relation in DY∗.

Trace predicates monotonicity. Predicates and relations in DY∗ generally
depend on the trace because they depend on what happened during
the protocol execution. These predicates and relations will satisfy a key
property being that they stay true when the trace is extended, i.e. when a
property is true, it will stay true in the future. For example, if a message

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 27

was sent on the network (i.e. 𝜏1 ⊢Bb), then later (i.e. 𝜏1⊆𝜏2), the message
will also have been sent on the network (i.e. 𝜏2 ⊢Bb). In full generality,
these predicates and relations (such as Bb) obey a “later” rule, of which
we give a template in Figure 2.10.

2.2.5 Attacker knowledge

Att-Sent
Bb
A(b)

Att-Compromise
�P Pbb

A(b)

Att-F
A(b1) . . . A(bn)

A(f(b1 , . . . , bn))

Figure 2.11: Semantics of attacker knowl-
edge. The 𝜏 ⊢ is left implicit when there
is only one trace (i.e. everywhere). The
rule Att-F is a generic rule, where f is any
cryptographic function.

We now formally define the attacker knowledge. What bytestrings are
known by the attacker depends on the messages sent on the network,
and on the states compromised by the attacker. Therefore, the attacker
knowledge depends on the trace.

Notation. We write 𝜏 ⊢ A(b)when the attacker knows b for a trace 𝜏.

Definition. We give the semantics of attacker knowledge in Figure 2.11.
The attacker knows all messages sent on the network (Att-Sent), and all
compromised bytestrings (Att-Compromise). Furthermore, the attacker
can compute any cryptographic functions on bytestrings they already
know (Att-F). In practice, we have one rule per cryptographic function,
we give an example for symmetric encryption / decryption in Figure 2.12
(Att-Encrypt and Att-Decrypt).

Att-Encrypt
A(key) A(plaintext)

A(sym_enc(key, plaintext))

Att-Decrypt
A(key) A(ciphertext)

A(sym_dec(key, ciphertext))

Figure 2.12: Example instances of the
Att-F rule, for symmetric encryption and
decryption.

Example. If a ciphertext is sent on the network and the corresponding
symmetric key has been compromised by the attacker, then the attacker
knows the plaintext. This is knowledge is the result of the following
derivation:

Att-Compromise
�P Pbkey

A(key)
Bsym_enc(key, plaintext)
A(sym_enc(key, plaintext))

Att-Sent

A(sym_dec(key, sym_enc(key, plaintext))︸ ︷︷ ︸
plaintext

)
Att-Decrypt

Implementing attacker knowledge in F
∗
. The attacker knowledge predi-

cate is the weakest predicate that obeys the rules defined in Figure 2.11.
We implement it in F∗ as a Kleene’s least fixpoint [60] in the following [60]: Kleene (1952), Introduction to Meta-

mathematicsway: we define an increasing sequence of attacker knowledge predi-
cates A𝑛(□), then define the attacker knowledge as A(b) := ∃𝑛.A𝑛(b).
We define A𝑛(□) inductively on 𝑛 (we omit 𝜏 ⊢ everywhere to avoid
clutter):

A0(b) :=⊥
A𝑛+1(b) :=Bb (Att-Sent)

∨ (∃𝑃.�P ∧ Pbb) (Att-Compromise)
∨
(
∃b1 , . . . , bn.b = 𝑓 (b1 , . . . , bn) ∧ ∀i.A𝑛(bi)

)
(Att-F)

∨ . . . (etc. for each 𝑓)

Intuitively, A𝑛+1(b) corresponds to bytestrings that can be computed
using at most 𝑛 nested cryptographic function calls. As a sanity check,
we prove in F∗ that this definition of A(□) indeed obeys the rules defined
in Figure 2.11.

Att-Later
𝜏1 ⊢ A(b) 𝜏1⊆𝜏2

𝜏2 ⊢ A(b)

Figure 2.13: Monotonicity lemma for the
attacker knowledge

Monotonicity. The attacker knowledge predicate is monotonic when the
trace grows, the attacker knows more bytestrings, because new messages
are sent on the network or new compromise happen. This property is

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 28

stated in Figure 2.13, and is easily proved from the definition of the
attacker knowledge (Figure 2.11).

Proving with attacker knowledge. In the next section, we will define
an over-approximation of the attacker knowledge using the concept of
labels. It will be useful in confidentiality proofs, where we typically want
to prove that if the attacker knows some secret key, then they must
have performed some compromise to obtain it. This type of property
can soundly be proved using an over-approximation of the attacker
knowledge.

2.2.6 Security labels

Security labels are the main workhorse of DY∗ to reason on the secrecy
of bytestrings. For example, labels can express properties such as “this
key is a secret of Alice”, which means that if the attacker knows this key,
then they must have compromised Alice.

Overview

We first give a high-level overview of labels before diving into their
precise semantics.

Labels as an over-approximation. Every bytestring is associated with
a security label which encodes an over-approximation of compromises
that may lead the attacker to know this bytestring. In other words, if the
attacker knows some bytestring b (with respect to trace 𝜏), the label of b
will guarantee that some compromises must have happened (in trace 𝜏),
that is, the attacker must have compromised some set of principals.

Not just set of principals. Given this description, one might think
that the label of b is simply a set, namely the smallest set of principals
to compromise in order to compute the bytestring b. In reality, labels
are more complex than sets of principals: they are predicates on set of
principals, saying whether compromising this set of principals is enough
to learn the secret with this label.

As an example why it is not the case, consider a bytestring b which mixes
(e.g. using a KDF) a shared secret between Alice and Bob with a shared
secret between Bob and Charlie. By construction, only Bob knows the
secret b. For the attacker to learn the secret b, the attacker could of course
compromise Bob, but could also compromise both Alice and Charlie.
This means that although the secret b is only known by Bob, it is not as
secret as a key generated by Bob himself.

Comparing labels. Some secret bytestrings are less secret than others.
For example, if Alice and Bob share a secret using a Diffie-Hellman
computation, then the shared secret is less secret than Alice’s Diffie-
Hellman private key, because the latter can be used to compute the
former. This notion of “less secret” is lifted to labels, using a relation
dubbed can flow, where less secret labels flow to more (or equally) secret
labels. This notion of “less secret” depend on the compromises that
happened: if a key has been compromised by the attacker, from the
viewpoint of the attacker this key is morally public, hence is effectively
“less secret” than public bytestrings. In other words, after compromising

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 29

the key, its label flows to the public label. We will see in the rest of this
section that labels have a lattice structure.

Not just compromises. In the original DY∗ (hence in this section), labels
could only talk about the existence of compromises in the trace. In §3.2
we will generalize labels to talk about any kind of events, as well as
temporal relations between these events, etc. Hence, the correct and
general intuition on labels is the following: the label of a bytestring b
encodes an over-approximation of the traces where the attacker knows b.
More formally, the attacker knowledge of b is a trace predicate (that is,
𝜏 ↦→ (𝜏 ⊢ A(b))), and the label of b encodes a trace predicate 𝐿 which is
weaker than attacker knowledge, that is:

∀𝜏. (𝜏 ⊢ A(b)) =⇒ 𝐿(𝜏)

(this is a simplified version of the Attacker Knowledge Theorem, that we
precisely describe in §2.2.10). The original DY∗ presents the restriction
that labels can only encode trace predicates 𝐿 that express the existence of
compromise events in the trace; we will remove this restriction in §3.2.

Labels as a restriction. We previously said that the label of a bytestring
b encodes an over-approximation of the events that led the attacker to
know b. For the label to effectively be an over-approximation, it means
that label of b will restrict how honest participants may use b. Equipped
with the notion of labels being “less secret” than others, we now hint at
what are these restrictions, which we will properly formalize later with
the bytes invariant (§2.2.8). The restrictions will ensure that if the attacker
knows b (with respect to a trace), then the label of b must be less secret
than (hence equivalent to) the public label (with respect to this trace),
which in turn, by the semantics of labels, will imply that some events
must have happened in the trace.

When a participant sends a bytestring b on the network, they will be
allowed to do so only when the label of b is less secret than (hence
equivalent to) the public label; this forbids sending e.g. secret keys on
the network, thereby making them known to the attacker.

When a participant encrypts some data with a key, they will be allowed
to do so only when the data’s label is less secret than the key’s label; this
ensures that if the attacker knows the ciphertext (e.g. because it was sent
on the network) and knows the key (e.g. via compromise), the attacker
will not learn more secrets by decrypting the ciphertext. Speaking with
the language of labels, when the attacker knows the key, the key’s label
must be equivalent to the public label, hence because the data’s label is less
secret than the key’s label, the data’s label must also be equivalent to the
public label. Therefore, this restriction preserves the over-approximation
property of labels when the attacker e.g. compromises the encryption
key.

When a participant stores some bytestring b in their state, they will be
allowed to do so only when the label of b is less secret than the label
corresponding to the state they are storing, this ensures that when com-
promising this state, the label corresponding to this state will become
equivalent to the public label, hence the label of b will also become equiv-
alent to the public label, therefore preserving the over-approximation
property of labels.

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 30

Semantics

We now formally describe the semantics of labels, which have the structure
of a trace-dependent bounded lattice. We will not yet describe how labels
are implemented in F∗, and leave this task for §3.2.

Flow-Refl

ℓ≳ℓ

Flow-Trans
ℓ1≳ℓ2 ℓ2≳ℓ3

ℓ1≳ℓ3

Flow-Later
𝜏1 ⊢ ℓ1≳ℓ2 𝜏1⊆𝜏2

𝜏2 ⊢ ℓ1≳ℓ2

Flow-Public

⊤≳ℓ

Flow-Secret

ℓ≳⊥

Flow-Compromise-Elim
𝜏 ⊢ �P

𝜏 ⊢ 𝑃≳⊤

Flow-Compromise-Intro
𝜏 ⊢ 𝑃≳⊤
𝜏 ⊢ �P

Flow-Meet-Eq-Elim
𝑖 ∈ {1, 2} ℓ1⊓ℓ2≳ℓ3

ℓ𝑖≳ℓ3

Flow-Meet-Eq-Intro
ℓ1≳ℓ2 ℓ1≳ℓ3

ℓ1⊓ℓ2≳ℓ3

Flow-Join-Eq-Elim
𝑖 ∈ {2, 3} ℓ1≳ℓ2⊔ℓ3

ℓ1≳ℓ𝑖

Flow-Join-Eq-Intro
ℓ1≳ℓ2 ℓ1≳ℓ3

ℓ1≳ℓ2⊔ℓ3

Flow-Join-Public
ℓ1⊔ℓ2≳⊤

ℓ1≳⊤ ∨ ℓ2≳⊤

Figure 2.14: Inference rules for labels.
The 𝜏 ⊢ is left implicit when there is
only one trace, i.e. everywhere except
in the Flow-Later rule or in the Flow-
Compromise-· · · rules to emphasize that
compromise depends on the trace: the
label lattice is dynamic because of the
Flow-Compromise-· · · rules.

Notation. When the label ℓ1 flows to the label ℓ2 with respect to the trace
𝜏, that is, ℓ1 is “less secret” than ℓ2, we write

𝜏 ⊢ ℓ1≳ℓ2

We may leave 𝜏 implicit and write

ℓ1≳ℓ2

The semantics of labels are formally written in Figure 2.14 and discussed
below.

Public. Labels have a maximum element, the public label, noted ⊤ (see
Flow-Public), which represents all the bytestrings that may be known
by the attacker; this will be formally proven in the Attacker Knowledge
Theorem (§2.2.10).

Secret. Labels have a minimum element, the secret label, noted ⊥ (see
Flow-Secret), which represents bytestrings known by nobody: no amount
of compromise may reveal a secret bytestring to the attacker. Although
unrealistic, this label is sometimes useful to do proofs cleverly (e.g. using
it as a neutral element for ⊔ that we introduce in a few paragraphs).

Compromised principals. When a principal is compromised (for a given
trace), then the label corresponding to this principal flows to public
(Flow-Compromise-Elim). The converse is also true, if we know that the
label corresponding to a principal flows to public, then we deduce that
this principal is compromised (Flow-Compromise-Intro).

We also have labels for principals and specific state identifiers, but as
discussed in §2.2.4 we omit state identifiers for simplicity.

Meet. Labels can be intersected: this is useful for example when mixing
keys with HKDF.Extract, the resulting key label will be the intersection
of the input key labels. The intersection (or “meet”) of two labels, noted
ℓ1⊓ℓ2, follows the standard of greatest lower bound equivalence (Flow-
Meet-Eq-Elim and Flow-Meet-Eq-Intro).

Join. Labels can be united: for example when two Diffie-Hellman
keyshares are combined, the Diffie-Hellman shared secret label is the
union of the private key labels. The union (or “join”) of two labels, noted
ℓ1⊔ℓ2, follows the standard least upper bound equivalence (Flow-Join-
Eq-Elim and Flow-Join-Eq-Intro).

The DY∗ labels further obey a non-conventional rule in the world of
lattices, Flow-Join-Public, which states that if the union of two labels
flows to public, then one of the two labels must flow to public. This is
useful in combination with Flow-Compromise-Intro: if we know that
𝐴⊔𝐵≳⊤we can deduce 𝐴≳⊤ or 𝐵≳⊤ (by Flow-Join-Public), hence �A
or �B (by Flow-Compromise-Intro).

Monotonicity. The label lattice depends on the trace, because as the trace
grows, new participants will be compromised, hence more labels will

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 31

flow to ⊤. This dependency on the trace is tamed by the rule Flow-Later:
the relation ≳ is preserved by extending the trace.

Flowing to the public label. In Figure 2.14, we may notice a special
citizen in the semantics: ℓ≳⊤.

𝑃≳⊤ ⇐⇒ �PIndeed, if ℓ is a label corresponding to a principal, ℓ≳⊤ is equivalent
to the principal being compromised (via Flow-Compromise-Intro and
Flow-Compromise-Elim).

ℓ1⊓ℓ2≳⊤ ⇐⇒ (ℓ1≳⊤ ∧ ℓ2≳⊤)If ℓ is a meet (ℓ1⊓ℓ2) then ℓ≳⊤ is equivalent to ℓ1≳⊤ and ℓ2≳⊤ (by setting
ℓ3 = ⊤ in Flow-Meet-Eq-Intro and Flow-Meet-Eq-Elim).

ℓ1⊔ℓ2≳⊤ ⇐⇒ (ℓ1≳⊤ ∨ ℓ2≳⊤)Finally, if ℓ is a join (ℓ1⊔ℓ2) then ℓ≳⊤ is equivalent to ℓ1≳⊤ or ℓ2≳⊤ (the
forward implication is simply Flow-Join-Public, the backward implication
is proved by using Flow-Join-Eq-Elim with ℓ1⊔ℓ2≳ℓ1⊔ℓ2 and using Flow-
Refl, Flow-Trans and Flow-Public).

Therefore, 𝜏 ⊢ ℓ≳⊤ morally means that ℓ is “bad”:6 for this to happen, 6: this notion of labels being “bad” will
be discussed more thoroughly in §3.2enough compromises must have happened it 𝜏. In the Attacker Knowledge

Theorem (§2.2.10), we will prove something along the lines of: when a
bytestring b has label ℓ , if the attacker knows b (i.e. 𝜏 ⊢ A(b)) then ℓ must
flow to the public label (i.e. 𝜏 ⊢ ℓ≳⊤).

Bytestrings and labels

We compute the label ℓ corresponding to a bytestring b by induction on
the bytestring term, and write it L(b). We discuss below the definition of
L(b) for various cryptographic primitives.

Label of fresh random bytestrings. When a participant generates a fresh
random bytestring, they decide what is its label. For example, when Alice
generates her private long-term keys, she will choose the label Alice, but
when she generates a shared symmetric key with Bob, she will choose the
label Alice ⊔ Bob, thereby making it safe to encrypt with Bob’s private
keys.

Label of public keys. When a participant transforms their private key
into a public key, the public key label will be, unsurprisingly, public. This
allows them to safely broadcast their public key on the network.

Label of Diffie-Hellman shared secrets. When a participant computes a
Diffie-Hellman shared secret, the label of the resulting key will be the
join of the two private key labels. This models the fact that if the attacker
knows the shared secret, then they must know one of the two private
keys.

Label of ciphertexts. When a participant encrypts a plaintext using
public-key encryption or a private-key (i.e. symmetric) encryption, the
label of the resulting ciphertext is public: it means it is safe to reveal to
the attacker, e.g. by sending it on the network. This models the fact that
the ciphertext leaks no information about the plaintext (except its length)
when the key is not known by the attacker.7

7: When the key is known by the at-
tacker, thanks to the restriction that one
must only encrypt data less secret than
the key (discussed previously and in
§2.2.8), the plaintext will also be con-
sidered safe to reveal to the attacker.

Label of signatures and MACs. When a participant authenticates a
bytestring via signature or Message Authentication Code (MAC), the
signature or tag label has the same label as the authenticated bytestring.

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 32

Indeed, standard cryptographic assumptions on these primitives guar-
antee authenticity (via the EUF-CMA security assumption), but do not
provide any guarantee of the secrecy of the authenticated bytestring.

Label of derived keys. DY∗ models Key Derivation Functions (KDF)
following the interface of HKDF, where protocols sometimes use sep-
arately the internal functions HKDF.Extract and HKDF.Expand. First,
HKDF.Extract transforms a non-uniform key (such as a Diffie-Hellman
shared secret) into a uniform key, or combines two keys into one.
Then, HKDF.Expand derives keys from the extracted key and an “info”
bytestring. We can derive several keys by using HKDF.Expand with
several distinct “info” bytestrings.

The output label of HKDF.Extract is therefore the meet of its two input
key labels, modeling the fact that the attacker must know both input keys
to compute the extracted key.

The output label of HKDF.Expand in practice depends on the “info”
bytestring, in a protocol-specific way. Indeed, we may want to do things
with the derived key that we are not allowed to do with the extracted
key, such as encrypting it to new people, storing it in some intermediate
state, or even publishing it on the network. Therefore, DY∗ expects the
user to provide a function that computes the derived key label from the
input key label, input key usage (see §2.2.7) and “info” bytestring.

Label of concatenation. When a user concatenates two bytestring, the
label of the concatenation is the meet of the two concatenated bytestrings.
Indeed, the attacker must know the two concatenated bytestrings to know
their concatenation. It may not seem intuitive, because if the attacker
only knows one bytestring, then they still have partial knowledge of the
concatenated bytestring, hence the label should be a join? This would be
unsound: if the label were a join, the concatenation of a secret key and
a public bytestring would be public, hence safe to send on the network.
Using a meet ensures that each of the concatenated bytestrings must
be public for the concatenation to be public, hence safe to send on the
network.

2.2.7 Key usages

Cryptographic protocols security often rely on the fact that keys are not
used for too many purposes. We first give some examples to explain why,
then show how DY∗ enforces this when writing security proofs.

Keys across protocols. For example, if we are proving the security of
TLS 1.3, we may implicitly assume that the long-term signature key
(or certificate) is not used in other protocols, for example SSH.8 This is 8: Interestingly, TLS 1.2 and TLS 1.3

may be deployed with the same long-
term signature key. For this reason, TLS
1.3 signature inputs were engineered to
be unambiguous with TLS 1.2 signature
inputs. We will prove this in Chapter 4.

because if the same signature key were used in both protocols, there
could be a cross-protocol attack (or at least, a first step toward such an
attack) that first obtains a signature from SSH then injects it in TLS,
thereby morally doing a signature forgery in TLS, something we assume
is impossible when proving the security of TLS.

Keys across primitives. Moving the discussion from protocols to primi-
tives, their security properties also assume that their keys are not used
with other primitives. For example, signatures are assumed to be un-
forgeable as long as the signature key is (1) kept secret and (2) only used
to compute signatures. If the signature key is used for something else,

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 33

for example to encrypt some data, then the standard unforgeability as-
sumption (EUF-CMA) does not apply anymore, hence cannot guarantee
the unforgeability of signatures.

Digression: in game-hopping computational proofs. In game-hopping
computational security proofs, we may write security assumptions of
primitives as follows (using a formalism similar to [61]): an attacker (with [61]: Rosulek (2021), The Joy of Cryptogra-

phyreasonable computing power) cannot distinguish the games 𝐺1 and 𝐺2,
that is, for all attacker A, we have Pr [A◦ 𝐺1 ⇒ 1] ≈ Pr [A◦ 𝐺2 ⇒ 1].
To apply this assumption on a protocol 𝑃, we decompose 𝑃 = 𝑃′ ◦ 𝐺1,
so that an attacker A on 𝑃 induces the attacker A◦ 𝑃′ on 𝐺1, which
cannot distinguish between 𝐺1 and 𝐺2 by security assumption, therefore
allowing us to perform a game hop.

The game 𝐺1 will typically provide an oracle that samples a fresh random
key, and provide oracles to use this key in the allowed ways. When
proving that 𝑃 can be decomposed in 𝑃′ ◦ 𝐺1, we implicitly prove that
the key in 𝐺1 is distinct (with overwhelming probability) from every
bytestring appearing in 𝑃′.

Digression: distinct keys across primitives in the symbolic model.

In the symbolic model, unlike the computational model, it is not a
problem if a key is used with different cryptographic primitives. Therefore,
symbolic tools such as ProVerif [41] or Tamarin [42] do not verify that keys
are not used with several cryptographic primitives.9

9: Users of these tools could however
verify this as an additional property by
adding custom rules (Tamarin) or pro-
cesses (ProVerif).In DY∗, we decide

to perform this check. Indeed, even if it is not useful to prove symbolic
security properties, DY∗ is more than a symbolic security framework, it is
a tool to analyze cryptographic protocols. Therefore, if DY∗ users cannot
prove that different cryptographic use distinct keys, it hints toward a
design flaw in the protocol under scrutiny and should not be ignored.

Proving pairwise distinctness in DY
∗
. We want to prove many pairs

of keys to be distinct: keys used with different cryptographic primitives,
and keys used with different protocols. We now explain how we prove
this in DY∗, without adding an unreasonable burden on users. Indeed, if
we were to do it naively and prove something for every such pair of keys,
the proof effort would be prohibitive. The intuition behind our proof
methodology is the following: we want to prove a property similar to
injectivity of functions, which states that two outputs are distinct when
inputs are distinct, that is, ∀𝑥, 𝑦. 𝑓 (𝑥) = 𝑓 (𝑦) =⇒ 𝑥 = 𝑦. If we were to
manually check this property, we would need a quadratic number of
checks, which is prohibitive. However, injectivity is equivalent to the
existence of an inverse on the left, that is, ∃𝑔.∀𝑥.𝑔(𝑓 (𝑥)) = 𝑥. If we exhibit
such a 𝑔, then checking injectivity requires a linear number of checks.

type usage =
| SignatureKey: string→ usage
| AeadKey: string→ usage
| KdfKey: string→ usage
...
| NoUsage: usage

val get_usage: bytes→ usage

Figure 2.15: Type in F∗ for key usages.

Key usage. This is what we do in DY∗: every bytestring (hence key) b
is associated with a usage, written U(b) or get_usage b. To prove that
two bytestring are distinct, it now suffices to prove that their usages are
distinct. The usage type (depicted in Figure 2.15) provides two types of
information: the cryptographic primitive corresponding to this key, and
a string describing the protocol where this key is used. A special usage,
NoUsage corresponds to bytestrings that are not keys of cryptographic
primitives.

Key usages as a restriction. The usage of a bytestring will restrict how
honest participants can use them in a cryptographic protocol. For example,
bytestrings with usage SignatureKey ... may be used as a key for signatures,
but cannot be used as a key for encryption. Similarly, bytestrings with

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 34

usage NoUsage cannot be used as a key for any cryptographic primitive.
These restrictions will be properly formalized in the bytes invariant
(§2.2.8).

let rec get_usage (b:bytes): usage =
match b with
| Rand ... usg ...→ usg
| KdfExpand prk info len→

let prk_usage = get_usage prk in
kdf_expand_usage prk_usage info

// ...
| _→ NoUsage

Figure 2.16: Computing key usages, in
F∗. The function kdf_expand_get_usage
must be provided by the user.

Computing the key usage. We compute the usage of a bytestring by
induction on the bytestring term, we show the corresponding F∗ code in
Figure 2.16.

When a participant generates a fresh random bytestring, they decide
what is its usage. Then, get_usage simply returns this chosen usage.

The output usage of a Key Derivation Function (KDF) depends on several
things. First, it depends on the protocol being analyzed, hence, we rely
on the user to provide a function kdf_expand_usage that computes this
usage. Second, it depends on the kind of key used for this KDF (this is the
string in KdfKey in Figure 2.15). Third, it depends on the info bytestring
provided to the KDF; indeed a common usage of KDFs is to derive
multiple keys from a single KDF pseudo-random key (prk) by using
multiple info bytestrings, which may have different usages.

2.2.8 The bytes invariant

In DY∗, we prove security of protocols by proving that honest partici-
pants have a “hygienic” use of cryptography. This informal notion of
“hygiene” is formally captured by the bytes invariant, an invariant on all
the bytestrings that appear in a protocol execution, whether computed by
honest participants or by the attacker. The bytes invariant will effectively
restrict the use of cryptography by honest participants, therefore is de-
signed as a careful trade-off between expressivity and security. Indeed, if
it were too restrictive, in the extreme scenario, honest participants would
not be allowed to do anything, hence all their behaviors would be safe (by
quantification on the empty set); if it were too permissive, in the extreme
scenario, honest participants would be allowed to do anything, including
unsafe behaviors such as sending secret keys on the network.

𝜏1 ⊢B(b) 𝜏1⊆𝜏2

𝜏2 ⊢B(b)

Figure 2.17: The “later” rule for bytes
invariant.

Notation. When a bytestring b obeys the bytes invariant with respect to
trace 𝜏, we write 𝜏 ⊢B(b). As with other DY∗ predicates and relations,
the bytes invariant stays true when the trace grows (see Figure 2.17).

Publishability. When a bytestring b obeys the bytes invariant (𝜏 ⊢B(b))
and its label flows to (hence is equivalent to) the public label (𝜏 ⊢L(b)≳⊤),
we say that b is publishable, and we write 𝜏 ⊢P(b). Publishable bytestrings
will be considered “safe to know” by the attacker. Indeed, in the Attacker
Knowledge Theorem (§2.2.10) we will prove that the attacker only knows
publishable bytestrings, or in other words that publishability is an over-
approximation of the attacker knowledge. Furthermore, we will see in
the trace invariant (§2.2.9) that honest participants are allowed to send
publishable bytestrings on the network; this means that publishability
is a “tight” over-approximation of the attacker knowledge, because
publishable bytestrings may be sent on the network, thereby making
them known to the attacker.

∀𝑖.𝜏 ⊢P(bi)
𝜏 ⊢P(f(b1 , . . . , bn))

Figure 2.18: Every cryptographic func-
tion must preserve publishability.

Preservation of publishability. Because publishability is a “tight” over-
approximation of the attacker knowledge, and because the attacker
knowledge predicate is preserved by computing cryptographic functions
(Att-F in Figure 2.11), so should the publishability predicate. Therefore, a
crucial design principle for the bytes invariant B(□) and for the labeling

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 35

function L(□) is the following: every cryptographic function must pre-
serve publishability. In other words, computing a cryptographic function
on publishable bytestrings must output a publishable bytestring (see
Figure 2.18). This design principle ensures that the bytes invariant B(□) al-
lows the attacker to compute cryptographic functions without restrictions
(unlike honest participants, who must obey “hygiene” rules).

Design principles. Although each cryptographic function enjoys a
tailor-made bytes invariant, the bytes invariant follows some general
design principles. We just saw one of the guidelines: the bytes invariant
must ensure that every cryptographic function preserves publishability,
which allows the attacker to compute any cryptographic function. The
other guidelines will allow honest participants to compute cryptographic
functions (under some conditions).

∀𝑖.𝜏 ⊢B(bi) . . .

𝜏 ⊢B(f(b1 , . . . , bn))

Figure 2.19: The bytes invariant has the
rough shape of an induction principle.

Principle: induction. The bytes invariant has an inductive nature: to
prove that the output of a cryptographic function obeys the bytes invariant,
we will need to prove (among other things) that each one of its inputs
obey the bytes invariant (see Figure 2.19).

U(key) = FKey _ . . .

𝜏 ⊢B(f(key, . . .))

Figure 2.20: The bytes invariant ensures
that we use keys with correct usage.

Principle: correct key usage. In §2.2.7, we saw that every bytestring
is associated to a usage that describes whether it is a key, for what
cryptographic function and what protocol. This entails a design principle
for the bytes invariant: when we use a cryptographic function with a key,
its output will obey the bytes invariant only when the key has the correct
usage (see Figure 2.20). We will later show in §3.4 that we can slightly
weaken this constraint, but in this section we describe the original DY∗,
which follows this design principle.

𝜏 ⊢L(ptxt)≳L(key) . . .

𝜏 ⊢B(enc(key, ptxt, . . .))

Figure 2.21: The bytes invariant ensures
that plaintexts are less secret than keys
used to encrypt them.

Principle: confidentiality. In §2.2.6 we saw that labels encode an over-
approximation of the events that must have happened for an attacker
to know some bytestring, and that therefore labels must restrict how
a bytestring is used by honest participants, to effectively stay an over-
approximation. The bytes invariant treats restrictions related to using
cryptographic functions, specifically encryption functions; other restric-
tions will be handled by the trace invariant (§2.2.9).

The bytes invariant enforces that honest participants can only encrypt
plaintexts (thereafter ptxt) that are less secret than keys (thereafter key)
used to encrypt them, that is, L(ptxt)≳L(key). To understand this restric-
tion, recall that the decryption function must preserve publishability (see
Figure 2.18). It means that the plaintext must be publishable (P(ptxt))
when the key is publishable (P(key)), or putting the bytes invariant aside
and only dealing with labels, L(ptxt)≳⊤ when L(key)≳⊤. To prove this
implication, it is sufficient to require L(ptxt)≳L(key), which concludes
by transitivity. We will see that it is also necessary that L(ptxt)≳L(key),
when we will understand better the relation ≳ in §3.2.

To give an example of this design principle, imagine Alice holds a private
key sk (say, a signature key) known only by her (hence L(sk) = Alice), and
a shared symmetric encryption key k known only by her and Bob (hence
L(k) = Alice⊔Bob). Suppose she encrypts her private key sk with the
shared symmetric key k and sends the ciphertext on the network. Now,
there is a problem: if the attacker compromises Bob and obtains k, they
can decrypt the ciphertext to obtain sk. However, this is not allowed by the
label of sk (L(sk) = Alice), which says that if the attacker knows sk then
they must have compromised Alice; the (allegedly) over-approximation
encoded by L(sk) is not an over-approximation anymore. The root cause

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 36

of this problem is that we encrypted sk with k without making sure that
L(sk)≳L(k); indeed, in general we don’t have 𝜏 ⊢Alice≳Alice⊔Bob (unless
Alice is compromised hence 𝜏 ⊢ Alice≳⊤, see Flow-Compromise-Elim in
Figure 2.14).

𝜏 ⊢ SigPre(U(sk),msg) . . .

𝜏 ⊢B(sign(sk,msg, . . .))

verify(vk,msg, sig) . . .

𝜏 ⊢ SigPre(U(sk),msg) ∨P(sk)

Figure 2.22: The bytes invariant ensures
that participants only sign messages that
satisfy some (user-provided) predicate.

Principle: authenticity. For cryptographic functions that authenticate,
such as signatures, message authentication codes (MAC), or authenticated
encryption (whether symmetric or asymmetric), DY∗ will require users
to provide a predicate such that honest participants only authenticate
data that satisfy this predicate. In Figure 2.22 we give a more concrete
example for signatures: the user provides SigPre, then the bytes invariant
only allows to sign data that satisfy SigPre. In return, when a signature
verification succeeds, we are able to deduce that either (1) the signature
was computed by an honest participant, hence the signed data satisfies
SigPre, or (2) the signature was computed by the attacker, hence the
signature key must be publishable.

These authenticity predicates may use in their logic labels (L(□)) and
the secrecy relation between them (≳). Therefore, authenticity predicates
can be used to transfer information from a participant to another. For
example, assume Alice generates a fresh random bytestring b with some
label ℓ , then sign it. Later, Bob obtains the random bytestring b and
verifies the corresponding signature. We can use the signature predicate
to transfer the information on L(b) from Alice to Bob, by defining
SigPre(_, 𝑏) := L(b) = ℓ : this predicate holds when Alice signs b, hence
Bob will deduce that either L(b) = ℓ , or that Alice’s signature key is
compromised.

Morally, the signature predicate associates a meaning to the signature:
when Alice signs a message msg using her signature key sk, she means
“I, Alice, thereby attests that SigPre(U(sk),msg)”.

Example: authenticated symmetric encryption. The cryptographic
functions for Authenticated Encryption with Associated Data (AEAD),
namely encryption (aead_enc) and decryption (aead_dec), capture all the
design principles aforementioned; we show them in their full glory (only
slightly simplified) in Figure 2.23.

B(key) P(nonce) B(ptxt) P(ad) L(ptxt)≳L(key)
U(key) = AeadKey _ AeadPre(U(key), nonce, ptxt, ad)

P(aead_enc(key, nonce, ptxt, ad))

B(key) B(nonce)
B(ciphertext) B(ad) ptxt = aead_dec(key, nonce, ciphertext, ad)
B(ptxt) ∧L(ptxt)≳L(key) ∧ (AeadPre(U(key), nonce, ptxt, ad) ∨P(key))

Figure 2.23: Bytes invariant rules for
AEAD encryption and decryption.

The requirements for encryption (aead_enc) mainly correspond to the
design principles we discussed above, there is however a slight twist:
we require nonce and ad to be publishable (P(nonce) and P(ad)), this is
stronger than what we would expect from the induction design principle
(which only requires B(nonce) and B(ad)). This is because the standard
security assumptions on AEAD do not guarantee the confidentiality
of nonce nor ad, hence we require them to be publishable. As a result,
it would be safe to give to the attacker a function extract_ad such that
extract_ad(aead_enc(key, nonce, ptxt, ad)) = ad, although we don’t model
such a function in practice.

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 37

Thanks to the requirements for encryption (aead_enc), we can deduce use-
ful information on the plaintext (ptxt) when decrypting (with aead_dec),
for example that the AEAD predicate must hold unless key is publishable
(hence may be known by the attacker).

Implementing the bytes invariant in F
∗
. The bytes invariant is defined

by induction on the bytestring term. We show the excerpt of its imple-
mentation related to AEAD (only slightly simplified) in Figure 2.24. Its
implementation is a straightforward combination of the encryption bytes
invariant conditions (Figure 2.23) and preservation of publishability
design principle (Figure 2.18).

let rec bytes_invariant (tr:trace) (b:bytes): prop =
match b with
...
| AeadEnc key nonce ptxt ad→

bytes_invariant tr key ∧
bytes_invariant tr nonce ∧ (get_label nonce) ‘can_flow tr‘ public ∧
bytes_invariant tr ptxt ∧
bytes_invariant tr ad ∧ (get_label ad) ‘can_flow tr‘ public ∧
(
(
// Honest case
AeadKey? (get_usage key) ∧
aead_pred tr (get_usage key) key nonce ptxt ad ∧
(get_label ptxt) ‘can_flow tr‘ (get_label key)

) ∨ (
// Attacker case
(get_label key) ‘can_flow tr‘ public ∧
(get_label ptxt) ‘can_flow tr‘ public

)
)

... Figure 2.24: Implementation of the bytes
invariant in F∗.

2.2.9 The trace invariant

We saw in §2.2.9 that the bytes invariant restricts how participants may
use cryptographic functions. We now introduce the trace invariant which
restricts how participants may perform impure actions, such as sending
messages on the network, storing state, or logging protocol events. Recall
that in DY∗, protocols are specified by exposing effectful functions that
implement protocol steps to the attacker. Then, by interacting with these
functions, the attacker may be able to reach some set of traces. We will
reason on the set of reachable traces as follows: DY∗ users will prove
that each effectful function they expose to the attacker preserves the
trace invariant, thereby proving that all reachable traces satisfy the trace
invariant.

Notation. When a trace 𝜏 satisfies the trace invariant, we write 𝜏✓.

TraceInv-SendMsg
𝜏✓ 𝜏 ⊢P(msg)
(𝜏++SendMsg(msg))✓

Figure 2.25: Trace invariant when send-
ing a message.

Sending messages. The trace invariant restricts what messages partici-
pants are allowed to send: indeed, it would for example be unsafe to send
private keys on the network. Recall that publishable bytestrings (written
P(□)) are considered “safe to know” by the attacker, hence they are safe
to send on the network. Therefore, the trace invariant restricts partici-
pants to only send publishable messages on the network, as depicted in
Figure 2.25.

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 38

TraceInv-SetState
𝜏✓

𝜏 ⊢ StatePre(P, sid,msg)
(𝜏++SetState(P, sid,msg))✓

Figure 2.26: Trace invariant when storing
state.

Storing state. The trace invariant also restricts participants to only store
states that satisfy a user-provided state invariant (StatePre). The reason
is twofold. First, this provides an additional proof technique for the user:
when they will retrieve some state that was stored previously, they know
the state did obey the state invariant when they stored it; this may provide
crucial information to conduct the proof, such as labeling information
on the data stored within the state. Second, DY∗ puts restrictions on the
state invariant, and requires that

StatePre(P, sid,msg) =⇒ B(msg) ∧L(msg)≳𝑃

This ensures soundness of publishability, because it implies that if
the attacker obtains msg by compromise then msg is publishable, or
formally

�P ∧ StatePre(P, sid,msg) =⇒ P(msg)
(by definition of P(□) and by Flow-Compromise-Elim in Figure 2.14).

TraceInv-CustomEvent
𝜏✓

𝜏 ⊢ EventPre(P, tag,msg)
(𝜏++CustomEvent(P, tag,msg))✓

Figure 2.27: Trace invariant when log-
ging custom protocol event.

Logging protocol events. Similarly to storing state, the trace invariant
restricts participants to only log protocol events that satisfy a user-
provided event invariant (EventPre). This will be useful when writing
security theorems: for example, if we know that the trace obeys the
trace invariant (𝜏✓) and that some protocol event was logged (e.g. Alice
successfully responded to Bob), we deduce that the event invariant
(EventPre) must hold, hence further implies something useful (e.g. that
Bob must have initiated conversation with Alice before). Without the
event invariant, when we know some protocol event was logged, we
could not deduce anything from this information.

TraceInv-Other
𝜏✓

ev ∈ {RandGen(_),Compromise(_)}
(𝜏++ev)✓

Figure 2.28: Trace invariant when gener-
ating fresh randomness or compromis-
ing principals.

Generating randomness and compromise. Finally, the trace invariant
allows anyone (honest participants or the attacker) to generate fresh
randomness, and allows the attacker to compromise anyone, without any
restriction.

2.2.10 Attacker Knowledge Theorem

We now finally have all the ingredients to state and prove the Attacker
Knowledge Theorem that was advertised throughout the past sections.

Theorem statement. The Attacker Knowledge Theorem states that
for all traces that satisfy the trace invariant, if the attacker knows a
bytestring (with respect to this trace), then this bytestring is publishable
(with respect to this trace). In other words, publishability is a correct
over-approximation of the attacker knowledge. We write the theorem
statement using mathematical notations in Figure 2.29.

AttackerKnowledgeTheorem
𝜏✓ 𝜏 ⊢ A(b)

𝜏 ⊢P(b)
Figure 2.29: The Attacker Knowledge
Theorem.

Using the theorem. The Attacker Knowledge Theorem is crucial in con-
fidentiality theorems, which are generally of the form: “for all reachable
traces, if the attacker knows the bytestring b, then they must have com-
promised some participant”. If the trace is reachable, it obeys the trace
invariant, we then use the Attacker Knowledge Theorem to deduce that b

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 39

is publishable, hence that L(b)≳⊤, meaning that if we have information
on the label of b, we can deduce that some compromises must have
happened.

Proving the theorem. The proof works by induction on the attacker
knowledge, as defined in Figure 2.11. In the case Att-Sent, the trace
invariant proves that sent messages are publishable (TraceInv-SendMsg
in Figure 2.25). In the case of Att-Compromise, we already showed using
the state invariant (presented in Figure 2.26) that the compromised state
must be publishable. In the case of Att-F, we reason inductively using the
fact that computing functions preserves publishability (Figure 2.18).

2.2.11 Discussion

We now discuss the DY∗ method toward symbolic security proofs. There
is no particular flow within this section, the different paragraphs are
mostly independent of each other.

Trusted Computing Base. We emphasize that most of what has been
described in this section are only proof techniques, and not part of the
security theorems we prove on cryptographic protocols. Indeed, security
theorems talk about reachable traces, attacker knowledge, protocol events
that were logged, and compromise. Note that the trace invariant, bytes
invariant, labels, etc, do not appear in the theorem statement: they are
only a proof technique, therefore they do not belong to the Trusted
Computing Base.

Actually, this is not exactly true because security theorems are not of
the form “for all reachable traces” but of the form “for all traces that
satisfy the trace invariant”. This is however safe, regardless of the precise
definition of trace invariant, because each function exposed to the attacker
preserves the trace invariant, hence every trace reachable by the attacker
must satisfy the trace invariant. That way, we avoid having to specify
precisely what is the set of reachable traces, without impacting the
Trusted Computing Base.

About compromise. In DY∗, the attacker can compromise any state stored
by protocol participants. This is an opinionated choice: in ProVerif [41]
or Tamarin [42], the protocol modeler must choose manually what states
are allowed to be compromised by the attacker.

About using F
∗
. Although DY∗ is entirely written in F∗, it is not using F∗-

specific features: we could in theory implement in other proof assistants
the same DY∗ approach toward symbolic cryptographic proofs.

Modularity of the proofs. The security proofs in DY∗ are modular: indeed,
each protocol step is proved to preserve the trace invariant independently.
It means that a priori, the time to verify a proof is proportional to the
protocol size, meaning that DY∗ should scale well for large protocols,
and should not suffer from exponential blow-up as the protocol size
grows. We will confirm this intuition when proving the key agreement
sub-protocol of Messaging Layer Security (MLS) in Chapter 6, which
may be qualified as a “large protocol”.

Lack of modularity of the invariants. However, note that every protocol
step must be proved to satisfy the same trace invariant; as such, proving
new protocol steps generally requires modifying the trace invariant

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 40

(thereby making it slightly more complex), and re-proving that every
protocol step satisfies these new trace invariant. We therefore see that
the trace invariant are defined monolithically, this results in a lack of
modularity when performing security proofs. We will solve this problem
in §3.1.

Protocol specification coding style. Different tools have different ways
to specify protocols. ProVerif [41] relies on a process-calculus, where [41]: Blanchet et al. (2016), Modeling and

verifying security protocols with the applied
pi calculus and ProVerif

protocols are described as processes that may send or receive messages
on the network, generate fresh randomness, compute cryptographic
functions, etc. The processes then execute concurrently, in an interleaving
chosen by the attacker. Tamarin [42] relies on multiset rewriting rules [42]: Meier et al. (2013), The TAMARIN

prover for the symbolic analysis of security
protocols

where protocols are described as state machines, that is, as a set of
protocol steps that receive message from the network and retrieve some
state, compute some cryptographic functions, then store some new state
and send back messages on the network. The attacker may then execute
the various protocol steps in the interleaving of its liking. DY∗ [43] is [43]: Bhargavan et al. (2021), DY*: A Mod-

ular Symbolic Verification Framework for
Executable Cryptographic Protocol Code

somewhat in-between the two styles: on the surface, the syntax reminds
of ProVerif’s process calculus, but deep inside, the execution model is
more similar to Tamarin’s state machines. Indeed, DY∗ allows the attacker
to interleave computations around the execution of each protocol step,
but not within one. For example, if a DY∗ protocol step were to send
a message on the network, and afterward, in the same protocol step,
receive a message from the network, then between the sending of the first
message and the receiving of the second message, the attacker would
not be able to perform computations or interleave protocol steps of other
participants. Therefore, protocols in DY∗ must be specified in a style
similar to Tamarin: first, receive a message from the network and retrieve
some state, then compute cryptographic functions, finally store some
state and send back messages on the network.

let protocol () =
let (x, y, z) = recv () in
if hash x = mac y z then
// leak secret

else
// do nothing

Figure 2.30: Example of a protocol secure
in the symbolic model, but easily broken
in the real world.

Open question: link with concrete implementations. We prove a
protocol specification secure in the symbolic model, this is great, but
what does it tell us about its security in the real world? The original DY∗
paper [43] suggests we can substitute the symbolic cryptographic interface
with concrete cryptographic functions to obtain an implementation we can
execute, but how does the security theorems we prove with the symbolic
interface translate to the corresponding implementation? We show in
Figure 2.30 a degenerated protocol: we obtain from the attacker x, y and z,
and leak a secret when hash x is equal to mac y z. In the symbolic model, a
hash in never equal to a MAC, therefore this condition is always false and
the protocol never leaks a secret. However, in the real world, it is easy to
come up with such x, y and z when the MAC is HMAC, a commonly-used
hash-based MAC. This degenerated protocol shows that we cannot prove
a general result that lifts security theorems in the symbolic model to
concrete implementations. However, could we characterize a class of
“well-formed” protocols where such a theorem would hold, and such
that real-world protocols are in general “well-formed”? Is it possible to
do so without going all the way to computational soundness [62]? [62]: Cortier et al. (2011), A Survey of Sym-

bolic Methods in Computational Analysis of
Cryptographic Systems

No unification. Symbolic provers such as ProVerif [41] or Tamarin [42]
crucially rely on unification during their search of a security proof. Note
that this is not the case for DY∗: nothing in this section relied on the use of
unification. Even more, a prerequisite for unification is to have variables in
the bytes term, which DY∗ do not have (see §2.2.3): for example we cannot
write the term encrypt(key,𝑥) and instantiate 𝑥 afterward with some other
term. This raises the following question: if the use unification seems

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 41

so crucial that two different tools rely on it, what is the fundamental
reason that explains why DY∗ does not need to rely on unification? Doing
so greatly simplifies reasoning on the attacker knowledge, and allows
without too much difficulty to handle associative theories that are notably
difficult to model in unification-based provers.

After asking this question around, we got the following answer: in a
way, ProVerif and Tamarin work by automatically computing some sort
of protocol invariants, furthermore unification is a natural tool to use
when computing such invariants, because it can be used to find the most
general bytestring term that matches some shape. In DY∗, the invariants
are given by the user, which is why DY∗ does not need unification.

Other works inspired by DY
∗
. In [63], Arquint et al. re-implement the [63]: Arquint et al. (2023), A Generic

Methodology for the Modular Verification
of Security Protocol Implementations

DY∗methodology in the program verifier Gobra [64]. They use separation

[64]: Wolf et al. (2021), Gobra: Modular
Specification and Verification of Go Programs

logic, which allows them to introduce new proof techniques that we
discuss below.

Their approach allows to easily prove injective authentication theorems
using separation logic, and claim that DY∗ cannot. However, it turns out we
can also prove injective authentication theorems using DY∗, albeit doing
so is less straightforward: we can for example, in the event invariant, say
that a bytestring in the event was randomly generated immediately before
the event was logged, hence because random bytestrings are generated
only one time (by definition of randomness), the event containing this
bytestring must also be unique. Therefore, although their proof technique
toward injective authentication is certainly interesting, it remains unclear
whether their approach is strictly more expressive than what we can do
in DY∗ or not: more research would be needed to properly answer this
question.

Their approach better models interleaving with the attacker. As we
discussed in the paragraph above “Protocol specification coding style”,
they also notice that the attacker cannot interleave computations within
a protocol step execution, hence that DY∗ specifications must rely on a
specific coding discipline to avoid accidental restriction of the attacker.
Whereas we argued it was not a problem in practice because this coding
discipline was standard is other provers (such as Tamarin), they solve this
problem by modeling the attacker and protocol participants as different
threads that execute concurrently, and allow for fine-grained interleaving
using concurrent separation logic. As a result, their execution model is more
similar to ProVerif’s, whereas DY∗’s execution model is more similar to
Tamarin’s.

2.3 Security proofs with DY
∗
, an example

In §2.2 we explained the theory behind DY∗ that allows to prove security
of cryptographic protocols in the symbolic model. We now give a concrete
example on how we do such a proof in practice. We will prove security
theorems on a unilaterally signed Diffie-Hellman key exchange, borrowed
from the Protocol Proof Ladder [65], and depicted in Figure 2.31. [65]: (2025), Protocol Proof Ladder

2.3.1 Specification

Before writing security theorems and working on its proof, we must first
specify rigorously the protocol in DY∗.

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 42

Client
𝑠pk

Server
𝑠sk

𝑥sk , 𝑥pk
𝑅← DH.Keygen()

𝑥pk

𝑦sk , 𝑦pk
𝑅← DH.Keygen()

𝑠𝑖𝑔 = SIG.Sign((𝑥pk , 𝑦pk), 𝑠sk)
𝑘 = Hash((𝑥pk)𝑦sk)

𝑦pk , 𝑠 𝑖 𝑔

Abort if not SIG.Verify(𝑠𝑖𝑔, (𝑥pk , 𝑦pk), 𝑠pk)
𝑘 = Hash((𝑦pk)𝑥sk)

Figure 2.31: Signed Diffie-Hellman key
exchange, borrowed from [65].

Types. The diagram that describes the SignedDH protocol (Figure 2.31)
manipulates many objects: states, both short-term (e.g. 𝑥sk) and long-term
(e.g. 𝑠sk), messages on the network, and inputs to the signature function.
To help state security properties, in our DY∗ specification, we will further
log protocol events for each step of the protocol execution.

We write types for each of these objects in Figure 2.32. Furthermore,
using Comparse (Chapter 4), we will define proper message formats for
each of these types, allowing us to serialize and parse them.

Protocol steps. We then write in DY∗ the specification of each protocol
step, and show the code corresponding to the server protocol step in
Figure 2.33. We further write (not shown in this document) two protocol
steps for the client: one to initialize the protocol and another one to finish
the handshake.

Long-term keys. Many cryptographic protocols rely on long-term keys,
for this reason DY∗ provides a generic library to handle them, which we
will describe in §3.5.2. For now, it suffices to say that the server stores its
long-term private signature key in a state dedicated to long-term private
keys, and retrieves it using the function get_private_key (see line 30). Then,
a trusted process will install the corresponding public verification key on
the client in a state dedicated to long-term public keys, thereby modeling
a Public-Key Infrastructure (PKI).

2.3.2 Security theorems

We will prove a variety of security theorems on the protocol SignedDH.

Unilateral client-side authentication. If the client finishes the handshake
and derives a key 𝑘, the server must also have finished a handshake and
derived the same key 𝑘, unless the long-term signature key of the server
was compromised before the client finished the handshake.

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 43

type client_state =
| ClientInitiateState:

x_sk:bytes→
client_state

| ClientFinishState:
k:bytes→
client_state

(a) Type for storing
short-term client state.

type sig_input = {
x_pk: bytes;
y_pk: bytes;

}

type server_message = {
y_pk: bytes;
sig: bytes;

}

(b) Type for server signa-
ture input and message.

type signed_dh_event =
| ClientInitiateEvent:

// ...
| ServerFinishEvent:

server_sid:state_id→
x_pk:bytes→
y_pk:bytes→
k:bytes→
signed_dh_event

| ClientFinishEvent:
// ...

(c) Type for protocol events.

Figure 2.32: Various types we define in F∗
to represent the various objects manipu-
lated by the SignedDH specification. We
furthermore derive message formats for
all of them using Comparse. We did not
depict there the server state and client
message, which are simpler than client
state and server message.

1 // Shorthand label for the ephemeral Diffie-Hellman private key y_sk.
2 // It will be used line 18 when randomly sampling it.
3 let server_ephemeral_key_label (server:principal) (sid:state_id): label =
4 principal_tag_state_label server "SignedDH.ServerState" sid
5

6 val server_receive:
7 server:principal→ private_keys_sid:state_id→
8 client_msg_ts:timestamp→
9 traceful (option (state_id & timestamp))
10 let server_receive server private_keys_sid client_msg_ts =
11 // Receive client message and parse it
12 let msg = parse (recv_msg client_msg_ts) in
13 let x_pk = msg.x_pk in
14

15 // Generate ephemeral dh key and compute server key
16 let server_sid = new_session_id server in
17 // - sample randomly y_sk, specify its usage, label, and length
18 let y_sk = mk_rand (DhKey "SignedDH" empty) (server_ephemeral_key_label server server_sid) 32 in
19 // - compute k
20 let k = hash (dh y_sk x_pk) in
21 // - and store it for later use
22 set_state server server_sid (ServerFinishState k);
23

24 // Log protocol event
25 let y_pk = dh_pk y_sk in
26 log_event server (ServerFinishEvent server_sid x_pk y_pk k);
27

28 // Compute signature
29 // - retrieve the long-term signature key
30 let my_sig_key = get_private_key server private_keys_sid (LongTermSigKey "SignedDH") in
31 // - generate a signature nonce
32 let sig_nonce = mk_rand SigNonce secret 32 in
33 // - serialize the signature input and sign it
34 let sig = sign my_sig_key sig_nonce (serialize { x_pk; y_pk; }) in
35

36 // Serialize and send message
37 let server_msg_ts = send_msg (serialize { y_pk; sig; }) in
38 // Return to the attacker the state_id for our short-term state, and the timestamp at which we sent the message.
39 return (Some (server_sid, server_msg_ts))

Figure 2.33: Specification in DY∗ of the server protocol step depicted in Figure 2.31. Only slightly simplified.

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 44

Forward secrecy, client-side. If the client finished the handshake and
derived a key 𝑘, and if the attacker knows 𝑘, then one of the following
must have been happened:

▶ the short-term state of the client for that session was compromised
▶ the short-term state of the server for that session was compromised
▶ the long-term signature key of the server was compromised before

the client finished the handshake

Forward secrecy, server-side. Note that the client is not authenticated
on the server-side, therefore we cannot say much about the secrecy of 𝑘
when the server responds: indeed, the attacker could feed its own 𝑥pk to
the server and compute 𝑘 from the server’s answer. However, when 𝑥pk is
honest (therefore corresponds to a protocol event that a client generated it
in the first protocol step), we can say the following. If the server finished
the handshake using 𝑥pk and derived a key 𝑘, and if a client initiated the
protocol producing the same 𝑥pk, and if the attacker knows 𝑘, then one
of the following must have happened:

▶ the short-term state of the client for that session was compromised
▶ the short-term state of the server for that session was compromised

In DY
∗
. We can formalize precisely these three security theorems

using DY∗, we show the theorem statement of client forward secrecy in
Figure 2.34. The statement is mostly a straightforward translation of the
security theorem written in prose. The only subtlety is when translating
rigorously in DY∗ the statement “the short-term state of the server for
that session was compromised”. Indeed, we are from the viewpoint of
the client, hence do not know the session identifier used by the server.
We resolve this issue by existentially quantifying on the session identifier,
and restrict the session identifier to appear in a protocol event logged by
the server that has the same parameters as the client session (that is, 𝑥pk,
𝑦pk, 𝑘, etc). In DY∗, this is described by the lines 18-21 of Figure 2.34.

2.3.3 Protocol invariants

In automatic tools such as ProVerif [41] or Tamarin [42], we would be
done: the protocol has been specified, the security theorems have been
written, the tools can now automatically check whether the security
theorems hold or not.10 This is not the case with DY∗: to prove that 10: another possibility is that they take

too much time or memory to verify
the protocol, here, SignedDH is simple
enough that this does not happen.

the security theorems hold, we will strengthen them to obtain the trace
invariant (described in §2.2.9); the trace invariant will then trivially imply
the security theorems.

Event invariant. Recall (§2.2.9) that participants may only log events that
satisfy a user-provided predicate, called the “event invariant”. We start
by describing the event invariant of SignedDH, shown in Figure 2.35.
We only talk about the event ClientFinishEvent which corresponds to the
client finishing the handshake (i.e. after verifying the signature and
computing the shared key), the other event invariants are less interesting
therefore we omit them.

The event invariant works as follows: unless the server long-term key is
compromised (line 11), there exists a server session identifier (line 6) such
that the server logged an event with the same parameters as the client
event (line 7) and the shared key is a shared secret between the client and
the server (line 9).

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 45

1 val client_forward_secrecy:
2 // ... for all client, server, trace, etc ...
3 Lemma
4 (requires
5 // if the trace is reachable (hence satisfies the trace invariant)
6 trace_invariant tr ∧
7 // and the client finished the handhsake with the server, using the DH keys x_pk and y_pk, resulting in the shared key k
8 event_triggered_at tr client_ev_ts client (ClientFinishEvent client_sid server x_pk y_pk k) ∧
9 // and the attacker knows the key
10 attacker_knows tr k
11)
12 (ensures (
13 let tr_before_ev = prefix tr client_ev_ts in
14 // then either
15 // - the client ephemeral key for this session was compromised
16 is_corrupt tr (client_ephemeral_key_label client client_sid) ∨
17 // - the server ephemeral key for this session was compromised
18 (∃ server_sid.
19 event_triggered tr_before_ev server (ServerFinishEvent server_sid x_pk y_pk k) ∧
20 is_corrupt tr (server_ephemeral_key_label server server_sid)
21) ∨
22 // - the server long-term signature key was compromised before the client finished the handshake
23 is_corrupt tr_before_ev (long_term_key_label server)
24))

Figure 2.34: The client forward secrecy theorem for SignedDH, in DY∗. is_corrupt means that the label flows to public, i.e. that there exists
a corresponding compromise event in the trace (see §3.2)

Note that this event invariant is a combination of the unilateral client-
side authentication and client-side forward secrecy, therefore this event
invariant trivially implies these two security theorems. For example, in the
client-side forward secrecy theorem (Figure 2.34), from attacker_knows tr k
(or 𝜏 ⊢ A(k)) and trace_invariant tr (or 𝜏✓) we deduce, by the Attacker
Knowledge Theorem that is_publishable tr k (or 𝜏 ⊢ P(k)), hence that
get_label k ‘can_flow tr‘ public (or 𝜏 ⊢ L(k)≳⊤). The event invariant tells
us that either the server long-term signature key is compromised (line 11
of Figure 2.35), or that get_label k is a join of client ephemeral key label
and server ephemeral key label (line 9 of Figure 2.35). Because this label
flows to public, we deduce by Flow-Join-Public from Figure 2.14 that one
of these two states must have been compromised, which concludes. This
reasoning is handled fully automatically by F∗ and its SMT solver.

We just saw how to use the event invariant when we have it as a
hypothesis, to prove security theorems. However, to enjoy its guar-
antees, we must prove that the event invariant holds when a partic-
ipant logs the corresponding event. When the client logs the event
ClientFinishEvent, we know k is a hash of a Diffie-Hellman involving
x_sk, hence get_label k = join (get_label x_sk) y_label, where y_label is the
label of the private key corresponding to y_pk. We further know that
get_label x_sk == client_ephemeral_key_label client client_sid: indeed, the
client generated it at the previous protocol step and remember this fact
using the state invariant (code not shown in this section, because it is
straightforward). It means that with the information we know, we can
prove line 8 and half of line 9 (because we don’t know what is y_label). To
prove line 6, 7, 11, and the other half of line 9, we will rely on the signature
predicate.

Signature predicate. Recall (§2.2.8) that participants may only sign
bytestrings that satisfy a user-provided predicate, called the “signature

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 46

1 let signed_dh_event_invariant =
2 𝜆 tr me ev→ (
3 match ev with
4 // ... (we omit ClientInitiateEvent and ServerFinishEvent which are straightforward)
5 | ClientFinishEvent client_sid server x_pk y_pk k→ (
6 (∃ server_sid.
7 event_triggered tr server (ServerFinishEvent server_sid x_pk y_pk k) ∧
8 bytes_invariant tr k ∧
9 get_label k == join (client_ephemeral_key_label me client_sid) (server_ephemeral_key_label server server_sid)
10) ∨
11 is_corrupt tr (long_term_key_label server)
12)
13)

Figure 2.35: The event invariant of SignedDH. is_corrupt means that the label flows to public, i.e. that there exists a corresponding
compromise event in the trace (see §3.2)

predicate”. In return, when another participant verifies a signature, they
will deduce that either (1) the signature was performed by an honest
participant, hence the signature predicate must hold on the signed
message, or (2) the signature was performed by the attacker, hence the
attacker must know the signature key.

We show the signature predicate of SignedDH in Figure 2.36. Lines
4-6 deal with message formatting: although the protocol description in
Figure 2.31 signs the tuple (𝑥pk , 𝑦pk), the tuple must be serialized before
signing, hence the signature predicate must parse the tuple back before
stating properties on its components. Line 7 attests the existence of the
private key 𝑦sk that corresponds to the public key 𝑦pk (line 8) and has a
strict label (line 9) which ensures that 𝑦sk stays unknown to the attacker
unless they compromise the precise short-term state that contains 𝑦sk.
Finally, line 10 attests that the server logged an event, which says that
the server finished a handshake with keys 𝑥pk , 𝑦pk, and the shared key 𝑘
(computed as the hash of a Diffie-Hellman, as described in Figure 2.31).

The last line of code to discuss in the signature predicate is line 3.
Before explaining it, note that the security of SignedDH relies on the
fact that two different servers do not use the same signature keys: if that
were the case, the attacker could break authentication. Indeed, when
a client would initiate a handshake with server1, the attacker could
instead forward all messages to server2; the client would not notice
the difference meaning that attacker managed to break authentication.
Therefore, different servers must use distinct long-term signature keys.
To prove that keys are distinct, we can rely on the key usage, discussed
in §2.2.7. Therefore, the usage of SignedDH signature keys will tell that
they are (1) signature keys for (2) the SignedDH protocol and (3) some
particular server identity. It means that we can retrieve the server identity
from its signature key usage: this is done in line 3 of the signature
predicate (Figure 2.36). There, we existentially quantify on the server
identity, and say that the signature key usage must correspond to this
server identity. Only one server identity may exist thanks to the injectivity
of the function long_term_key_type_to_usage.

When the server computes the signature, it is easy to prove that the
signature predicate holds: indeed, y_sk and y_pk were just generated
(lines 18 and 25 of Figure 2.33), the event was just logged (line 26 of
Figure 2.33). The only thing left to prove is a round-trip property on
parse and serialize, that is, parse (serialize msg) == Some msg. Thankfully,

2 DY∗: Security proofs in the Dolev-Yao model, using F∗ (background) 47

1 let signed_dh_sign_pred: sign_crypto_predicate = {
2 pred = (𝜆 tr sk_usg msg→ (
3 ∃ server. sk_usg == long_term_key_type_to_usage (LongTermSigKey "SignedDH") server ∧ (
4 match parse msg with
5 | None→ ⊥
6 | Some { x_pk; y_pk; }→ (
7 ∃ y_sk server_sid.
8 y_pk == dh_pk y_sk ∧
9 get_label y_sk == server_ephemeral_key_label server server_sid ∧
10 event_triggered tr server (ServerFinishEvent server_sid x_pk y_pk (hash (dh y_sk x_pk)))
11)
12)
13));
14 }

Figure 2.36: The signature predicate of SignedDH.

Comparse (Chapter 4) gives us this property on any message format it
generates.

When the client successfully verifies the signature, they will deduce
that either the signature predicate holds, or that the server long-term
signature key has been compromised. This allows to finish the event
invariant proof (Figure 2.35). We can prove that the server logged the
same event as the client (line 7) as follows: the signature predicate ensures
that the server logged an event with the key hash (dh y_sk x_pk), while
the client derives the key hash (dh x_sk y_pk). Thankfully, we prove these
keys are the same using the commutativity property of dh.11 Finally, the 11: dh x_sk (dh_pk y_sk)

== dh y_sk (dh_pk x_sk)signature predicate tells us the label of the private key associated to y_pk
(in line 8 and 9 of Figure 2.36). This allows the client to know the label of
k when logging its event (line 9 of Figure 2.35).

2.3.4 Discussion

We saw in the previous sections how we can use DY∗ to specify a protocol,
state security properties, and prove the protocol adheres to these security
properties. We give some numbers related to this proof artifact in Table 2.1.
The total artifact took a few hours to produce from scratch for an expert
DY∗ user.12 12: in all modesty

Component F∗ LoC Verification time
Specification 133 25s
Theorems 65 7s
Proof 160 4s

Table 2.1: Some numbers on the
SignedDH security proof in DY∗. The
verification times are measured on an
AMD 7950X. The specification includes
Comparse’ generation and proof of mes-
sage formats, which explains its long
verification time.

We saw in §2.3.3 how to write protocol invariants, which are stronger
versions of the security theorems we want to prove on the protocol.
Although this is an additional burden on the user compared to more
automatic tools such as ProVerif [41] or Tamarin [42], we think they give
insights on the profound reasons why the protocol is secure. For example,
the signature predicate really tells what is the intent behind the signature:
indeed, the signed bytestrings are a priori meaningless sequence of bits,
zeros and ones, but the signature predicates really tells why we signed
this particular bytestring, that is, what we express when we sign it.

DY
∗
: Security proofs in the

Dolev-Yao model, using F
∗

(contributions) 3

3.1 Modular protocol invariants48

3.2 Renovating the label con-

struction 56

3.3 Making labels erasable . . 63

3.4 Making key usage an

invariant 67

3.5 Quality of life and proof

engineering 69

3.6 Conclusion 74

In this chapter, we present the various usability and improvements we
have made to DY∗.

The content of this chapter is not yet published, therefore is new material,
and is a contribution of this thesis.

Outline. We first present a new technique to define protocol invariants
modularly (§3.1), then show a more expressive label framework (§3.2)
and explain how we made labels erasable in the process (§3.3). Finally,
we explain how to better reason with key usage (§3.4), present multiple
engineering improvements (§3.5), and conclude (§3.6).

3.1 Modular protocol invariants

The DY∗ proof methodology relies on protocol invariants: the user proves
that every protocol step preserves some invariants, and proves that the
protocol invariants imply the protocol security. These two facts imply
that the attacker cannot break the protocol security: indeed, the attacker
can only reach traces that satisfy the invariant (first fact), and traces that
satisfy these invariants obey the protocol security properties (second
fact).

type signature_predicate =
trace→ vk:bytes→ msg:bytes→
prop

val mk_protocol_trace_invariant:
signature_predicate→ ...→
trace→ prop

Figure 3.1: Type for signature predicate,
and protocol trace invariant blueprint.

Although the protocols invariants are specific for each protocol security
proof, DY∗ provides a blueprint for creating protocol invariants with holes
that must be filled by the user. For example, the user provides a predicate
for signatures, and the DY∗ protocol invariants blueprint will ensure that
for any signature in the protocol, either the signature is honest and in
that case the signature predicate holds on the signed message, or the
signature was computed by the attacker in which case the attacker knows
the private key corresponding to this signature. Similar predicates exist
for Authenticated Encryption with Associated Data (AEAD), Message
Authentication Code (MAC), but also state storage or protocol event
logging.

With this approach, the protocol verification is modular because each
protocol step is verified independently. However, in the process of writing
the proof for a protocol step, it may happen that the DY∗ user needs
to tweak (say) the signature predicate. When doing so, the protocol
invariants will change and every protocol steps need to be re-checked
with respect to these new protocol invariants, even the protocol steps
that do not deal with signatures. Although F∗’s SMT-based proofs are
usually stable regarding irrelevant protocol invariant changes, it may
happen that the SMT gods are not in the mood that day, and will ask DY∗
users to sacrifice time to maintain already-done proofs.

Because of this limitation, DY∗ cannot compose protocol proofs; for
example, to prove the security of a (big) protocol1 by proving the security 1: e.g. TLS 1.3
of (smaller) sub-protocols.2 Indeed, both protocol proofs likely use 2: e.g. TLS’ Handshake Protocol and

Record Protocoldifferent protocol invariants, however DY∗ requires users to provide a
single protocol invariant. Hence, to combine both security proofs, the
user would need to combine the two protocol invariants in a single one,
and re-prove that each protocol steps preserve this combined invariant.

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 49

This is a known limitation of DY∗ that has been addressed in previous
work: Bhargavan et al. [66] propose an approach for protocol composition [66]: Bhargavan et al. (2024), Layered Sym-

bolic Security Analysis in DY*in DY∗, and implement a generic “communication layer” to be used by
protocols that rely on an authenticated or confidential communication
channel. However, their approach only works for vertical composition
(when a protocol uses another protocol) but not for horizontal composition
(when two protocols run in parallel).

In this section, we present a framework to create protocol invariants
that allows both horizontal and vertical composition in DY∗, which
was already used by and crucial to the security proofs of the TreeKEM
protocol (Chapter 6).

We present this protocol invariant framework in four steps:

▶ first, the general shape of protocol invariants we can create,
▶ then, how we prove a protocol step preserves local protocol invari-

ants,
▶ then, how we combine local invariants into a single global invariant,
▶ finally, we show three case studies: TreeKEM, and a model of HPKE

3.1.1 Shaping DY
∗

protocol invariants as decision trees

Secure cryptographic protocols may lose their security guarantees when
composed with other secure cryptographic protocols, for example when
they share long-term keys, leading to cross-protocol attacks.

For this reason, it is impossible to combine arbitrary protocol invariants,
as this would be unsound: this would prove the security of protocol
composition, although the composition of two secure protocols is not
always secure. Instead, our framework enforces a specific shape of
invariants so as to allow composition. We now go through several criteria
that intuitively describe under which conditions protocols can be safely
composed; then, we turn these intuitive criteria into a formal shape of
invariants that are composable. We later on discuss how this does not
affect the expressive power of the DY* framework.

let sign_pred vk msg =
match get_usage vk with
| SignKey "TLS"→
tls_sign_pred vk msg

| SignKey "SSH"→
ssh_sign_pred vk msg

Figure 3.2: Example of global invariant
that dispatches to local invariants using
key usages.

Distinct keys. Two cryptographic protocols may be safely composed
when they use distinct key material (for example software developers
routinely run TLS and SSH in parallel). When this is the case, we can
combine the protocol invariants of the two protocols: the global DY∗
invariant will be of the form “if the key belongs to protocol one, then
dispatch to the invariants of protocol one, and if the key belongs to
protocol two, then dispatch to the invariants of protocol two”. The notion
of key belonging to a protocol is formalized in DY∗ via the key usage (see
§2.2.7), as shown in Figure 3.2.

let tls_sign_pred vk msg =
match get_domain_sep msg with
| "TLS 1.2"→
tls12_sign_pred vk msg

| "TLS 1.3"→
tls13_sign_pred vk msg

Figure 3.3: Example of global invariant
that dispatches to local invariants using a
domain separator. Note that TLS doesn’t
have such a straightforward domain sep-
arator, the code above is only for example
purpose.

Domain separation. Two cryptographic protocols may use the same key,
but use that key with good domain separation, for example by tagging
the input of their cryptographic primitive. When this is the case, we can
combine the protocol invariants of the two protocols: the global DY∗
invariant will be of the form “if the input tag corresponds to protocol
one, then dispatch to the invariants of protocol one, and if the input tag
corresponds to protocol two, then dispatch to the invariants of protocol
two”, as shown in Figure 3.3.

Shaping protocol invariants as decision trees. We can combine the two
approaches we have seen: first, dispatch on the key usage, then, dispatch

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 50

on the domain separator, etc. At the end, the protocol invariant is shaped
like a decision tree, where at each step we decide which branch to take
depending on some tag (e.g., the key usage, or a domain separator).

Expressivity. We claim that imposing such shape on the protocol
invariants does not affect DY∗ expressivity. Indeed, in Chapter 4 [67], we [67]: Wallez et al. (2023), Comparse: Prov-

ably Secure Formats for Cryptographic Pro-
tocols

give a reasonable but sufficient set of criteria protocols should obey to
avoid message-formatting attacks (a particular type of cross-protocol
attack). In turn, protocols that obey these criteria can have their invariants
shaped as decision trees. For example, on the criterion for signatures, [67]
says that “each signature key must be used to sign messages with the same
self-contained, non-ambiguous, representation-unique message format”.
With the lens of DY∗, when protocols obey this criterion, we can first
branch on the signature key usage (as in Figure 3.2), then for each usage
corresponds a single message format and use the corresponding parsing
function to implement get_domain_sep (as in Figure 3.3). Conversely,
in Chapter 5 [68] we found a cross-protocol attack between the MLS [68]: Wallez et al. (2023), TreeSync: Authen-

ticated Group Management for Messaging
Layer Security

sub-protocols TreeSync and TreeDEM: we found this attack because
TreeSync and TreeDEM did not properly tag their signatures, hence we
couldn’t write a common signature predicate shaped as a decision tree,
thereby hinting at the signature ambiguity attack.

Our protocol invariant framework. We do not deal with full-blown
decision trees directly, instead our framework only deals with one node
of the decision tree: it can then be applied recursively to obtain a complete
decision tree.

3.1.2 Relating local and global invariants

When we prove that a protocol step preserves the global DY∗ protocol
invariants, our key insight is that we do not need to know the complete
definition of the invariants, we only need to know how it behaves on a
particular branch of the decision tree. Then, the proof works for any global
protocol invariant, as long as it “contains” some local protocol invariants.
For example, when proving each protocol step of TLS 1.3 preserves
the protocol invariants, we only need to know that sign_pred contains
the tls_sign_pred branch (Figure 3.2) and that tls_sign_pred contains the
tls13_sign_pred branch (Figure 3.3). In this section, we formally relate
define what it means for a global invariant to contain a local invariant.

One node at a time. We only deal with one node of the decision tree,
and apply our methodology recursively to obtain a complete decision
tree. Hence, the notion of “global” and “local” invariant is relative to
the node of the decision we are currently considering: for example, in
Figure 3.2, tls_sign_pred is a local invariant, but in Figure 3.3 it is the
global invariant.

Invariants as functions. In the example of signatures, the signature
invariant is a predicate on signed messages. In complete generality, an
invariant is a function. This function may return propositions (hence be
a predicate), but may return other things; for example KDF invariants
return labels (see §2.2.6).

Setup provided by the user. Our framework rely on the user to provide
types and functions that we now describe. We expect the user to provide
a type for global invariant input data 𝔻𝐺 ,3

3: in the example of signature invariant,
𝔻𝐺 would be a tuple containing verifica-
tion key and signed message

a type for local invariant input
data 𝔻𝐿,4

4: in the simplest case it might be equal
to 𝔻𝐺

a type for tags 𝕋 ,5

5: in the example of Figure 3.2, 𝕋 is
the set of key usages, in the example
of Figure 3.3, 𝕋 is the set of domain
separators (here, strings)

and a type for the invariant output 𝕆.6 6: for predicates, 𝕆 is the type of propo-
sitions

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 51

Furthermore, a function decode_data : 𝔻𝐺 → 𝕋 ×𝔻𝐿 ∪ {⊥} computes
a tag and a local input data given a global input data.

Local invariants inside global invariant. With this setup, a local invariant
is function 𝔻𝐿 → 𝕆 and a global invariant is function 𝔻𝐺 → 𝕆. Now,
given a tag 𝑡, a local invariant 𝑙 and global invariant 𝑔, we say that
(𝑡 , 𝑙) ⊂ 𝑔 (or 𝑔 “contains” 𝑙) when

∀𝑥𝐿𝑥𝐺 .decode_data(𝑥𝐺) = (𝑡 , 𝑥𝐿) =⇒ 𝑔(𝑥𝐺) = 𝑙(𝑥𝐿)

In other words, when (𝑡 , 𝑙) ⊂ 𝑔, we know how 𝑔 behaves on inputs with
tag 𝑡.

For example, in Figure 3.2, the property ("TLS", tls_sign_pred) ⊂ sign_pred
would be equivalent to

∀vk,msg. get_usage vk = SignKey"TLS" =⇒
sign_pred vk msg = tls_sign_pred vk msg

It means that when we know that vk is a key that belongs to the TLS pro-
tocol, we deduce that sign_pred vk msg behaves like tls_sign_pred vk msg,
which allows us to prove a protocol step of TLS with respect to the global
signature predicate sign_pred.

Reasoning on global invariants using local invariants. DY∗ users must
deal with the various (global) protocol invariants throughout security
proofs. For example, they must prove that the (global) signature predicate
holds when computing a signature, or deduce that the (global) signature
predicate holds when a verification succeeds. With our methodology,
instead of defining top-level global protocol invariants and prove every
protocol step with respect to these particular global protocol invariants,
we now write proofs with respect to any global protocol invariants, as long
as they contain local invariants specific to this protocol step. Using the
relationship (𝑡 , 𝑙) ⊂ 𝑔 we can do proofs on the (abstract) global invariant
by relying on our knowledge about the (concrete) local invariant, for
every input tagged with 𝑡.

3.1.3 Creating a global invariant from local invariants

With our methodology, each protocol step now requires that the global
protocol invariants contain a bunch of local invariants, or in mathematical
notations, (𝑡𝑖 , 𝑙𝑖) ⊂ 𝑔 for 𝑖 ∈ {1, . . . , 𝑛}.
For example, in Figure 3.2 we need to prove that:

▶ ("TLS", tls_sign_pred) ⊂ sign_pred (required by the TLS proofs)
▶ ("SSH", ssh_sign_pred) ⊂ sign_pred (required by the SSH proofs)

let L = [
("TLS", tls_sign_pred);
("SSH", ssh_sign_pred);

]

// Need to prove the following:
assert (pairwise_distinct (map fst L))
// This is trivially true because
// map fst L == ["TLS"; "SSH"]

Figure 3.4: Example of local invariants
list for Figure 3.2.

Requirements from the user. We require the user to gather the set
of tags and local invariants 𝐿 = {(𝑡1 , 𝑙1), . . . , (𝑡𝑛 , 𝑙𝑛)} used throughout
every protocol step proof. Then, we require them to prove tags are all
distinct, namely ∀𝑖 , 𝑗.𝑡𝑖 = 𝑡 𝑗 =⇒ 𝑖 = 𝑗. This is in practice easily prove
by normalization, because tags are concrete values.

We give an example of such an 𝐿 for the signature predicate of Figure 3.2
in Figure 3.4.

Building the global invariant. Given the list of tags and local invariants 𝐿,
our framework provides a global invariant𝐺(𝐿). If 𝐿 obeys the distinctness

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 52

/// HPKE’s LabeledExpand function

type labeled_expand_info = {
len: uint16;
label: string;
info: bytes;

}

let labeled_expand prk label info len =
let labeled_info = serialize { len; label; info; } in
kdf_expand prk labeled_info len

/// The HPKE single-shot API in base mode

let hpke_pk sk =
kem_pk sk

let hpke_enc pkR entropy plaintext info ad =
let (enc, shared_secret) = kem_encap pkR entropy in
let aead_key = labeled_expand shared_secret "key" info 32 in
let aead_nonce = labeled_expand shared_secret "base_nonce" info 32 in
let ciphertext = aead_enc aead_key aead_nonce plaintext ad in
(enc, ciphertext)

let hpke_dec skR (enc, ciphertext) info ad =
let? shared_secret = kem_decap skR enc in
let aead_key = labeled_expand shared_secret "key" info 32 in
let aead_nonce = labeled_expand shared_secret "base_nonce" info 32 in
aead_dec aead_key aead_nonce ciphertext ad

Figure 3.5: Specification of our simplified
HPKE model. Note that the ad bytestring
is authenticated via the AEAD additional
data, whereas the info bytestring is au-
thenticated within the AEAD key via the
labeled_expand key derivation.

conditions, our framework proves that ∀𝑖.(𝑡𝑖 , 𝑙𝑖) ⊂ 𝐺(𝐿). Therefore, this
global invariant 𝐺(𝐿) satisfy the requirements of every protocol step
proof.

Internals of 𝐺. The definition of 𝐺 is as follows: given an input 𝑥𝐺,
compute decode_data(𝑥𝐺) = (𝑡 , 𝑥𝐿). If 𝑡 = 𝑡𝑖 for some 𝑖, then 𝐺(𝐿)(𝑥𝐺)
is defined to be 𝑙𝑖(𝑥𝐿). If no such 𝑖 exists, or if decode_data(𝑥𝐺) = ⊥, we
define 𝐺(𝐿)(𝑥𝐺) to be equal to a default value (supplied by the user).

When tags are not distinct. We enforce the requirement that tags but be
distinct, what happens when this is not the case? We argue that when
tags are not distinct, this sheds light on a protocol weakness. Indeed, in
the example of Figure 3.2 this would give evidence that a given key is
used for too many purposes, or in the example of Figure 3.3 this would
give evidence on a lack of domain separation.

3.1.4 Case study: Hybrid Public-Key Encryption

We demonstrate the expressivity of our modular protocol invariants tech-
nique with a case study on Hybrid Public Key Encryption (HPKE) [69]. [69]: Barnes et al. (2022), RFC 9180: Hy-

brid public key encryption

Modeling HPKE. We specify and prove a simplified model of HPKE [69]
in Figure 3.5, more specifically its Single-Shot API in the Base mode which
is used in MLS [21]. Internally, HPKE relies on three cryptographic prim- [21]: Barnes et al. (2023), The Messaging

Layer Security (MLS) Protocolitives: Key Encapsulation Mechanism (KEM), Key Derivation Function
(KDF), and Authenticated Encryption With Associated Data (AEAD).

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 53

Public-Key Encryption properties. We want DY∗ users to be able to use
HPKE as a Public-Key Encryption (PKE) algorithm. To do so, we prove
that HPKE’s encryption and decryption functions obey similar security
properties as DY∗’s native PKE algorithm (i.e. how it preserves the bytes
invariant, see §2.2.8). To recall, PKE ensures that the ciphertext is safely
publishable (hence can be sent on the network) only:

▶ (confidentiality) when the plaintext is less secret than the private
key,7 7: otherwise, the attacker could use the

ciphertext and the private key to learn
something more secret than what they
are allowed to know

▶ (authenticity) when a user-provided global predicate (the PKE
predicate) holds on the plaintext, or when the plaintext is publish-
able.8 8: this handles the case where the at-

tacker performed the encryption them-
selvesWe prove similar properties for HPKE, hence rely on a (global, user-

provided) predicate for HPKE plaintexts.

Confidentiality. We easily prove that HPKE provides confidentiality
by combining the confidentiality properties of the KEM, the KDF and
the AEAD. We do not dive deeply in how we do this proof, because the
interesting proof is about authenticity.

let hpke_aead_pred hpke_pred =
𝜆 tr key nonce plain ad→
// We know that ‘key‘ is an AEAD
// key for HPKE, we retrieve the
// underlying HPKE key usage and
// the info field from the AEAD key
// usage
let AeadKey "HPKE" {
hpke_key_usage;
info;

} = get_usage key in
// either the plaintext is public
is_publishable tr plain ∨
// or the hpke predicate holds
hpke_pred.pred
tr hpke_key_usage plain info ad

);

Figure 3.6: Compilation of a global HPKE
predicate to a local AEAD predicate.

Authenticity. The authenticity guarantees of HPKE ultimately boil down
to the authenticity guarantees provided by the underlying AEAD. To do
so, we first combine the guarantees given by the KEM and the KDF to
deduce that aead_key (see Figure 3.5) has the usage of an AEAD key for
the protocol “HPKE” (more on that in the next paragraphs). Then (as
shown in Figure 3.6), we compile the global HPKE predicate into a local
AEAD predicate that can be composed with local AEAD predicates of
other protocols as in Figure 3.2.

Modular HPKE predicate. DY∗ users may compose multiple protocols
that internally rely on HPKE. When these protocols use distinct keys, we
may write a global HPKE predicate using again our modular invariants
technique and dispatch to local HPKE predicates depending on the
HPKE keypair usage (similarly to Figure 3.2).

HPKE key usages. We mentioned above that aead_key (see Figure 3.5)
has the usage of an AEAD key for the protocol “HPKE”. This was a
simplification, we now fully describe the usage of keys in HPKE. Recall
(§2.2.7) that usages are a way to prove that two keys are distinct in DY∗,
by proving they have distinct usages. Let “Protocol X” be the protocol
where we use HPKE. The usages of keys in our HPKE specification (see
Figure 3.5) are as follows:

▶ skR / pkR must have the usage “KEM key for HPKE in Protocol
X”. This must be proved by the user.

▶ shared_secret has usage “KDF.Expand key for HPKE in Protocol X”.
This is proved using the properties of kem_encap and kem_decap.

▶ aead_key has usage “AEAD key for HPKE in Protocol X with info”.
This is proved using the properties of kdf_expand. The info field
appears here because it is included in the key derivation.

This is how in Figure 3.6 we are able to obtain the HPKE key usage and
info from the AEAD key usage.

The local HPKE decision tree. In Figure 3.7, we depict the local protocol
invariants required by our HPKE proof. Our proof works with any
protocol invariants, as long as the underlying KDF invariants contain
local invariants for HPKE, and as long as the underlying AEAD predicate
contain a local predicate for HPKE, which is itself compiled from a global

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 54

Cryptographic invariants
KDF invariant AEAD predicate . . .

HPKE . . . HPKE . . .

HPKE
predicate

Figure 3.7: Graphical depiction of the
cryptographic invariants required by
HPKE. HPKE relies on a local KDF in-
variant, and on a local AEAD predi-
cate which is obtained by compiling the
global HPKE predicate (as shown in Fig-
ure 3.6).

Cryptographic invariants
KDF invariant

HPKE MLS epoch secret

"
c
o
n
f
i
r
m
"

"
e
n
c
r
y
p
t
i
o
n
"

"
i
n
i
t
"

"
r
e
s
u
m
p
t
i
o
n
"

(e
tc

)

. . .

MLS ws

"
k
e
y
"

"
n
o
n
c
e
"

. . .
MLS ps

"
p
a
t
h
"

"
n
o
d
e
"

. . .
(etc) . . .

AEAD predicate
HPKE MLS wk . . .

Signature predicate
MLS

"
L
e
a
f
N
o
d
e
T
B
S
"

"
K
e
y
P
a
c
k
g
a
g
e
T
B
S
"

"
G
r
o
u
p
I
n
f
o
T
B
S
"

Tree
predicate

. . .
. . .

HPKE predicate
MLS kp

"
W
e
l
c
o
m
e
"

. . .

MLS ln

"
U
p
d
a
t
e
P
a
t
h
N
o
d
e
"

. . .
. . .

Figure 3.8: Graphical depiction of the protocol invariants required by TreeKEM. “MLS ws” means “MLS welcome secret”, “MLS ps”
means “MLS path secret”, “MLS kp” means “MLS KeyPackage”, “MLS ln” means “MLS LeafNode”, “MLS wk” means “MLS welcome
key”. The “(etc)” blocks mean that we omitted some of the invariants for space reasons, while the “. . . ” mean that other invariants could
be added there if needed. The strings are domain-separators, which are inputs of the MLS constructions SignWithLabel, EncryptWithLabel
and ExpandWithLabel. The “Tree Predicate” is a parameter of TreeSync which is instantiated by TreeKEM.

HPKE predicate, which may also be defined modularly (not depicted
here).

3.1.5 Case study: TreeKEM

We demonstrate the effectiveness of our modular protocol invariants
technique with a case study on TreeKEM.

TreeKEM’s cryptographic invariants. In Chapter 6, we will prove the
security of TreeKEM. This security proof features vertical composition
because TreeKEM relies on HPKE (§3.1.4) and on TreeSync (Chapter 5).
It also features horizontal composition: HPKE is used in two places in
TreeKEM with a domain separator, AEAD is used both in HPKE and
in TreeKEM, KDF is used in HPKE and in multiple places of TreeKEM,
furthermore TreeKEM relies on multiple signatures (via TreeSync) which
use the same signature key but are domain-separated.

The full cryptographic invariants decision tree is depicted in Figure 3.8. Its
size demonstrates that our framework scales well and can handle complex
cryptographic protocol with substantial cryptographic invariants.

Extending TreeKEM’s invariants. TreeKEM is running in parallel
of other protocols, for example the sub-protocol of MLS called Tree-
DEM. In order to perform a combined security proof of TreeKEM +
TreeDEM (namely, MLS in its entirety) one would need to modify the
cryptographic invariants depicted in Figure 3.8. Fortunately, this is easy:
for example, TreeDEM relies on a signature with domain-separator
"FramedContentTBS" which has its own predicate; fortunately, adding it

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 55

in the decision tree is as simple as adding an element to a list (the list L
of Figure 3.4).

3.1.6 Discussion

This work has been motivated by the security proofs for MLS (Chapter 5
and Chapter 6). Indeed, if we were to write a single big monolithic
cryptographic invariant for TreeKEM (as depicted in Figure 3.4), it would
span roughly around a thousand lines of code, it would be difficult to
maintain, and each time it is tweaked, existing proofs would risk to
break (even the proofs not related to said tweak). Therefore, we think
this modular invariant framework was a crucial technique to conduct
our security proofs.

Boilerplate. Instantiating the framework requires some boilerplate,
aside from defining the parameters decode_data etc. which cannot be
compressed. We have two types of boilerplate which we tried to reduce
as much as we could.

When defining the global invariant, we must prove it does contain all the
local invariants of our protocol. This is done with only one line of code,
which is nice because in particular it is independent on the number of
local invariants to merge.

We must lift properties of our local invariants to properties of our global
invariant: for example, the signature predicate must stay true when the
trace grows, that is, if it is true now, it will stay true in the future. To
do that, we require around 10-20 lines of boilerplate per property to lift:
around 5-10 for the property statement, and around 5-10 for the proof. It
seems like it could be improved, but we haven’t figured out how. Still,
we think this is a reasonable amount of boilerplate because it belongs to
more library-ish parts of the code, and it does not affect the readability
of the rest of the proofs.

History of the framework. This framework, although simple in appear-
ance, is the result of many iterations, each time improving its expressivity
or its usability.

The idea started when writing the first signature predicate for MLS,
namely for "LeafNodeTBS" signature in TreeSync. The security proof of
TreeSync was already not easy, hence we wanted this proof to be done
once and for all, and did not want future extensions to the signature
invariant (e.g. adding a case for "GroupInfoTBS") to risk breaking our
TreeSync proofs. To solve this problem, we designed a first version of the
framework, hard-coded for MLS’ domain-separated signatures.

When progressing through the security proof of TreeSync, we faced a
similar problem for states: in DY∗, protocols must use functions to store
and retrieve their state, which also come with an invariant. In TreeSync,
we had many different types of states, each with their own invariant: we
decided to generalize the framework and parametrize it with decode_data
etc, as described in §3.1.2.

Until this point, the framework lived within TreeSync security proofs,
that is, outside DY∗. We later incorporated the framework in DY∗ (see
§3.5.2), and provided several basic invariant builders, such as defining
the signature predicate modularly depending on the signature key usage
(whereas in TreeSync, we only did it depending on a domain-separator).
It worked well for the AEAD predicate, the signature predicate and the

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 56

PKE predicate (similar to the HPKE predicate), but it did not work for
the KDF invariant, because the framework only supported predicates
at that time, and the KDF invariant is a pair of functions returning
labels or usages, not propositions. We revamped the framework to also
parametrize the output type, and be able to modularly define the KDF
invariant.

It was also at this point we realized that we could apply the framework
recursively, that is, build decision trees with depth ≥ 1, so that we can
write MLS’ domain-separated signature invariants on top of the per-key-
usage signature invariants. We didn’t use this feature much on signatures,
but it was a crucial ingredient to define the KDF invariant of TreeKEM.

When using the framework there was still an itch: the boilerplate to
prove that the global invariant contained all the local invariants was high.
Indeed, its size was linear in the number of local invariants. We managed
to reduce it to only one line, which is good for the happiness of DY∗
users.

At this point, the framework was mostly done, but it is only when writing
the security proof for HPKE that we realized how expressive it was. Now,
we really think it is the way to write invariants in DY∗, and doing it like
this feels very natural. However, this is the result of several iterations
and “aha!” moments.

3.2 Renovating the label construction

In symbolic protocol provers (such as DY∗, but also ProVerif or Tamarin)
confidentiality theorems are of the form “if the attacker knows this
bytestring (e.g. a secret key), then it must have performed these type of
compromises”. To prove this kind of property, DY∗ relies on a construction
called security labels: each bytestring is associated with a label which
encodes an over-approximation of the compromises that may lead the
attacker to know this bytestring. For example, the label of Alice’s private
signature key may ensure that if the attacker knows this key, then it
must have compromised one of Alice’s states. Note that this is an over-
approximation because the converse is not true: for example, the attacker
may have compromised the state of Alice where she stores pictures of cats,
but this does not reveal Alice’s private signature key to the attacker.

type label

val public: label
val principal_label: principal→ label
val join: label→ label→ label
// etc

val is_corrupt:
trace→ label→ prop

val can_flow:
trace→ label→ label→ prop

Figure 3.9: The F∗ types of the various
ingredients to build labels.

Security labels are built using three ingredients (depicted in Figure 3.9):
a type for labels and functions to construct them (so that the type can
remain abstract to users), a predicate is_corrupt that tells whether the
attacker compromises fall within the over-approximation encoded by the
label, and a relation can_flow that tells whether a label is less secret than
another. The label of a bytestring restricts how the bytestring can be used
in a cryptographic protocol: for example, a plaintext can be encrypted
with a key only when the key is more secret (as per can_flow) than the
plaintext. This ensures that, for example, if the attacker knows the key
(hence can decrypt and obtain the plaintext), the plaintext label is corrupt
(because the key label is both corrupt and more secret than the plaintext
label), hence is a correct over-approximation of the compromises that
may lead the attacker to know the plaintext.

In the original DY∗ [43], security labels have limited expressivity: they
can talk about the compromise of a principal, or of a specific state of
a principal, identified by a state identifier (an integer), or of a specific
version of that state, identified by a version identifier (an integer). The state

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 57

identifier is in itself just a pointer, and does not convey any information
on what the state contains: does it hold an ephemeral key, or some
long-term signature key? Furthermore, using these labels, one cannot
express fine-grained temporal guarantees: for example that a signature
key was compromised before we verified some corresponding signature
(e.g. in a handshake protocol).

In this section, we present a new labeling framework that is more
expressive, and can in particular express compromise of some particular
state type (e.g. signature key) and express temporal properties (e.g.
compromise of a signature key before some event). This new labeling
framework was already used by and crucial to the security proofs of the
TreeKEM protocol (Chapter 6).

We present the new label framework in four steps:

▶ first, we present the definition of labels in the original DY∗ [43] [43]: Bhargavan et al. (2021), DY*: A Mod-
ular Symbolic Verification Framework for
Executable Cryptographic Protocol Code

▶ then, we simplify the definition of is_corrupt and can_flow
▶ then, we change the label type and is_corrupt so that labels can be

extended on the user-side instead of requiring to modify DY∗’s core
▶ finally, we show how the security proof of TreeKEM leveraged this

new labeling framework

3.2.1 Labels in the original DY
∗

We begin by giving an introduction to the design of labels in the original
DY∗ [43], then show a new, simpler design.

type label =
| Principal: principal→ label
| Join: label→ label→ label
| Meet label→ label→ label
| Public: label
| Secret: label

Figure 3.10: Inductive type for labels.

The label type. Labels are defined as an Abstract Syntax Tree (AST) with
one node per operation on labels (e.g., meet or join) or per base label
(e.g., the public label or label corresponding to a principal), shown in
Figure 3.10.

The can_flow relation. In the original DY∗ [43], can_flow is defined by
doing a case analysis on the two labels being compared (as shown in
Figure 3.11a), therefore its definition size is quadratic in the number of
node type in the label AST. Furthermore, this definition of can_flow must
be a partial order, i.e., it must be reflexive and transitive. The transitivity
proof is done by doing a case analysis on the three labels involved,
resulting in a proof script whose size is cubic in the number of node type
in the label AST. Then, a linear number of properties with linear proof
script must be proved, e.g., public satisfies the greatest element property,
join satisfies the least upper bound property, etc. Label corruption is then
defined as flowing to the public label.

3.2.2 Simplifying labels

We design a new version of can_flow (shown in Figure 3.11b) whose
definition size is linear in the number of node type in the label AST, and
where every related proof (e.g., reflexivity, transitivity, least upper bound
property, etc) is of constant size. As a result, this new version of can_flow
will be easier to adapt when we extend the label AST with new node
types.

Defining is_corrupt. In Figure 3.11b, we define is_corrupt directly, instead
of defining it from can_flow (as in Figure 3.11a): the label Principal is corrupt
when there exists a compromise event in the trace for the corresponding

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 58

let rec can_flow (tr:trace) (l1 l2:label) =
match l1, l2 with
| Principal p, Public→ exists_compromise_event tr p
| Join l11 l12, Join l21 l22→ ...

(can_flow tr l1 l21 ∧ can_flow tr l1 l22) ∨
(can_flow tr l11 l2 ∨ can_flow tr l12 l2)

| Principal p, Meet l21 l22→ ...
| Meet l11 l12, Join l21 l22→ ...
...

let is_corrupt (tr:trace) (l:label) = can_flow tr l Public

(a) The can_flow relation as defined in the original DY∗ [43].
Parts omitted for brevity.

let rec is_corrupt (tr:trace) (l:label) =
match l with
| Principal p→ exists_compromise_event tr p
| Join l1 l2→ is_corrupt tr l1 ∨ is_corrupt tr l2
| Meet l1 l2→ is_corrupt tr l1 ∧ is_corrupt tr l2
| Public→ ⊤
| Secret→ ⊥

let can_flow (tr:trace) (l1 l2:label) =
∀ tr_later. tr ≤ tr_later =⇒
(is_corrupt tr_later l2 =⇒ is_corrupt tr_later l1)

(b) Our new definition of can_flow. The definition as shown
here is complete, no parts were omitted.

Figure 3.11: Definition of labels in DY∗

principal, the Public label is always corrupt (regardless the compromises
from the attacker). Finally, the Join label is interpreted as a disjunction
and the Meet label is interpreted as a conjunction.

Defining can_flow from is_corrupt. We then define that a label l1 flows
to a label l2 with respect to a trace tr when for any possible way to extend
the trace (e.g., by adding compromise events) the label l1 is corrupt when
the label l2 is corrupt. It means it is impossible for the attacker to corrupt
l2 without corrupting l1, hence reflecting the intuition that l1 is “less
secret” than l2.

Proving properties of can_flow. With this new definition of can_flow,
most properties are now easy to prove: for example, transitivity of
can_flow follows immediately from transitivity of implication, or, Public
flows to any label because anything implies ⊤.

Relationship between the old and the new can_flow. We formally prove
that the previous and new is_corrupt are equivalent, and that our new
can_flow definition is the largest label flow relation that satisfies these
three properties: (1) it is transitive, (2) it stays true when the trace grows,
(3) flowing to public is equivalent to being corrupt. In particular, the
previous can_flow obeys these three properties hence implies our new
can_flow.

3.2.3 Generalizing labels

We now show how we modify the label type and is_corrupt to allow users
to define new labels within their projects, instead of requiring modifying
DY∗ core.

let principal_label (p:principal) = {
is_corrupt = (𝜆 tr→
exists_compromise_event tr p

);
}
let join (l1 l2:label) = {
is_corrupt = (𝜆 tr→
l1.is_corrupt tr ∨ l2.is_corrupt tr

);
}

Figure 3.12: Example of labels as trace
predicates

Labels as trace predicates. In §3.2.2, we can view labels as a deep-
embedded domain-specific language (DSL) for trace predicates, where
is_corrupt (Figure 3.11b) is an interpreter for this DSL. We use this insight
to design the most general label type possible: our new labels are now full-
fledged trace predicates, which then benefit from the full expressivity of
F∗. The labels presented in Figure 3.11b can now be implemented outside
of DY∗’s core (see Figure 3.12), and nothing prevents users to implement
other more expressive labels as we will see in §3.2.4. Changing labels to
be full-fledged trace predicates creates two technical difficulties that we
explain in the rest of this section.

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 59

type bytes =
| Rand: ...→ label→ bytes
...

let rec get_label b =
match b with
| Rand ... lab→ lab
...

Figure 3.13: It is convenient to store the
label of a fresh random bytestring in its
corresponding constructor in bytes, so
that we can easily retrieve it in get_label.

Erasing labels. When labels were abstract syntax trees they could
be compared using F∗’s decidable equality, however this is not the case
anymore because we cannot compute whether two predicates are identical
or not. Indeed, before, we could write a program that checks whether
two labels are equal (hence, decide the equality on labels). This is now
impossible because labels are predicates on traces, that is, functions from
traces to propositions: it is impossible to write a program that always
terminates and checks whether two functions with infinite co-domain
(here, traces) are equal. This causes a problem in another part of DY∗,
bytestrings, because the type bytes contain a label in the constructor for
fresh randomness (see Figure 3.13 and Figure 2.8 in §2.2.4), however, we
need decidable equality on bytes (e.g. because cryptographic protocols
compare hash values). We will explain our complete solution to this
problem in §3.3; in short, we succeed to remove labels from the bytes
constructor, thereby making the label type erasable (meaning that labels
are just a proof artifact and never play a role in computations).

type trace_entry_ (label_t:Type) =
| MkRand:
label:label_t→ ...→
trace_entry_ label_t

...
type trace_ (label_t:Type) =
list (trace_entry_ label_t)

type label = (trace_ unit→ prop)
type trace = trace_ label

Figure 3.14: The trace type with labels as
trace predicates. The trace is parametric
in the label type, and labels are predicates
on trace without labels. This ensures the
positivity of the trace type.

Positivity of the trace type. The trace contains labels (in the event
corresponding to fresh randomness generation), and labels are now
predicates on the trace. Proof assistants such as F∗ will reject such types
because they are not positive: indeed, it is unsound to accept types that
contain predicates on themselves [70], otherwise (in short) this type
would give a surjection from trace→ prop to trace which leads to a
contradiction using Cantor’s diagonal argument. To work around this
issue, labels are in reality not predicates on the trace, but predicates on a
view of the trace where labels are removed (i.e., replaced with the unit
type), as shown in Figure 3.14. This solves the issue about positivity, at
the price of labels being slightly less expressive. This loss of expressivity
is not a problem in practice, because reasonable labels don’t depend on
other labels present in the trace.

let is_corrupt (tr:trace) (l:label) =
l.is_corrupt (trace_forget_labels tr)

let can_flow (tr:trace) (l1 l2:label) =
∀ tr_later. tr ≤ tr_later =⇒ (

is_corrupt tr_later l2 =⇒
is_corrupt tr_later l1

)

Figure 3.15: The new definition of
can_flow, with labels as trace predicates.

New definition of can_flow. We show the new definition of is_corrupt
and can_flow in Figure 3.15. The definition of can_flow is the same as
in the previous section (see Figure 3.11b). The definition of is_corrupt is
mostly transferred to labels themselves (e.g. compare the join label in
Figure 3.12 and the Join case in Figure 3.11b); is_corrupt only takes care of
removing labels of the traces via the helper function trace_forget_labels
(see previous paragraph “Positivity of the trace type”). Note that the
prefix relation on traces (≤) in can_flow still takes into account labels in
the traces, this is fine because we don’t need to compute whether a trace
is a prefix of another, we only need to reason with prefixes in proofs.

Label extensionality. We can further prove an extensionality theorem
on labels: if two labels flow to each other for all traces (hence their
underlying is_corrupt function are pointwise equivalent), then the two
labels are equal. This allows us to prove many equational theorems on
labels, for example that join is commutative: before, join l1 l2 and join l2 l1
were equivalent from the viewpoint of can_flow, but not equal. This is useful
because F∗ can reason with congruence9 automatically with equality (i.e. 9: if ℓ1 is equivalent to ℓ2 then 𝑓 (ℓ1) is

equivalent to 𝑓 (ℓ2) for any function 𝑓 .the built-in equality of F∗), but not with equivalence (a concept we define
ourselves on labels).

3.2.4 Examples of more expressive labels

In the security proof of TreeKEM (Chapter 6), we rely on these new, more
expressive labels, and define new kind of labels needed to conduct their

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 60

security proof without having to fork DY∗, demonstrating the success of
our approach. In this section, we explain how we used these new labels
to conduct the TreeKEM security proof.

Signed ephemeral key. In TreeKEM, an ephemeral public encryption key
is signed using a long-term signature key (in the so-called “key package”).
After we verify this signature, we want the following guarantee: when we
encrypt data with this ephemeral public encryption key, this data is safe
from the attacker, unless (1) the attacker compromised the corresponding
private decryption key, or (2) the attacker compromised this long-term
signature key before we checked the signature. We do this by designing a
label encompassing these two possibilities, and prove that this label is
less secret than the ephemeral private decryption key label: indeed, this
ensures that if the attacker knows the ephemeral private decryption key,
then the label we designed is corrupt, from which we deduce that one of
the two aforementioned possibilities happened.

Label for signed ephemeral key. We design two labels, ℓ𝑒𝑝ℎ is corrupt
when the attacker compromised the ephemeral key state, and ℓ𝑠𝑖𝑔 is
corrupt when the attacker compromised the signature key state before we
verified the signature. Using these two labels, we can prove that after
signature verification, the following label relation holds:

ℓ𝑒𝑝ℎ⊔ℓ𝑠𝑖𝑔≳L(eph_key)

Indeed, if the signature key state is compromised before we verified the
signature, then ℓ𝑠𝑖𝑔≳⊤, we conclude by transitivity via ℓ𝑒𝑝ℎ⊔ℓ𝑠𝑖𝑔≳ℓ𝑠𝑖𝑔 10 10: via Flow-Join-Eq-Elim in Figure 2.14
and ⊤≳L(eph_key).11 If the signature key state is not compromised 11: via Flow-Public in Figure 2.14
before we verified the signature, then the signature must have been
computed by an honest participant, hence some corresponding signature
predicate must hold on eph_key. By designing the signature predicate
such that it implies ℓ𝑒𝑝ℎ≳L(eph_key), we conclude by transitivity via
ℓ𝑒𝑝ℎ⊔ℓ𝑠𝑖𝑔≳ℓ𝑒𝑝ℎ .12 We now describe how we are able to define ℓ𝑒𝑝ℎ and 12: via Flow-Join-Eq-Elim in Figure 2.14
ℓ𝑠𝑖𝑔 with our new labeling framework.

let signature_key_label
(p:principal) (vk:bytes) = {
is_corrupt = (𝜆 tr→
∃ st.
exists_compromise_event tr st ∧
st.who == p ∧
st.tag == "SignatureKey" ∧
sk_to_vk st.content.sk == vk

);
}

Figure 3.16: Precise label for a signature
private key of principal p corresponding
to the public verification key vk.

Precise state. In principal_label p (Figure 3.12), the corruption predicate
says “there exist a state of principal p that is compromised by the attacker”,
but this does not express what this state actually contains. We can now
build more precise labels, as shown in Figure 3.16: signature_key_label
further says that this state contains a signature key (using the tag "Signa-
tureKey"), and that this signature key corresponds to some given public
verification key vk. This allows us to define ℓ𝑒𝑝ℎ . To define ℓ𝑠𝑖𝑔 , we still
need to deal with temporal properties.

Temporal properties. We express temporal properties with a new label
combinator: guard_event l e, which is corrupt when the label l is corrupt
before the event e was logged. Then, if l is the label for a signature key
and e is an event which is logged after verifying the ephemeral key
signature, we define ℓ𝑠𝑖𝑔 = guard_event l e, which correctly express a
temporal property: it is corrupt when the attacker compromised the
signature key before we verified the ephemeral key signature. The label
combinator guard_event is itself built using three different combinators,
that we now discuss.

let guard (l1 l2:label) = {
is_corrupt = (𝜆 tr→
∃ tr_before.
tr_before ≤ tr ∧
l1.is_corrupt tr_before ∧
¬(l2.is_corrupt tr_before)

);
}

Figure 3.17: Implementation of guard.

The guard label combinator. The first building block of guard_event is
the guard label combinator (Figure 3.17): guard l1 l2 is corrupt when there
exist a time in the past where l1 was corrupt but l2 was not corrupt. This
label combinator expresses a temporal property, and used with the event

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 61

label (see next paragraph) it can be used to express temporal properties
with respect to an event (e.g., verification of a signature).

let event_label (p:principal) (e:event) =
{
is_corrupt = (𝜆 tr→
event_was_logged tr p e

);
}

Figure 3.18: Implementation of
event_label.

Event labels. The second building block of guard_event is the event label
(Figure 3.18): event_label p e is corrupt when participant p has logged
the event e. We can combine it with guard, to almost obtain guard_event:
indeed, guard l (event_label p e) is corrupt when l was corrupt before
participant p logged the event e. The last problem to solve before obtaining
guard_event is the fact that participant p appears in this label. Indeed, in
security proofs with DY∗, it is generally useful that different participants
associate the same label for the same piece of data (here, the label for the
ephemeral private key). This cannot happen if the participant p who is
checking the signature appears in the ephemeral private key label.

Participant-independent event label. To solve this problem, a key
insight is that to conduct an active attack by forging the signature, the
attacker must compromise the signature key before any participant check
this signature (which is in particular before participant p checks this
signature). To implement this insight, we could modify event_label to
be corrupt when any participant logged some event. However, a more
elegant solution is to keep our general event_label and use it inside a join
over all possible participants: this would correspond to the fact that any
participant logged this event. In the original DY∗ [43], we can only do
joins over two labels, and we can repeat it to do joins over a finite amount
of labels. However, we cannot do it for an infinite amount of labels: with
our new labels, it is now possible to do.

let big_join (f:𝛼 → label) = {
is_corrupt = (𝜆 tr→
∃ (x:𝛼) . (f x).is_corrupt tr

);
}

Figure 3.19: Implementation of un-
bounded join.

Unbounded join and meets. Looking back at Figure 3.12, join between
two labels corresponds to the logical or. To implement an unbounded
version of join, we therefore use the unbounded version of the logical or,
which is the logical exists, as shown in Figure 3.19. Unbounded meet is
implemented similarly with a logical forall.

Conclusion. We designed new labels for TreeKEM, and in the process we
designed several label combinators of general purpose (guard, event_label,
big_join). These label combinators are of general interest for DY∗ users,
for this reason we now upstreamed them into DY∗’s standard library.

3.2.5 Discussion

This work has been motivated by the security proofs of TreeKEM (Chap-
ter 6), where we wanted to express what kind of state was compromised,
and express temporal properties on the labels, as we have shown in §3.2.4.
The work done in §3.2.2 allowed us to more easily extend labels with
the features we wanted, however modifying the core of DY∗ each time a
user has new labeling needs felt inconvenient. We solved this problem
in §3.2.3, where the user can define new labels within their proofs and
therefore don’t need to change the core of DY∗ to define new kind of
labels. In the end, we think this new labeling framework was a crucial
technique to conduct our security proofs of TreeKEM, and will benefit
future DY∗ users.

Limitations. During all our attempts to hack with this new labeling frame-
work, we only found one limitation: in the new definition of can_flow (Fig-
ure 3.11b), we quantify on all future traces, and not on all reachable future
traces, or all future traces that satisfy the trace invariant. As a result, some

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 62

can_flow relations are impossible to prove, although they would be prov-
able if can_flow were to quantify on all future traces that satisfy the trace
invariant. For example, if the trace invariant impose that participants log
the event Event2 only after they have logged before the event Event1, we
would hope that can_flow tr (event_label p Event1) (event_label p Event2)
because in all future reachable traces tr_later, we can prove that if have
is_corrupt tr_later (event_label p Event2), in that case we must also have
is_corrupt tr_later (event_label p Event1). Unfortunately, we cannot prove
this because can_flow also quantifies on unreachable traces where this
implication does not hold. It is not easy to modify the definition of
can_flow to account for the trace invariant, because the trace invariant
uses can_flow, so there is a chicken-and-egg problem. Therefore, we did
not find how to alleviate this limitation yet.

History of the framework. Now that we are used to this new labeling
framework, it seems that the new definition of can_flow introduced in
§3.2.2 is the natural definition of can_flow, and that the new definition of
labels introduce in §3.2.3 is the natural way to define labels. However, it
turns out it was not straightforward at the beginning.

My first attempt to better understand labels was to create the same
construction as the original can_flow (Figure 3.11a), but step by step: start
with one label per principal, then extend it by adding the secret and
public label (which are minimum and maximum labels with respect to
can_flow), then extend it by adding joins and meets, thereby putting a
lattice structure on labels.

Then, I wanted to add a new type of labels, which could only be corrupt
before some timestamp: this was a preliminary attempt at introducing
labels with temporal properties as we have done in §3.2.4. To extend
the label definition, I had to create new formulas for can_flow: when
does the new label flows to joins and meets, when does joins and meets
flow to the new label, etc. This was quite a tricky business, the first
aha! moment was when I realized that the (old) can_flow formulas were
all under-approximations of the new can_flow definition (which, at the
time, was not a can_flow definition, and not written anywhere) where
is_corrupt tr l was instead can_flow tr l public (there was no notion of "a
label is corrupt" other than flowing to public). Using this insight, I filled
my whiteboard with all the new formulas I should use to extend the
(old) can_flow definition to support this new temporal label. The day
was over, I went back home, proud of my work. Then, while doing
something else during that evening, I had a second aha! moment: part of
my brain working in the background told me “hang on, this thing we
are under-approximating, couldn’t this be the definition of can_flow?”.
The next day I tried it, and could prove all properties we proved on the
old can_flow. Furthermore, adding support for this new temporal label
proved to be very easy, certainly much easier than the attempt of the
day before which involved filling my whiteboard with mathematical
formulas.

I discussed this potential new can_flow definition with the other people
working on DY∗, but the feedback was mixed. The new definition seemed
more elegant, but it was unclear whether there were any hidden defects
with this new definition. The main concern was that the old can_flow
definition is computable: hence given two concrete label, we can compute
whether can_flow returns true or false. It is not the case of the new can_flow
definition, since there is a ∀ involved. In the end, we agreed to use it
because the actual definition of can_flow is hidden from users anyway,
they are only using the theorems we proved on can_flow, therefore

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 63

because we proved the same theorems, nothing really changed for the
DY∗ users. At this stage, using this new definition was in practice mostly
about aesthetics, however it radically improved my intuition of what it
means for a label to flow to another; I tried to convey this intuition when
explaining labels in §2.2.6.

Later on, when I started to think seriously about starting the security
proofs for TreeKEM (Chapter 6), I wanted to have more expressive labels.
Indeed, the current labels could talk about the compromise of a specific
participant, or of a specific session of a participant (where the session is
identified by an integer provided by DY∗). The labels could not express
things such as “a long-term signature key of this participant”, or as “an
ephemeral key used in the session described by this group identifier”
(where the group identifier is given by the protocol, here MLS). I tried to
hack the label framework to be able to express such things, and do it in a
way that is somewhat general, does not feel super specific to MLS, and
could benefit other DY∗ users. After spending a while tweaking the labels,
I realized that all I was doing was to create new trace predicates, and try
to parametrize them in a way they would be as generic as possible. This
was the third aha! moment: instead of hacking the label type to encode
more and more general trace predicates, what if we defined labels directly
as trace predicates? As we discussed in §3.2.3 there were two challenges
to do that: keeping the trace type positive and making labels erasable. I
quickly found the solution to make the trace type positive, although it
took a while to accept I could not find a better solution. Making labels
erasable was more difficult, I already thought about this in the past
but did not find any satisfying solutions, they all came with drawbacks
making DY∗ a bit more tedious to use. However, in the past, making
labels erasable was mostly for aesthetics, but with the possibility to define
labels as trace predicates, we now had a good reason to make labels
erasable and accept these drawbacks, because they are now trade-offs.
This new definition of labels offered a second round of improving the
intuition what labels are, and what it means for them to be corrupt; I
tried to convey that when explaining labels in §2.2.6.

3.3 Making labels erasable

type trace_entry =
| RandGen:

nat→ label→ usage→
trace_entry

...

type bytes =
| Rand:

timestamp→
nat→ label→ usage→
bytes

...

let get_label b =
match b with
| Rand _ _ lab _→ lab
...

Figure 3.20: It is convenient to store the
label of a fresh random bytestring in its
corresponding constructor in bytes, so
that we can easily retrieve it in get_label.

We saw in §2.2.4 when participants sample fresh randomness, they
choose what is its label and usage, and that in the type for symbolic
bytestrings (bytes), the constructor for fresh randomness contains a
variety of information related to this randomness: its time of generation,
its length, and also its label and usage (see Figure 3.20). This information
can then be retrieved in the function get_label. Although storing this
information there is convenient, it means that when sampling fresh
randomness, the random bytestring we obtain depends on the label we
chose. That is, if we sample a random bytestring, go back in time to
re-sample this random bytestring, this re-sampled bytestring would be
identical to the first one if we chose the same label and usage, but would be
different if we chose different label or usage. This raises a philosophical
question: should this be the case? We think the answer is: no. Random
bytestring should only depend on its time of generation and length, but
should not depend on its label or usage. Indeed, labels and usages are
only proof techniques, they should play no role in computations. In other
words, it means they should be erasable from computations.

Throughout the history of DY∗, there were several attempts to make labels

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 64

erasable, but none of them succeeded. In this section, we show how we
managed to make labels erasable. We explored a variety of solutions
toward this goal, however each of them came with drawbacks. These
drawbacks would be unacceptable if it were for the sole goal of resolving
this philosophical issue, however in §3.2.3 we saw that it was crucial to
erase labels (or at least, remove them from the bytes type) to enhance their
expressivity, transforming these drawbacks into trade-offs. Therefore, we
chose the solution with the most acceptable drawback. Since then, we
conducted a security proof for a large protocol (see Chapter 6) which
showed this drawback is perfectly acceptable, and actually rarely shows
up in practice, as we will explain.

type bytes =
| Rand:

timestamp→ nat→
bytes

...

Figure 3.21: The new bytes type, without
label or usage: just time of generation,
and length.

To make labels erasable, we must prevent them from appearing in the
bytes type: indeed, in Figure 3.20, two Rand constructors are equal when
they have the same time of generation, length, label and usage, which
means a program that checks the equality of two bytes must be able to
check the equality of labels, which cannot exist when labels are erasable.
Hence, with erasable labels, the bytes type should look as in Figure 3.21.
Furthermore, it is sufficient to prevent labels from appearing in the
bytes type: it is the only place where labels play a role in computations.
Therefore, our only focus in this section will be to repair DY∗ after
changing the bytes type to the one showed in Figure 3.21.

When the bytes type is changed to the one in Figure 3.21, get_label cannot
be written as in Figure 3.20. We will see three ways to repair it (and
the associated drawbacks): the solution we chose, if we add the trace
as a parameter of get_label (§3.3.1); and two solutions we didn’t choose,
if we decide to keep get_label with no extra parameter (§3.3.2), if we
decide to use instead a function has_label (§3.3.3). We then finally discuss
(§3.3.4).

3.3.1 If get_label depends on the trace

let get_label (tr:trace) (b:bytes) =
match b with
| Rand time _→

if time < length tr then
match get_entry_at tr time with
| RandGen_ lab _→ lab
| _→ // ???

else
// ???

...

Figure 3.22: Modification of get_label to
fetch the label in the trace. We don’t know
what to do in some places, though (an-
notated with // ???).

One solution is to look for the label in the trace: indeed, it is present in the
RandGen entry, which is fine even when labels are erasable because we
never need to compute whether two trace entries are equal. We give the
new code for get_label in Figure 3.22, however it is not clear what label to
return when the bytestring is malformed, that is, when its generation time
points in the future (it has not been generated yet) or when its generation
time points to a trace entry that does not correspond to randomness
generation. We explore a few ways to deal with this issue.

Returning a garbage label. One solution would be: return a garbage
label (e.g. public, or anything really) when the bytestring is malformed.
This would work to obtain a valid definition for get_label, but induces
another problem: the label returned by get_label may change when the
trace grows (in the case the time of generation points in the future).
This is not desirable: recall that every property in DY∗ is designed to
be monotonic in the trace, that is, when they are true with respect to
some trace, they stay true when the trace grows (see Figure 2.10). If the
label returned by get_label were to change when the trace grows, every
property that involves get_label (e.g. the bytes invariant) will fail to be
monotonic.

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 65

let bytes_wf (tr:trace) (b:bytes) =
match b with
| Rand time _→

time < length tr ∧
RandGen? (get_entry_at tr time)

...

let get_label
(tr:trace) (b:bytes{bytes_wf tr b}) =
...

Figure 3.23: Well-formedness predicate
on bytestrings.

Enforcing well-formed bytestrings. Another solution would be: de-
sign a predicate that captures “well-formedness” of bytestrings (see
Figure 3.23), and add a pre-condition to get_label to ensure we only
call it on well-formed bytestrings (this is what {bytes_wf tr b} means in
Figure 3.23). Because we only use get_label on bytestrings that are well-
formed, it means that get_label doesn’t have to deal with the cases when
the bytestring is malformed (annotated by // ??? in Figure 3.22), and
the label returned by get_label will not change when the trace grows.
However, this creates another problem: each time DY∗ users call get_label,
they will need to prove that the bytestring is well-formed. This is not
desirable, because it introduces some additional friction each time DY∗
users call get_label.

val get_label_later:
tr1:trace→ tr2:trace→ b:bytes→
Lemma
(requires bytes_wf tr1 b ∧ tr1 ≤ tr2)
(ensures

get_label tr1 b == get_label tr2 b
)

val bytes_invariant_implies_bytes_wf:
tr:trace→ b:bytes→
Lemma
(requires bytes_invariant tr b)
(ensures bytes_wf tr b)

Figure 3.24: Various lemmas to reason
with well-formedness.

Our solution. We combine the two approaches above: we return a
garbage label when the bytestring is malformed, and prove that if the
bytestring is well-formed, then its label don’t change when the trace
grows (see lemma get_label_later in Figure 3.24). With this approach, DY∗
users don’t need to prove that the bytestring is well-formed when they
use get_label, only when they want to reason on the output of get_label
will they need to prove well-formedness. Thankfully, this is in general
easy to prove, because every bytestring in a protocol execution satisfies
the bytes invariant, which we prove to imply well-formedness (see lemma
bytes_invariant_implies_bytes_wf in Figure 3.24). Furthermore, we design
SMT patterns (an F∗ concept we describe in §3.5.4) so that these lemmas
are applied automatically, making these well-formedness conditions
completely transparent to DY∗ users.

There is only one place where we cannot use this trick, because we don’t
know that bytestrings satisfy the bytes invariant: when we are defining
the bytes invariant itself. For example when DY∗ users define what is the
signature predicate, they are asked to prove that the signature predicate
is monotonic (a requirement so that the bytes invariant is also monotonic);
if the signature predicate involves get_label they will need to prove that
the inputs of get_label are well-formed. Thankfully, this is in practice
easy to prove, all the examples we have seen require only one or two
straightforward lines of proof.

3.3.2 If get_label does not depend on the trace

Another design choice would be to say that we want to do minimal
changes to get_label, hence do not introduce the trace as one of its
parameters. We did not choose this approach because it comes with two
prohibitive drawbacks.

let get_label b =
match b with
| Rand time _→ Indirect time
...

let is_corrupt (tr:trace) (l:label) =
match l with
...
| Indirect time→

time < length tr ∧ (
match get_entry_at tr time with
| RandGen _ lab _→

is_corrupt tr lab
| _→ ⊥

)

Figure 3.25: New type of label to repre-
sent an indirection, and corresponding
modification of is_corrupt.

Indirect labels. Then get_label cannot return the label of the bytestring,
since it is not present in any of its parameters. The solution is to create a
new type of label that adds an indirection, the Indirect label in Figure 3.25.
Then, using the formalism of §3.2.2, we modify the function is_corrupt to
handle this new type of label; on Indirect labels is_corrupt will simply call
itself recursively on the label pointed by the timestamp. In practice, we
cannot define is_corrupt exactly as in Figure 3.25 because this construct
may loop indefinitely on malformed traces, but we can create a function
is_corrupt with the same semantics by using fuel.

Equivalence instead of equality. The first drawback of this approach is
that we cannot, in general, express equality on labels. Indeed, suppose
we generate a fresh random bytestring b with label lab, we cannot prove

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 66

get_label b == lab because get_label b is now an Indirect label; we can
however prove that get_label b and lab are equivalent, that is, they both
flow to each other. This percolates throughout every use of labels in
security proofs, meaning that we can never prove that two labels are
equal (i.e. using F∗’s built-in equality), we can only prove that they
are equivalent.13 This is unfortunate, because proofs using F∗’s built-in 13: we cannot rely on an extensionality

property there, because the labels are
equivalent on this trace, but not all traces:
indeed there are (unrelated) traces where
the two labels are not equivalent (e.g. the
trace where we chose a different label for
the random bytestring b)

equality enjoy a lot of automation, and we found that proving with a
custom equivalence notion instead was difficult, especially when dealing
with congruence, for example proving that if ℓ1 ≃ ℓ ′1 and if ℓ2 ≃ ℓ ′2
then ℓ1⊔ℓ2 ≃ ℓ ′1⊔ℓ ′2. Although this fact is trivial when using F∗’s built-in
equality, proving it with a custom notion of equality showed to introduce
a lot of friction, and we found this additional friction to be prohibitive.

Incompatibility with §3.2.3. The second drawback of this approach is
that it is incompatible with our new labeling framework described in
§3.2, especially the generalization of labels to make them more expressive
in §3.2.3. Indeed, in §3.2.3 we want to define labels as trace predicates
(that tells whether they are corrupt), but recall that to keep the trace type
positive, labels are actually predicates on a view of the trace where labels
are removed (i.e. replaced with the unit type). It means that we cannot
implement the indirect label in this new labeling framework: indeed,
when fetching the new label to call is_corrupt recursively, this label in the
RandGen entry was removed.

3.3.3 If get_label becomes has_label

val has_label:
trace→ bytes→ label→
prop

let msg_can_flow_key_1 tr msg key =
∀msg_label key_label.

has_label tr msg msg_label ∧
has_label tr key key_label =⇒
can_flow tr msg_label key_label

let msg_can_flow_key_2 tr msg key =
∃ msg_label key_label.

has_label tr msg msg_label ∧
has_label tr key key_label ∧
can_flow tr msg_label key_label

Figure 3.26: Type of a function has_label.

A final design choice would be to say that get_label is not the right notion
to work with labels, and that we should instead rely on has_label (of type
depicted in Figure 3.26). We worked toward this direction, but found out
that this approach had the exact same drawbacks as §3.3.1, in addition to
making the code related to labels more convoluted.

Well-formed bytestrings. When a bytestring is malformed (as de-
fined in §3.3.1), the only sensible choice is that it has no label, that is,
has_label tr b lab is always false. However, when b is well-formed, we can
prove ∃ lab. has_label tr b lab. In short, being well-formed is equivalent to
having a label. This fact is compatible with the monotonicity of has_label,
it however causes a problem when using has_label with can_flow.

Lifting “can flow”. Using the new notion of has_label, we need to
translate our previous use of get_label into use of has_label, for example
can_flow tr (get_label msg) (get_label key). We give two such attempts in
Figure 3.26), but none of them is satisfactory. In msg_can_flow_key_1, if
key or msg is malformed (with respect to tr) then has_label will be false,
hence the implication will be true. When the trace grows, if key and
msg become well-formed, the condition might become false, meaning
that msg_can_flow_key_1 is not monotonic when the trace grows. We do
another attempt in msg_can_flow_key_2, however to prove it we need
to prove that both key and msg have a label, therefore that they are
well-formed.

Therefore, we can see that our attempts at using can_flow with has_label
bring back the same well-formedness conditions as in §3.3.1. We could
hope to circumvent this issue, but taking a step back, we realized there is
no hope to do so.

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 67

Set of labels. What we have done in the last paragraph is to lift our defini-
tion of can_flow on labels to label→ prop, that is, sets of labels. In fact, we
also need to lift operations on labels, such as joins and meets. With sets of
labels being so ubiquitous, it is natural to define label_set = label→ prop.
Then, note that has_label has type trace→ bytes→ label_set, which is
very similar to the get_label type we defined in §3.3.1. This explains
why we hit the same well-formedness problem we had with this design
choice.

In summary, moving from get_label to has_label is effectively a convoluted
way to add the trace as a parameter of get_label, which is what we do
directly in §3.3.1.

3.3.4 Discussion

The journey through the erasing of labels was certainly convoluted,
and involved many trials and errors. At the beginning, working on
this was mostly a distraction, to resolve the philosophical issue that
labels shouldn’t play a role in computations. Because each approach had
drawbacks, we aborted the erasing of labels and the various attempts
stayed as unmaintained git branches and notes describing the approaches
and associated drawbacks.

Our new labeling framework (§3.2.3) acted as a catalyst: erasing label
was crucial to improve expressivity of DY∗. Initially, we were not sure
how much annoying would be the drawback we chose (having to deal
with bytestrings well-formedness), but we decided to accept it because
the impact on small examples was reasonable. Since then, we conducted
a security proof for a large protocol (TreeKEM, see Chapter 6) which
involves a fair amount of labels, and confirmed that this drawback is
perfectly acceptable, and actually rarely shows up in practice.

3.4 Making key usage an invariant

We described in §2.2.7 the concept of usage of a key, written U(□), and
saw in the bytes invariant (§2.2.8) that knowing what is the usage of a
key is a precondition to safely use it with cryptographic functions (e.g.
when encrypting a message with a key, we must prove that the key
has the usage of an encryption key, as shown in §2.2.8, in particular
Figure 2.20).

We found that this requirement on the key usage is not an invariant that
can be nicely propagated throughout security proofs. In this section, we
explain this issue and show how we solved it by weakening the notion
of “get usage” (i.e. the function U(□)) to obtain a notion that propagates
well throughout security proofs.

Usage of a key is uncertain. When doing the security proofs for TreeKEM
(Chapter 6) we noticed that we cannot, in general, know for sure what is
the usage of a key. Indeed, suppose we decrypt a message that contains a
key k: how can we obtain information about the U(k)? Maybe if k were
signed, then the signature predicate may tell that U(k) = u for some u,
however the signature predicate doesn’t hold for sure: indeed, another
possibility is that the attacker managed to obtain the corresponding
signature key (e.g. via compromise), in which case the signature key is

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 68

publishable. In summary, the signature would ensure that we know either
that U(k) = u, or that some (unrelated) signature key is publishable.

Toward a notion of “has usage”. We will show that we can always
prove the better guarantee that we know either that U(k) = u or that k
is publishable (i.e. P(k)), in which case we will say that the key k has
usage u. This notion of “has usage” will propagate nicely throughout the
bytes invariant, meaning that it is an invariant of cryptographic protocols,
unlike the requirement to know for sure that U(k) = u as imposed by the
original DY∗ [43]. [43]: Bhargavan et al. (2021), DY*: A Mod-

ular Symbolic Verification Framework for
Executable Cryptographic Protocol Code

“has usage” with encryptions and decryptions. Suppose we decrypt a
key k, and we want to prove that k has usage u, that is, U(k) = u ∨P(k).
We can do so by having the encryption predicate ensure that k has usage
u: if the encryption predicate holds, we are good, otherwise it means
the encryption was computed by the attacker in which case the message
(hence k) must be publishable, which also concludes. Therefore, the fact
that k has usage u is a property we can transmit from a principal to
another via encryption (whether symmetric or asymmetric).

“has usage” with key derivations. Suppose we derive keys using the key
k with a Key Derivation Function (KDF). If we know that k has usage u,
that is, U(k) = u ∨P(k), we can deduce that the derived keys also have
some usage. Indeed, if U(k) = u then we know the usage of the derived
key (as explained in §2.2.7). If instead k is publishable then the derived
key is also publishable. This concludes that the derived keys also have
some usage.

Weakening “get usage” into “has usage”. We showed that we can, in
general, prove that keys have some usage, that is, prove that either the
key usage is exactly something or that the key is publishable. However,
the preconditions to safely use cryptographic functions require that we
prove the key usage is exactly something (as shown in §2.2.8, in particular
Figure 2.20). In turns out we can safely weaken these preconditions to use
our new notion of “has usage”. Therefore, this notion of “has usage” is a
correct invariant that can be propagated throughout all cryptographic
functions.

Discussion. We found these issues when working on the proof of
Welcome message processing in TreeKEM. In there, we decrypt (using
public-key encryption) a key called the “joiner secret”, and use it to derive
a bunch of keys used for a variety of things. In the proof, we noticed that
we were always performing two proofs in parallel: one proof when we
know what is the usage of the joiner secret, and another proof when the
joiner secret is publishable. Incidentally, the proof when the joiner secret
is publishable relied on the lemmas that cryptographic functions preserve
publishability (see Figure 2.18) which were initially not supposed to be
used by DY∗ users, only be lemmas to prove the Attacker Knowledge
Theorem (§2.2.10). This new notion of “has usage” merges the two proof
paths together and leads to a better user experience. Initially, when we
redesigned DY∗ around this notion of “has usage” we were not sure
whether this would be the good notion for usage, but since then the
proofs of TreeKEM exhibited no problems with “has usage”, hinting
that it is indeed the good notion to reason with usages. In a way, “k has
usage u“ still means that k is safe to use as a key with usage u. Indeed,
if that is the case because k is publishable, computing cryptographic
functions with key k is safe, because it is as if the attacker were doing
these computations.

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 69

3.5 Quality of life and proof engineering

Along with the several scientific improvements on DY∗ we have done so
far (§3.1, §3.2, §3.4) we also did substantial engineering improvements to
DY∗. These improvements don’t improve scalability of DY∗, nor improve
expressivity of DY∗. However, they reduce needless friction when writing
security proofs, allowing DY∗ users to produce proofs more quickly.
Furthermore, although we have no scientific evidence to prove so, we
think reducing friction when writing security proofs leads to better mood
of the human producing the proof, thereby enhancing its productivity.

3.5.1 Making specifications easier to read

In the original DY∗ [43], users do security proofs in the style of intrinsic [43]: Bhargavan et al. (2021), DY*: A Mod-
ular Symbolic Verification Framework for
Executable Cryptographic Protocol Code

proofs (described below). We found that this style of doing proofs had
the side effect of making specifications less readable, which made the
perspective of using it to prove security theorems on TreeKEM (Chapter 6)
unappealing. We therefore did a big revamp of DY∗ to do extrinsic proofs
(also described below), initially as a proof-of-concept, which then became
the new version of DY∗ (after discussion with other DY∗ users, who
agreed to migrate).

Extrinsic proofs. The most natural way to prove properties on program
is the following: we have a program, which is a mathematical object,
and separately write a mathematical statement on the behavior of the
program, followed by a mathematical proof. This is called an extrinsic
proof: the proof is an artifact external to the program. The main drawback
of this approach is that when writing the proof, we often must write the
program again within the proof, thereby introducing some duplication.

Intrinsic proofs. We can resolve this issue of program duplication by
writing the program and the proofs at the same time, in an interleaved
fashion, as a single artifact: this is an intrinsic proof. Because the program
code is deduplicated, the proof is reduced to only its “interesting” parts.
On simple programs when the proof is mostly straightforward, the
proof has few “interesting” parts, therefore there are few lines of proofs
compared to lines of program code.

Specification readability. However, when the proof is subtle, it will have
many “interesting” parts, hence the lines of proofs over lines of program
code ratio will get worse, thereby submerging the program code with lines
of proofs, making the program code less easy to read. This may be fine, for
example if we were to prove that an optimized implementation adheres
to a clean, high-level specification (e.g. as done in HACL∗ [71]). However, [71]: Zinzindohoué et al. (2017), HACL*:

A verified modern cryptographic libraryin DY∗, this is not fine, because we are doing proofs on the specification
itself, and the specification must be easy to read: indeed, specifications
must be carefully reviewed to ensure they correctly model the protocol
under scrutiny. In our security proofs of MLS components (Chapter 5
and Chapter 6) we will use another technique to increase our confidence
that we correctly specify the protocol: by executing it concretely against
test vectors. This can only be done only when there exists test vectors,
hence is complementary to having easy-to-read specifications.

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 70

3.5.2 Library of reusable components

In §2.2, §3.2 and §3.4 we described what we call the “core” of DY∗: it is the
strict minimum to prove security properties on cryptographic protocols.
However, only using this “core” to prove security properties does not
offer a great user experience. To improve the user experience, we build
a library of reusable components that makes a better user experience.
Nowadays, it is unthinkable to use DY∗ without using each of the library
components: even the simplest examples (e.g. SignedDH in §2.3) rely on
them.

Modular invariants. We described in §3.1 a technique to define protocol
invariants modularly. It turns out that this is not part of the “core” of
DY∗: indeed, this technique does not improve expressivity of DY∗, it only
makes it easier to use. Therefore, it is part of the DY∗ library.

Modular invariants on key usage. We further provide instantiations
of the modular invariants technique to dispatch to local invariants
depending on the usage of the key (as shown earlier in Figure 3.2).
Indeed, this dispatch is generally the first one DY∗ users do when creating
their invariants as decision trees, hence in the DY∗ library, we provide
instantiations of the modular invariant technique on key usage for each
cryptographic primitive.

Comparse glue. Cryptographic protocols pervasively rely on message
formats: to send and receive messages on the network, to sign and verify
signatures, to store and retrieve state, etc. Furthermore, security proofs
may rely on properties of these message formats: for example, security
proofs involving signatures generally rely on the serialization function to
be injective (or that its corresponding message format is non-ambiguous,
in Comparse lingo, see Chapter 4). We provide glue code with Comparse
in the DY∗ library, which helps reduce a lot of boilerplate related to
message formatting.

States and protocol events with high-level types. In the core of DY∗,
states and protocol events contain bytestrings. However, DY∗ users
typically want to use them with high-level types, therefore need to
handle parsing and serialization by hand. To help DY∗ users, we provide
higher-level interfaces for states and protocol events that work with high-
level types. Under the hood, these higher-level interfaces use Comparse
to handle parsing and serialization transparently.

Reusable states. Cryptographic protocols often rely on a state to store
long-term private keys, and on a model of a Public-Key Infrastructure
(PKI) which associates public-keys to participant identities. To alleviate
DY∗ users having to write this kind of state for each protocol proof,
we provide generic reusable states for private keys and PKI. Every
DY∗ example rely on these states, the example we showed in §2.3 is
no exception: indeed, we mentioned there that we relied on these two
states.

3.5.3 Typeclasses to reduce verbosity

In the original DY∗ [43] there was a lot of verbosity when using functions
or predicates related to trace invariant, such as get_label, bytes_invariant
or trace_invariant. We managed to cut this verbosity using F∗’s typeclass
mechanism.

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 71

type crypto_usages = ...

val get_label:
crypto_usages→
bytes→ label

type crypto_invariants = {
usages: crypto_usages;
... // (signature predicate etc)

}

val bytes_invariant:
crypto_invariants→
trace→ bytes→ prop

type protocol_invariants = {
crypto_invs: crypto_invariants;
... // (state and event invariant)

}

val trace_invariant:
protocol_invariants→
trace→ prop

Figure 3.27: The hierarchy of protocols
invariants, and various invariant-related
functions.

Hierarchy of invariants. As we have seen in §2.2, the protocol invariants
in DY∗ depend on user-provided invariants: the state invariant, the
signature predicate, etc. As we show in Figure 3.27, we do this in F∗ by
adding a parameter to every function and predicate related to protocol
invariants. Furthermore, we define the user-provided invariants as a
hierarchy, so that each function and predicate only depend on what they
need: for example, get_label does not need to know the state invariant,
hence the state invariant does not belong to the parameter of get_label.
Conversely, the state invariant must be able to use bytes_invariant (e.g. to
say that its content must satisfy the bytes invariant), and bytes_invariant
must be able to use get_label (e.g. to say that the label of a message must
flow to the label of a key). This justifies that DY∗ needs to define the
type of user-provided invariants in several layers: the innermost layer
to parametrize get_label, the middle layer to parametrize bytes_invariant,
and the outermost layer to parametrize trace_invariant.

Verbosity. Each time we use get_label, bytes_invariant or trace_invariant,
we must feed them the user-provided invariants as a parameter, this
creates a lot of friction. To illustrate the friction, let’s suppose we are
calling the function get_label with a bytestring b, and see how we obtain
its parameter.

▶ If we are writing a signature predicate, we have as a parameter
usages of type crypto_usages therefore we write get_label usages b.

▶ If we are writing a state predicate, we have as a parameter crypto_invs
of type crypto_invariants, we write get_label crypto_invs.usages b.

▶ If we are proving that a protocol step preserves trace_invariant, we
have a parameter invs of type protocol_invariants therefore we write
get_label invs.crypto_invs.usages b.

Therefore, each time we use get_label, the user needs to answer two
questions: first, what is the name of the user-provided invariants in the
current context, second, how do we access its enclosed crypto_usages?
Furthermore, there is always at most one sensible answer to these two
questions: how to obtain crypto_usages is uniquely determined by the
type of user-provided invariants we obtained; and in any context we have
at most one user-provided invariants: either in the local context (such
as bytes_invariant has in its definition access to a generic crypto_invariants
in its local context), or in the global context (meaning that the user has
defined invariants for its protocol, which must be unique). Therefore,
there is always only one sensible way to obtain the parameter of get_label
(and friends), which strongly hints that obtaining this parameter could
be automatized.

// define a typeclass
type has_add (a:Type) = {

add: a→ a→ a;
}

// instantiate a typeclass
let has_add_int: has_add int = {

add = (𝜆 x y→ x+y);
}

// depend on a typeclass instance
let double (tc:has_add 𝛼) (x:𝛼) =

tc.add x x

// define a higher-level typeclass
type is_monoid (a:Type) = {

neutral: a;
add_tc: has_add a;

}

let double_g (tc:is_monoid 𝛼) (x:𝛼) =
double tc.add_tc x

Figure 3.28: Example code of typeclasses
in a functional language that has no na-
tive support for typeclasses.

Typeclasses. We (ab)use the typeclass mechanism of F∗ to cut this needless
verbosity. We give an example of how typeclasses are typically imple-
mented in functional programming languages in Figure 3.28, note the
similarities with our protocol invariants: every function is parametrized
by the typeclass instance, and functions operating higher in the type-
class hierarchy (e.g. double_g) need to recover the lower-level instances.
Thankfully, F∗ comes with a typeclass mechanism that automatically find
typeclass instances, which we use to automatically find the parameters
of get_label and friends.

The typeclass resolution algorithm may find either local or global instances.
An example of local instance: in double_g, we are calling double that
expects an instance of has_add on the abstract type 𝛼 , the typeclass
resolution algorithm will find such an instance in the local context, that
is, tc.add_tc. An example of global instance: if we call double on an int, the

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 72

typeclass resolution algorithm will find a typeclass instance in the global
context, that is, has_add_int.

We use the typeclass mechanism of F∗ on crypto_usages, crypto_invariants
and protocol_invariants. Although typeclasses are generally parametrized
by a type (like has_add), they also work without parameters even though
it is a bit unusual. As we explained earlier, there is always at most
one sensible way to instantiate the parameters of get_label and friends,
meaning we can safely discharge this instantiation to the typeclass
mechanism of F∗.

3.5.4 Good SMT patterns

Security proofs in DY∗ rely on a Satisfiability Modulo Theories (SMT)
solver, because DY∗ is a framework written in F∗, and proofs in F∗ are
performed using an SMT solver. In general, the SMT solver is not able
to perform proofs fully automatically, and needs some help from the
user, and F∗ libraries (such as DY∗) may use SMT patterns to help provide
more automation on custom theories (such as the theory of “can flow”
(≳) shown in Figure 2.14).

Helping the SMT solver. There are (mainly) two ways to help the
SMT solver. The first way is by using the assert construct: the SMT will
try to prove the property being asserted, then do the rest of the proof
using this asserted property. In other words, assert proves 𝑄 by proving
𝑃 ∧ (𝑃 =⇒ 𝑄) where 𝑄 is the goal to prove and 𝑃 is the asserted
property. This effectively guides the proof search of the SMT solver. The
second way is by instantiating a lemma that was previously proved and
add it as a hypothesis, in other words we prove 𝑄 by proving 𝑃 =⇒ 𝑄
where 𝑃 was proved in a previous lemma.

Lemma instantiation. In general, lemmas are universally quantified,
that is, they are of the form ∀𝑥1 , . . . , 𝑥𝑛 .𝑃(𝑥1 , . . . , 𝑥𝑛). In practice, this
fact is a bit crude to give directly to the SMT solver, which will need to
spend time to find appropriate values for the 𝑥𝑖 , or may do a bad job
at guessing the 𝑥𝑖 , thereby flooding its context with various (useless)
instantiations of 𝑃(. . .). Therefore, it is better practice to give the values
for 𝑥𝑖 when instantiating a lemma.

Boring lemmas. Unfortunately, many lemmas are not highly interesting
despite being crucial for proofs. For example, consider the lemma on
lists that the empty list is a neutral element for concatenation, or in
mathematical notation, ∀𝑙.𝑙 ++ [] = 𝑙. Users may find it inconvenient to
provide all the lists on which to instantiate this lemma, as it can be seen
as “trivial” and not the interesting part of the proof.

SMT patterns. To solve this problem, SMT solvers propose to instantiate
lemmas automatically when some pattern is encountered. In our example
on lists, we could ask the SMT solver that each time they see the pattern
𝑙++[] they automatically instantiate the lemma on the list 𝑙. This effectively
enhance the automation provided by the SMT solver: users will rarely
have to manually instantiate the lemma ∀𝑙.𝑙 ++ [] = 𝑙. Furthermore, this
does not pollute the SMT solver context with useless facts: this lemma
will be instantiated only when we concatenate a list with the empty list.

Bad SMT patterns. If instead we were to instantiate our lemma each
time we see a list, this would lead to infinite triggering: when the SMT

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 73

sees a list 𝑙, it would instantiate the lemma 𝑙 ++ [] = 𝑙, which adds a new
list in the context (𝑙 ++ []) on which we instantiate the lemma again to
obtain (𝑙++[])++ [] = 𝑙++[], and so on. This example is degenerate and
would not happen in the real world, still the point remains: SMT patterns
should be carefully designed to avoid over-triggering. Furthermore, this
careful design must be holistic: several SMT patterns may interact badly
with each other, although they would be fine if they were alone.

Designing good SMT patterns. There is an inherent trade-off in the
design of SMT patterns: too little, and boring parts of the proofs are not
automated, too much, and the SMT patterns over-trigger which may
lead to proof instability. Despite its importance, the design of good SMT
patterns is still arcane knowledge with no proper documentation, but as
a rule of thumb, the designer of SMT patterns must be careful of the new
terms created by the instantiation of the lemma (and how they would
trigger other SMT patterns), of how much an SMT pattern will trigger in
some given context, and how much of these triggering are going to help
the proof. We now give some examples.

Injectivity. Consider an injectivity lemma (e.g. injectivity of serialization),
written as ∀𝑥, 𝑦. 𝑓 (𝑥) = 𝑓 (𝑦) =⇒ 𝑥 = 𝑦. Suppose we want to instantiate
this lemma automatically, how should we design its SMT pattern? A
naive design would be: instantiate this theorem when there is in the
context 𝑓 (𝑥) and 𝑓 (𝑦). However, this will instantiate quadratically in the
amount of 𝑓 (□) in the context. Therefore, a better design is to exhibit a
𝑔 such that ∀𝑥.𝑔(𝑓 (𝑥)) = 𝑥 (this is equivalent to injectivity of 𝑓), and
instantiate this theorem when there is in the context 𝑓 (𝑥). When in the
context there are 𝑓 (𝑥) and 𝑓 (𝑦), the SMT will then know that 𝑔(𝑓 (𝑥)) = 𝑥
and 𝑔(𝑓 (𝑦)) = 𝑦, hence if 𝑓 (𝑥) = 𝑓 (𝑦), the SMT solver can deduce that
𝑔(𝑓 (𝑥)) = 𝑔(𝑓 (𝑦)) hence 𝑥 = 𝑦.

Transitivity. Consider a transitivity lemma (e.g. transitivity of “can flow”,
see Flow-Trans in Figure 2.14), written ∀𝑥, 𝑦, 𝑧.𝑥 < 𝑦∧𝑦 < 𝑧 =⇒ 𝑥 < 𝑧.
Suppose we want to instantiate this lemma automatically, how should
we design its SMT pattern? A naive design would be: instantiate this
theorem when there is in the context 𝑥 < 𝑦 and 𝑦 < 𝑧 (this is an
“hypothesis directed” pattern). Now suppose we have as hypothesis a
chain 𝑥1 < 𝑥2 < · · · < 𝑥𝑛 , and we want to prove that 𝑥1 < 𝑥𝑛 . This pattern
will trigger quadratically: for example 𝑥1 < 𝑥2 and 𝑥2 < 𝑥3, the pattern
triggers and creates 𝑥1 < 𝑥3, which will itself trigger SMT patterns, and
at the end, the context will contain every 𝑥𝑖 < 𝑥 𝑗 when 𝑖 < 𝑗, which is a
quadratic amount of facts. A better design of SMT pattern is to instantiate
this transitivity lemma when there is in the context 𝑥 < 𝑦 and 𝑥 < 𝑧 (this
is a “goal directed” pattern). When proving 𝑥1 < 𝑥𝑛 from our chain of
<, the context contains 𝑥1 < 𝑥𝑛 and 𝑥1 < 𝑥2, instantiate the transitivity
lemma and add in the context 𝑥2 < 𝑥𝑛 , which will be used to trigger the
pattern again, until 𝑥1 < 𝑥𝑛 is proved. At the end, the context will contain
every 𝑥𝑖 < 𝑥𝑛 , which is a linear amount of facts. Note that the pattern will
also spuriously instantiate the lemma as 𝑥1 < 𝑥𝑛 ∧ 𝑥𝑛 < 𝑥2 =⇒ 𝑥1 < 𝑥2,
thankfully the newly created term (𝑥𝑛 < 𝑥2) will not trigger because 𝑥𝑛
is never at the left of <.

Example on “can flow”. A common proof pattern in DY∗ is the following:
suppose we decrypt a message that contains a secret s with a key k, and
the encryption predicate tells that L(s)≳ℓ for some label ℓ . We know that
L(s)≳L(k) (because a message is always “less secret” than the key used to
encrypt it), and that L(s)≳ℓ ∨L(k)≳⊤ (because the encryption predicate

3 DY∗: Security proofs in the Dolev-Yao model, using F∗ (contributions) 74

holds unless the key is public). From these facts, thanks to the SMT
patterns on the lemmas on ≳, the SMT solver can deduce that L(s)≳ℓ
unconditionally: indeed, if L(k)≳⊤, we have the chain L(s)≳L(k)≳⊤≳ℓ .
Looking more closely, here is what happens: the context contains L(s)≳ℓ
and L(s)≳𝑘, the SMT instantiate the transitivity lemma on ≳ and tries to
prove L(k)≳ℓ , which with L(k)≳⊤ instantiates the transitivity lemma
again and tries to prove ⊤≳ℓ , which instantiates the lemma that ⊤ in a
maximum element of the label lattice and concludes.

3.6 Conclusion

In this chapter, we explained the inner workings of DY∗, a recent contender
in the world of symbolic security proofs, and presented the different
improvements we made to DY∗, to enhance its expressivity, and improve
its usability.

Since the beginning, DY∗ was designed with in mind the goal to be
applicable to large protocols, by using invariant-based modular proof
techniques instead of relying on whole-protocol analysis. We will show
in Chapter 5 and Chapter 6 that this goal is accomplished by proving
security theorems on significant parts of Messaging Layer Security [21]. [21]: Barnes et al. (2023), The Messaging

Layer Security (MLS) Protocol
The task of coming up with the security invariants may be seen as an
additional burden, an obstacle that obstructs the path toward proving
security theorems. Instead, we think the security invariants are interesting
on their own: in a way, these distill the reasons why the protocol is secure.
For example, if you wonder what some signature is achieving: that’s
easy to answer, simply go check the signature predicate, and you will
understand what this signature really means.

Another byproduct of DY∗’s security invariants is that they are also an
excellent tool to think about cryptographic protocols: although the added
value of DY∗ is to provide machine-checked proofs, working enough with
DY∗ trains the user’s brain to think about cryptographic protocols with
invariants, which we find is a useful skill outside producing machine-
checked proofs with DY∗.

Comparse: Provably Secure

Formats for Cryptographic

Protocols 4

4.1 Introduction 75

4.2 The Essence of Secure

Formats 78

4.3 Verified Formats in F
∗

. . 84

4.4 Verified Formats for TLS

and cTLS 91

4.5 Embedding Comparse in

DY
∗

. 95

4.6 Discussion 98

4.7 Related work 99

4.8 Conclusion 101

As someone writing reduction proofs, I always thought “The encodings
of tuples and these other high-level types are super-important, but I
really want someone else to think about them.”

Chris Brzuska, private conversation at Bistrot "Le Pacha"

This chapter is adapted from the eponymous publication [67], presented
at ACM CCS 2023. The text is identical, but was reformatted.

4.1 Introduction

Modern software applications rely on a variety of cryptographic protocols
to protect sensitive data as it is transmitted over or stored on insecure
media. They use Transport Layer Security (TLS) or Noise when they
need secure channels, FileVault or Bitlocker for disk encryption, Signal
or Messaging Layer Security (MLS) for secure messaging, Bitcoin or
Ethereum for distributed ledgers.

Each of these protocols can be described as a sequence of (one or more)
high-level messages sent between (one or more) participants. At each step, a
sender takes a message that has a particular meaning in the context of the
protocol and encodes it into a bitstring by following a protocol-specific
format. This bitstring is then protected using some cryptographic construc-
tion. For example, the sender may encrypt the bitstring to guarantee the
confidentiality for the message content (and the privacy of its metadata);
or they may add signatures, message authentication codes (MACs), or
zero-knowledge proofs to guarantee the integrity and authenticity of the
message. The output bitstring is then serialized according to a wire format
before it is sent over the network or stored on some disk. The recipient
follows the protocol in reverse, parsing the received bitstring, applying
its own sequence of cryptographic operations, and decoding the result
to obtain the high-level protocol message that the sender (hopefully)
intended to send.

Attacks on Cryptographic Protocols. As a classic example, consider the
core of the Needham-Schroeder public-key protocol [57]: [57]: Needham et al. (1978), Using Encryp-

tion for Authentication in Large Networks of
Computers𝐴 −→ 𝐵 : {𝑁𝐴∥𝐴}𝑃𝐾(𝐵)

𝐵 −→ 𝐴 : {𝑁𝐴∥𝑁𝐵}𝑃𝐾(𝐴)
𝐴 −→ 𝐵 : {𝑁𝐵}𝑃𝐾(𝐵)

Each participant generates a nonce (𝑁𝐴, 𝑁𝐵), formats it along with some
identity information (𝑁𝐴∥𝐴), and encrypts the resulting bitstring using
a public-key. Note that the formatting of the message is done within
the encrypted payload; any wire-formatting that is done outside the
encryption (for example, a header mentioning the sender and recipient)
is considered to be under the control of the network adversary, and so is
ignored in the analysis of the protocol.

The protocol aims to authenticate two participants (𝐴 and 𝐵) to each
other, and to establish a shared secret (𝑁𝐵) between them. However, it

4 Comparse: Provably Secure Formats for Cryptographic Protocols 76

has a famous attack, originally found by Gavin Lowe [72], which exploits [72]: Lowe (1996), Breaking and fixing the
Needham-Schroeder Public-Key Protocol us-
ing FDR

the fact that the second message does not mention its recipient’s name,
allowing an attacker to mix messages across two sessions, breaking the
security of the protocol. Adding 𝐵 inside the encryption of the second
message prevents the attack.

Interestingly, however, there is another, less-well-known attack on this
protocol that relies on a message format ambiguity. Meadows [73] ob- [73]: Meadows (1996), Analyzing the

Needham-Schroeder public key protocol: A
comparison of two approaches

served that an attacker could take the second message (from 𝐵 to 𝐴) from
one session and pass it off as a first message in a new session (seemingly
from someone named 𝑁𝐵 to 𝐴). In essence, the formats of the first two
messages are not disjoint, since a priori, 𝑁𝐵 may well be a valid identifier
for a protocol participant.

Meadows finds two attacks that exploit this format ambiguity, and
Heather et al. [74] show that Lowe’s fix to the protocol does not prevent [74]: Heather et al. (2003), How to Prevent

Type Flaw Attacks on Security Protocolsthis attack. To fix the protocol against such format confusion attacks, it is
necessary to change the internal formats and remove the ambiguity, say
by systematically tagging each internal message by a distinct bitstring.

Formats in Real-World Protocols. Format specifications are ubiquitous
in real-world protocols, since agreeing on formats is a necessary pre-
condition to enabling multiple interoperable implementations. Internet
standards like TLS 1.3 [75] and MLS [21] devote 20% of their text to
describing message formats, relying on a custom language called the TLS
presentation language. Other protocols rely on a variety of format descrip-
tion languages to encode cryptographic inputs, including XML [76–78],
JSON [79, 80], CBOR [81], Protocol Buffers [82], and ASN.1 [83].

Each format description language aims to make it easier for developers
and protocol designers to design new formats and correctly implement
serializers and parsers for them. However, the sheer number of these
languages should serve as a warning sign of the diversity of formatting
requirements and constraints in mainstream protocols. Binary formats
like CBOR and Protocol Buffers prioritize conciseness, while text formats
like XML and JSON aim for Web-friendly interoperability. The TLS
presentation language is specialized for a single family of protocols, while
ASN.1 aims to be generic and self-describing. Furthermore, proprietary
protocols often use their own custom formats according to their own
needs.

Unfortunately, despite the great deal of attention given to describing
formats, and although the dangers of format confusions have long been
known, cryptographic protocols still get them wrong, resulting in high-
profile attacks that continue to be found on a regular basis, both in
published standards and in proprietary software.

Format Confusion Attacks. Mavrogiannopoulos et al. [84] describe an [84]: Mavrogiannopoulos et al. (2012), A
Cross-Protocol Attack on the TLS Protocolattack on TLS 1.2 that relies on a format confusion between the signature

inputs used in two kinds of Diffie-Hellman handshakes; the attacker takes
a server signature produced in one handshake and uses it to impersonate
the server in another handshake. Wallez et al. [68] describe a vulnerability [68]: Wallez et al. (2023), TreeSync: Authen-

ticated Group Management for Messaging
Layer Security

in MLS draft 12, where the inputs to signatures in the TreeSync and
TreeDEM components of MLS can be confused for each other.

More recently, Paterson et al. [85] describe a series of attacks on Threema, [85]: Paterson et al. (2023), Three Lessons
From Threema: Analysis of a Secure Messen-
ger

including a format confusion attack between different encrypted mes-
sages in the C2S and E2E sub-protocols. Another attack was recently
found on the Matrix protocol, where the inputs to MACs used in two
different messages could be confused [86]. [86]: Albrecht et al. (2023), Practically-

exploitable Cryptographic Vulnerabilities in
Matrix

4 Comparse: Provably Secure Formats for Cryptographic Protocols 77

These attacks involve different kinds of protocols, and different cryp-
tographic constructions, but in all cases, the problem can be traced to
the incorrect or ambiguous use of formats within cryptographic inputs.
These flaws are in the protocol itself, and so cannot be fixed by a clever
implementation.

Even finding such format confusion attacks in a large standard like TLS 1.3
or MLS can be a real challenge, since the attacks often involve messages
in different sub-protocols, sometimes described in different documents
altogether. To systematically find and prevent format confusion attacks
in real-world protocols, we need a formal framework for specifying and
reasoning about secure formats.

Analyzing Crypto Protocols with Precise Formats. Lowe’s attack on
Needham-Schroeder and the subsequent fix have been very influential,
serving as a motivating example for a whole line of protocol verification
tools based on symbolic (or Dolev-Yao) analysis [36], including modern [36]: Barbosa et al. (2021), SoK: Computer-

Aided Cryptographytools like ProVerif [41], Tamarin [42], and DY∗ [43] that have been applied
[41]: Blanchet et al. (2016), Modeling and
verifying security protocols with the applied
pi calculus and ProVerif
[42]: Meier et al. (2013), The TAMARIN
prover for the symbolic analysis of security
protocols
[43]: Bhargavan et al. (2021), DY*: A Mod-
ular Symbolic Verification Framework for
Executable Cryptographic Protocol Code

to real-world cryptographic protocols like TLS, Signal, and Noise.

However, the analysis of precise formats remains poorly supported by
protocol verification tools and techniques. For example, the default model
of symbolic concatenation used in ProVerif, Tamarin, and DY∗, fails to
find the format confusion attack on the fixed Needham-Schroeder-Lowe
protocol even today. While it is possible to extend the algebra of terms to
account for some format confusion attacks, one cannot be sure that all
the low-level details of the format have been captured.

Pen-and-paper cryptographic proofs (and their mechanized variants in
tools like CryptoVerif [38] and EasyCrypt [37]) technically reason about [38]: Blanchet (2007), CryptoVerif: Com-

putationally sound mechanized prover for
cryptographic protocols
[37]: Barthe et al. (2011), Computer-Aided
Security Proofs for the Working Cryptogra-
pher

bitstring messages, but in terms of practical format analysis, they do
even worse than symbolic tools. Proofs in the computational model of
cryptography are much harder than symbolic analyses, so in order to
make a security proof feasible, papers routinely disregard any formatting
concerns and focus only on the cryptographic steps. As we will see in
§4.4, even comprehensively studied protocols like TLS 1.3 have not been
properly analyzed for format confusion attacks.

Our Work and Contributions. As we have seen, there is a large gap
between the academic proofs for cryptographic protocols and real-world
protocols with complex internal formats. To close this gap, we need
a framework for protocol analysis that can specify and prove bit-level
precise formats suitable for all the cryptographic inputs used in a protocol.
To ensure that we got the formats correctly, we need to be able to test these
formats against published test vectors and interoperable implementations.
We then need to be able to automatically, or semi-automatically, search for
and prove the absence of format confusion attacks across cryptographic
inputs in all the message in all related sub-protocols. Finally, we need
to be able to embed our formatting proofs within a protocol analysis
framework that can verify the security of protocols.

In this paper, we propose a new framework that addresses these require-
ments. Our framework, called Comparse, uses game-based cryptographic
assumptions to establish the set of requirements that formats must obey
for their usage to be secure. Because our usage restrictions encompass sev-
eral classes of attacks, we come up with criteria over formats that rule out
not only confusion attacks, but also other well-known attacks. Comparse
is implemented and embedded within the F∗ programming language and
verification framework. We demonstrate its expressiveness by using it to

4 Comparse: Provably Secure Formats for Cryptographic Protocols 78

specify and analyze all the formats used in large Internet standards like
TLS 1.3 and MLS, as well as classic protocols like Needham-Schroeder. We
show how our framework allows us to guide the design of new variants
of TLS like Compact TLS 1.3 (cTLS). Finally, we show how our framework
is embedded within the DY∗ protocol verification framework and can be
used to verify the security of cryptographic protocols while accounts for
bit-level precise formats.

Ours is the first formatting framework that is embedded within a protocol
security analysis tool. We provide the first formal proof of correctness
for the formats of cTLS, an emerging standard for IoT, and we close an
important gap in prior analyses of TLS 1.3. Although our framework
does produce reference implementations of serializers and parsers for
our formats, this is primarily meant for testing our specification, not
as production-ready code. Producing efficient, zero-copy parsers for
protocol formats is not our goal.

Outline. §4.2 provides a high-level overview of secure formats and
establishes the properties they should obey via a new flavor of crypto-
graphic games. §4.3 describes a formalization and implementation of
our format analysis framework, Comparse in F∗. §4.4 describes TLS 1.3,
cTLS, examines the gap between the published security proofs of these
protocols when deployed in parallel with each other, and shows how
Comparse can address those. §4.5 shows how Comparse is integrated
into DY∗. §4.6 discusses our results, their impact, and their limitations.
§4.7 briefly describes related work, and §4.8 concludes.

4.2 The Essence of Secure Formats

Real-world formats in protocols like TLS are described in a combination
of custom language, comments, and English prose. This has made their
comprehensive study difficult, and has resulted in several protocol attacks
that leverage design flaws in these formats.

To address these shortcomings, this section introduces a formal notion of
message formats and properties over those message formats, which form
the foundation of our security analysis. In §4.3, we shall see how this
notion is formalized in a proof assistant.

Throughout this section, we define formats for objects that are represented
as bytes. This means that our formats are not just for messages sent over
the wire, but also apply to cryptographic inputs (for signatures, MACs,
transcript hashes, etc) or any protocol session state or key material that is
stored in some binary format.

4.2.1 Formally Defining Message Formats

We use𝔹 to denote the set of byte sequences (also known as “bytestrings”),
and a byte is a value in [0, 255]. We write 𝜀 for the empty bytestring,
and 𝑏1 + 𝑏2 for the concatenation of two bytestrings. We write literal
bytestrings in hexadecimal notation; for example, c0ffee is a bytestring
of length 3.

Message Format. A message format for a type 𝑀 is a relation ⇄𝑀

between 𝑀 and 𝔹. The index 𝑀 over ⇄ disambiguates relations when
there are several types 𝑀, 𝑀′ involved. There may be several relations

4 Comparse: Provably Secure Formats for Cryptographic Protocols 79

for a given 𝑀, but we only ever manipulate one such ⇄𝑀 in any given
context.

If we pick 𝑀 = 𝔹2, and define the message format (𝑏1 , 𝑏2) ⇄𝑀 𝑏 to
be e.g. ∃𝑏0 ∈ 𝔹 .𝑏0 + 𝑏1 + 𝑏2 = 𝑏, then the following three proper-
ties hold: (c0, ffee) ⇄𝑀 c0ffee, but also (c0ff, ee) ⇄𝑀 c0ffee, and
(c0ff, ee)⇄𝑀 feedc0ffee.

Albeit simplistic, this example warrants two observations. First, we define
our notion of format without any reference to a parser or a serializer. In
our view, a format is defined as a relation independently of any concrete
encodings. Second, this sample format enjoys almost no property of
interest: among the many issues with this format, we remark that a given
bytestring may correspond to multiple elements in 𝑀, and conversely,
that an element in 𝑀 may be represented by several bytestrings.

Serializers and Parsers. Naturally, designers and implementers do not
think in terms of logical predicates relating 𝑀 and 𝔹, but rather in
terms of concrete formats defined by parsers and serializers. A serializer
for a message format ⇄𝑀 is a function serialize𝑀 : 𝑀 → 𝔹 such
that (correctness) ∀𝑚 ∈ 𝑀.𝑚 ⇄𝑀 serialize𝑀(𝑚). A parser for a message
format⇄𝑀 is a function parse𝑀 : 𝔹→ 𝑀∪{⊥}, such that (completeness)
∀𝑏 ∈ 𝔹 .(∃𝑚 ∈ 𝑀.𝑚 ⇄𝑀 𝑏) =⇒ parse𝑀(𝑏) ≠ ⊥, and (correctness)
∀𝑏 ∈ 𝔹 . parse𝑀 ≠ ⊥ =⇒ parse𝑀(𝑏)⇄𝑀 𝑏.

We note that from completeness, it follows that a parser returns ⊥
(meaning the input bytestring 𝑏 is malformed) if and only if there no
element of 𝑀 is in relation with 𝑏 (meaning 𝑏 cannot be parsed).

Induced Message Format. Given two functions serialize𝑀 : 𝑀 → 𝔹

and parse𝑀 : 𝔹→ 𝑀 ∪ {⊥}, we define their induced message format
on 𝑀 as: 𝑚 ⇄𝑀 𝑏 := 𝑚 = parse𝑀(𝑏) ∨ serialize𝑀(𝑚) = 𝑏. This is the
smallest message format for which parse𝑀 is a parser and serialize𝑀 is a
serializer.

The induced message format relates the programmer-centric, concrete
view (a format is defined by its parser and serializer) with the security-
centric, more abstract view (a format is a relation between messages and
bytestrings). Hence, it shows that our abstract formats can still be defined
using a concrete parser and serializer.

An advantage of our format-centric view is that it allows us to state
properties on a single concept (the format, i.e. a mathematical relation),
rather than stating two separate properties (on the parser, and the
serializer), and having to account for implementation details (such as the
possibility of parsing failure).

Furthermore, as we will see shortly, we show that security properties on an
induced message format can be turned into more familiar properties over
the underlying parser and serializer, as is done in our implementation of
Comparse. There is therefore no lack of expressivity, nor awkwardness,
in adopting formats as our central concept for which core notions are
defined.

4.2.2 Properties of Message Formats

Leveraging the definitions above, we start with two security properties:
non-ambiguity, and representation unicity. Failure to exhibit these proper-
ties when needed typically indicates a protocol weakness. We follow with

4 Comparse: Provably Secure Formats for Cryptographic Protocols 80

two intermediary properties: non-extensibility, and non-emptiness. These
are typically established as lemmas towards a functional correctness
result, or a larger security proof.

Non-ambiguity. A message format ⇄𝑀 is non-ambiguous if it relates
at most one high-level message to each bytestring. Formally: ∀𝑚1 , 𝑚2 ∈
𝑀, 𝑏 ∈ 𝔹 .𝑚1 ⇄𝑀 𝑏 ∧ 𝑚2 ⇄𝑀 𝑏 =⇒ 𝑚1 = 𝑚2.

A non-ambiguous format is one for which the parser can only make a
single choice for a given bytestring. It is usually easy to find and prevent
ambiguity in message formats sent over the wire. When designing the
message parser, the implementer will usually notice that multiple choices
can be made, or they will typically find the issue during interoperability
testing or by fuzzing.

The format-confusion attack on Needham-Schroeder mentioned in §4.1
relies on passing the contents of the second message as a valid format for
the first message. Let us see how this can be seen as a violation of our
format security properties. Since all three messages in the protocol use the
same cryptographic construction (public-key encryption) with potentially
the same keys, the three message payloads should conservatively be
treated as three sub-cases of a single message format. However, we would
then find that this shared format violates the non-ambiguity property
above, since the formats of the first and second message overlap. To
restore non-ambiguity for the payload format, we would need to change
the protocol, by tagging each message with a distinct label, for example.
Such format confusion issues are widespread in real-world protocols, as
we shall later see in the context of TLS 1.2 (§4.2.3).

However, formats used in cryptographic constructions, such as signatures,
do not always involve parsing messages, and so non-ambiguity is not
naturally enforced or systematically tested. This has resulted in high-
profile attacks, as we saw in §4.1.

As we mentioned earlier, the induced message format allows carrying
properties of the format onto a parser and serializer.

Lemma 4.2.1 Given a parser and serializer for 𝑀, the induced message format
⇄𝑀 is non-ambiguous if and only if:
∀𝑚 ∈ 𝑀. parse𝑀(serialize𝑀(𝑚)) = 𝑚.

Representation unicity. A message format ⇄𝑀 is said to enjoy repre-
sentation unicity when at most one bytestring can be in relation with
each high-level message. Formally:
∀𝑚 ∈ 𝑀, 𝑏1 , 𝑏2 ∈ 𝔹 .𝑚 ⇄𝑀 𝑏1 ∧ 𝑚 ⇄𝑀 𝑏2 =⇒ 𝑏1 = 𝑏2.

Representation unicity has sometimes been referred to as non-malleability
[87]. We prefer the term “representation unicity”, to avoid confusion [87]: Ramananandro et al. (2019), Ever-

parse: Verified Secure Zero-Copy Parsers for
Authenticated Message Formats

with the standard notion of cryptographic malleability [88]. Just like non-

[88]: Wikipedia contributors (2022), Mal-
leability (cryptography) — Wikipedia, The
Free Encyclopedia

ambiguity, representation unicity is mandatory in many security contexts,
such as signed content. For instance, transaction malleability is a serious
concern in Bitcoin, as described in BIP 62 [89]. Representation unicity

[89]: Wuille (2014), Dealing with malleabil-
ity

rules out such attacks, by imposing a unique bytestring representation
for each signed high-level message or transaction. We can also state
representation unicity as a property of parsers and serializers.

Lemma 4.2.2 Given a parser and serializer for 𝑀, the induced message format
⇄𝑀 has representation unicity if and only if ∀𝑏 ∈ 𝔹 . parse𝑀(𝑏) ≠ ⊥ =⇒
serialize𝑀(parse𝑀(𝑏)) = 𝑏.

4 Comparse: Provably Secure Formats for Cryptographic Protocols 81

We now look into additional properties that are not directly security-
critical, but are oftentimes required in the course of proving functional
correctness, or the security of a complete protocol.

Non-extensibility. A message format ⇄𝑀 is non-extensible when for
every bytestring, at most one of its prefixes is in relation with a high-level
message. Formally:
∀𝑚1 , 𝑚2 , 𝑏1 , 𝑏2.𝑚1 ⇄𝑀 𝑏1 ∧ 𝑚2 ⇄𝑀 (𝑏1 + 𝑏2)) =⇒ 𝑏2 = 𝜀.

We remark that our format-based approach allows us to separate this
property from non-ambiguity, i.e. non-extensibility does not imply 𝑚1 =

𝑚2. In practice, most of the formats we care about are both non-extensible
and non-ambiguous, with the notable exception of the extensible TLS
transcript.

The non-extensibility property is not desirable in itself, but constitutes an
important intermediary lemma in order to establish the non-ambiguity
theorem for the dependent pair combinator (§4.3.2).

Non-emptiness. A message format on 𝑀 is non-empty when the empty
string is associated with no high-level message. Formally: ∀𝑚, 𝑏.𝑚 ⇄𝑀

𝑏 =⇒ 𝑏 ≠ 𝜀.

Like non-extensibility, non-emptiness does not directly serve any security
purpose, but is a crucial property required of a format in order to derive
non-ambiguity of its list combinator (§4.3.4).

Lemma 4.2.3 Given a parser and serializer for 𝑀, the induced message format
⇄𝑀 is non-empty if and only if ∀𝑏 ∈ 𝔹 . serialize𝑀(𝑏) ≠ 𝜀

Self-contained and data-dependent message formats. A message for-
mat is said to be data-dependent when it is parameterized over a piece of
data not contained in the bytestring. A message format that is not data-
dependent is said to be self-contained. For instance, TLS12SignatureInput
(Figure 4.3), is data-dependent, over KeyExchangeAlgorithm. A concrete
consequence is we cannot make sense of a bytestring for a data-dependent
message format, until we know all of the data dependencies. Self-
contained message formats are crucial in cryptographic protocol design
(§4.2.3), and protect against protocol-confusion attacks such as [84]. [84]: Mavrogiannopoulos et al. (2012), A

Cross-Protocol Attack on the TLS Protocol

4.2.3 A Systematic Approach to Format Security

Having defined what we mean by message format (§4.2.1), and having
stated properties of interest for such message formats (§4.2.2), we now
connect cryptographic primitives and secure formats.

First, a remark: almost every cryptographic primitive implicitly relies on
a message format for its input. For instance, hashing an object implicitly
relies on converting the object to a bytestring. The format must not
introduce collisions in the process. Similarly, signatures are implicitly
carried around as bytestrings; for functional correctness, the format must
allow for a successful verification.

We now set out to review the standard toolkit of cryptographic primitives;
we lift each primitive to a high-level primitive operating on high-level
messages (instead of bytestrings) by relying on a message format. We
then proceed by reduction: we state a high-level security assumption (for
the high-level primitive operating on messages in 𝑀), and determine
which properties the format should enjoy in order for this assumption

4 Comparse: Provably Secure Formats for Cryptographic Protocols 82

to reduce down to a standard security assumption on the low-level
(bytestring-based) primitive. This allows proofs of protocol security to
work off of these high-level security assumptions, and abstract message
formats away.

In order to be meaningful, the security assumptions we come up with
during reduction apply to all usages of a given primitive, across the
entire protocol. This means that we can identify design weaknesses, such
as lack of disambiguation of signature inputs, because we consider all
the signatures in the entire protocol. We explain below with the example
of signatures.

Additional primitives can be added to this list, taking care to equip them
with suitable restrictions on formats that enforce correct cryptographic
usage, following the methodology we describe here.

Our security conditions are somewhat opinionated: they are sound
with respect to standard cryptographic assumptions, however there
exist protocols that don’t satisfy our conditions, yet remain secure; after
all, the protocol where two parties can never communicate is always
secure, regardless of the cryptographic operations that are performed
underneath. But in reality, protocols that violate these assumptions would
raise red flags in the cryptographic community, and would most likely
be shunned.

Tracking all uses of all primitives across an entire protocol is non-trivial,
and difficult to perform by hand; the next section (§4.3) shows how proof
assistants can help scale our comprehensive format security analysis to
real-world protocols.

Signature. We begin with signatures, whose security we consider in
some detail; other primitives use a similar argument.

Each signature key must be used to sign messages (of high-level type 𝑀)
with the same self-contained, non-ambiguous, representation-unique
message format⇄𝑀 . If a signature key is used with two different message
formats, or the format is ambiguous or data-dependent, this could lead to
a signature confusion attack, such as the one exploited in TLS 1.2 [84] (as [84]: Mavrogiannopoulos et al. (2012), A

Cross-Protocol Attack on the TLS Protocolexplained in §4.4). This condition therefore ensures the signed bytestrings
correspond to the same unique message, and thus rule out signature
confusion attacks.

This invariant on the whole protocol can then be exploited in security
proofs. For example, we can lift the standard existential unforgeability
under chosen message attack (EUF-CMA) assumption and specialize it
with the message format: the challenger generates a pair of keys and give
the public key to the attacker, then the attacker can ask the challenger for
signatures of messages 𝑀, and succeeds if it manages to output 𝑥 ∈ 𝑀
not queried to the challenger, along with a valid signature for it. This
lifted EUF-CMA game security can then be reduced to the standard EUF-
CMA security assumption, using the non-ambiguity and self-contained
properties of ⇄𝑀 .

We observe that this lifted EUF-CMA game doesn’t say anything about
a signature key used to sign two different message formats; this means
that in order for the game to apply, we must have a way to ensure we only
operate over signatures of messages in 𝑀. In other words, we enforce
the absence of format confusion across different uses of signature within
the protocol.

4 Comparse: Provably Secure Formats for Cryptographic Protocols 83

The input format for signatures must also enjoy representation unicity
for functional correctness, so as to rule out the scenario where a message
corresponds to two possible bytestrings, one used by the signer and the
other by the verifier, which would lead to a verification failure for valid
signatures.

Enforcing these requirements means that one must track every usage
of a signature key; notably, in the case of TLS, this requires not only
tracking signatures across TLS 1.2 and TLS 1.3, but also anticipating
future extensions or versions of the protocol.

Symmetric MACs. The same precautions as for signatures must be
used, for the exact same reasons. However, in practice, MAC keys are
short-lived and used only a few times, which makes tracking all their
uses easier. We recommend that all messages that may be MACed with
the same key must conform to the same non-ambiguous, self-contained
message format.

Authenticated Encryption with Associated Data (AEAD). As with
MACs, we recommend that all encryption inputs that might use the same
key must use the same non-ambiguous, self-contained message format
for encrypted data and additional data. In some cases, this is stricter
than necessary, and we can allow the format for encrypted data to be
data-dependent on the associated data. It allows additional data to fulfill
its duty: providing context in which the encryption was performed, and
disambiguating identical inputs stemming from two different context.
For functional correctness, the format of additional data must enjoy
representation unicity (to prevent two parties from disagreeing on the
serialization).

We note that the Threema messaging protocol fails these conditions,
and uses ambiguous inputs to authenticated encryption, resulting in the
attack [85] described earlier (§4.1). [85]: Paterson et al. (2023), Three Lessons

From Threema: Analysis of a Secure Messen-
ger

Key Derivation Functions (KDFs). Given a secret key, a salt, and an info
field, a KDF like HKDF generates a pseudo-random output of any desired
length. In the cryptographic literature, a KDF is typically modeled as
a pseudo-random function (PRF), where we assume that the attacker
cannot distinguish the output of the KDF from a fresh random value.
Protocols like TLS typically use a KDF to generate multiple keys for
different purposes. To guarantee key independence for these keys, which
is often an important precondition in security proofs, it is necessary to
ensure that all the info fields used by a KDF with the same key and
salt use the same non-ambiguous and self-contained message format.
Furthermore, to preserve functional correctness, the format of these KDF
inputs must enjoy representation unicity.

Hashing Messages and Transcripts. Many protocols use hash functions
to compute digests of high-level data, including messages and protocol
transcripts. A common requirement for this usage is collision resistance
– two different inputs should yield two different hashes, except with
negligible probability. However, even when using a collision-resistant
hash function, this property may not hold for two high-level messages
if they serialize to the same bitstring. Hence, we recommend that all
inputs to hash functions must use non-ambiguous message formats.
Furthermore, if possible, we advise that protocol authors use a single,
self-contained message format for hash functions when two hashes must
be collision-resistant in security proofs. Protocols might fail to obey this

4 Comparse: Provably Secure Formats for Cryptographic Protocols 84

restriction, but might still be secure, for instance if the data dependency is
authenticated elsewhere; such a situation will call for more sophisticated
proofs. For functional correctness, the hash input format must often also
satisfy representation unicity.

Summary. All of the cryptographic operations considered above re-
quire non-ambiguity and representation unicity. The former rules out
confusion; the latter is required for functional correctness. As we will
see shortly, our format framework imposes, by construction, that every
format must satisfy these two properties.

struct {
ProtocolVersion legacy_version;
Random random;
opaque legacy_session_id<0..32>;
CipherSuite cipher_suites<2..2^16−2>;

opaque legacy_compression_methods<1..2^8−1>;

Extension extensions<8..2^16−1>;

} ClientHello;

(a) ClientHello as defined in the TLS 1.3 RFC [75]

type client_hello = {
legacy_version: protocol_version;
random: random;
legacy_session_id: tls_bytes {min=0; max=32};
cipher_suites:

tls_list cipher_suite {min=2; max=(pow2 16)−2};
legacy_compression_methods:

tls_bytes {min=1; max=(pow2 8)−1};
extensions:

tls_list extension {min=8; max=(pow2 16)−1};
}

(b) Equivalent client_hello type in F∗

Figure 4.1: Translation of TLS 1.3 ClientHello in F∗. Note how the F∗ type is precise: for example, the tls_bytes type represents bytes of
bounded length, precisely corresponding to the opaque x<n..m> notation used in the TLS 1.3 RFC.

4.3 Verified Formats in F
∗

We now put our ideas in practice, and formalize secure formats within the
F∗ proof assistant. F∗ is a dependently-typed programming language that
supports program proof using a mixture of automatic (SMT-based) and
manual (tactic-based) proofs. F∗ supports a wide array of programming
patterns, including compile-time term synthesis, which we leverage in
this section. Throughout this paper, we only ever use the pure fragment
of F∗ and need not rely on its effect system.

Studying formats as complex as those of TLS in a monolithic fashion is
unrealistic; any reasonable programmer will decompose formats into
basic blocks that can each be studied in isolation, then composed together
to form larger formats. To support this modular approach, this section
introduces a set of format combinators that allow assembling complex
message formats from simpler ones. We show how security properties
of complex formats (the application of a combinator) can be deduced
from the security properties of the simpler formats they are built upon
(the arguments to the combinator). Authoring these formats by hand is
tedious; we show how to automate the process using Meta-F∗.

Although minimalistic (we only use, and describe, a mere 4 combinators),
our approach is expressive enough to describe all message formats in
TLS, cTLS and MLS. Our combinators guarantee that the formats they
produce are secure. This proof is done once and for all, which relieves
the programmer of the bulk of the proof effort. Users may also opt out of
combinators and write message formats directly, but then are required
to prove their correctness by hand, which is more onerous.

4 Comparse: Provably Secure Formats for Cryptographic Protocols 85

4.3.1 Defining Secure Message Formats in F
∗

Definitions, lemmas, proofs of reductions. We follow §4.2.1 and define
formats as logical predicates in F∗. We transcribe definitions from §4.2.2
and prove all of the corresponding lemmas.

Connection with parsers & serializers. Presenting formats as relations
allowed us to capture the essence of formats, along with their security
properties, free of the implementation-centric notions of parsers and
serializers.

However, in our F∗ library, we define our formats using parsers and
serializers. This design decision is a pragmatic one. First, this makes life
easier for the programmer and doesn’t require them to write a logical
predicate ⇄𝑀 by hand. Second, this makes our formats executable which
is crucial for authoring reference implementations that can serve for
interoperability testing, but also for building further security proofs (§4.5).
Third, we write and prove (in F∗) the connection between induced formats
and parsers and serializers (§4.2.1). Because this connection is verified,
we not only do not lose any expressive power, but also provably know
that our security properties over parsers and serializers are equivalent to
the original security properties over the induced format.

A type definition for secure formats. Next, we devise a “user interface”
for Comparse, that is, we write a concrete type definition in F∗ for what
we mean by format.

As we saw earlier (§4.2.3), regardless of the context in which the formats
appear, we always want them to enjoy non-ambiguity and have a unique
representation. Therefore, our type of formats, below, takes not only a
parser and a serializer, but also proofs that those two crucial properties
always hold. Per the lemmas from §4.2.1, those two properties boil down
to stating that the parser and serializer are inverses of each other. Because
of this design choice, our library will refuse to handle ambiguous or
non-unique formats: it is our position that formats that fail to exhibit
these properties indicate a design weakness in the protocol.

type message_format_for (a:Type) = {
parse: bytes→ option a;
serialize: a→ bytes;
// Non-ambiguity
parse_serialize_inv: x:a→ Lemma (parse (serialize x) == Some x);
// Representation unicity
serialize_parse_inv: buf:bytes→ Lemma (
match parse buf with
| Some x→ serialize x == buf
| None→ ⊤); }

Non-extensible message formats. We define a separate type, called
prefix_message_format_for, to represent non-extensible secure message
formats, where the parser only consumes a prefix of the input bytestring,
and returns the parsed element and the remaining suffix. In this type,
the parse_serialize_inv property is adapted to allow for the suffix, as
follows:

parse ((serialize x) ++ suffix) == Some (x, suffix)

4 Comparse: Provably Secure Formats for Cryptographic Protocols 86

Non-empty message formats. We say a message format is non-empty
when all its serializations have non-zero lengths (Lemma 4.2.3). In F∗, we
offer this as a refinement over the earlier types.

4.3.2 The dependent pair combinator

We begin with our first combinator for pairs. Repeated applications of
this combinator allow encoding pairs of several elements (known as
tuples): we write 𝐴 × 𝐵 × . . . × 𝐷 for 𝐴 × (𝐵 × (. . . × 𝐷)).
Tuples naturally occur in the wild, such in the ClientHello message of
TLS (Figure 4.1a), which is simply the combination of all of its subfields.
Because our combinators are generic, they cannot produce a specific
user-defined type such as ClientHello; rather, they produce a tuple of
ProtocolVersion × Random × We show in §4.3.5 how to convert a
structural type (the tuple) into a nominal type suitable for the rest of the
protocol definition (the user-provided client_hello, Figure 4.1b).

Sometimes, the message format for the second element of a pair depends
on the contents of the first one. This is a dependent pair, which generalizes
to dependent tuples. A dependent tuple occurs in the Handshake message
of TLS (Figure 4.2), where the format of the third field depends on the
value of the first one (via select), as well as the value of the second one
(via the comment referring to length). Our combinator supports general
dependent pairs, of which non-dependent pairs are a special case; this
allows to encode, notably, the tagged union pattern of messages such as
Handshake.

Message format combinator. The message format for the dependent
pair 𝑋 × 𝑌 is defined as a simple concatenation. Formally: (𝑥, 𝑦)⇄𝑋×𝑌

𝑏 := ∃𝑏1 , 𝑏2.𝑏 = 𝑏1 + 𝑏2 ∧ 𝑥 ⇄𝑋 𝑏1 ∧ 𝑦 ⇄𝑌(𝑥) 𝑏2 .

We write the dependency explicitly (⇄𝑌(𝑥)), which captures the fact
that the format of the second element depends on the first. We use
a lightweight notation 𝑋 × 𝑌 for dependent pairs to avoid cluttering
the formulas, as opposed to the traditional

∑
𝑥:𝑋 𝑌(𝑥). In practice, the

dependent pair combinator allows turning a data-dependent format (the
second element of the pair, §4.2.2) into a self-contained format (if the
dependency is only over the first element). A common instance of this
pattern is for tagged unions.

Formally proven security properties.

▶ ⇄𝑋×𝑌 is non-ambiguous if⇄𝑋 is non-extensible and non-ambiguous,
and ⇄𝑌(𝑥) is non-ambiguous for every 𝑥 ∈ 𝑋.

▶ ⇄𝑋×𝑌 has representation unicity if ⇄𝑋 and ⇄𝑌(𝑥) have represen-
tation unicity for every 𝑥 ∈ 𝑋.

▶ ⇄𝑋×𝑌 is non-extensible if⇄𝑋 is non-extensible and non-ambiguous,
and ⇄𝑌(𝑥) is non-extensible for every 𝑥 ∈ 𝑋.

▶ ⇄𝑋×𝑌 is non-empty if ⇄𝑋 is non-empty or ⇄𝑌(𝑥) are non-empty
for every 𝑥 ∈ 𝑋.

Role of non-extensibility. In the non-ambiguity theorem, non-extensibility
of the first element of the pair is crucial: for example, consider the trivial
message format on 𝔹, defined as 𝑏1 ⇄𝔹 𝑏2 := 𝑏1 = 𝑏2. This message
format is non-ambiguous, but a non-dependent pair of two such formats
is, for the same reason as the message format on 𝔹2 studied in §4.2.1.

4 Comparse: Provably Secure Formats for Cryptographic Protocols 87

struct {
HandshakeType msg_type; /‗ handshake type ‗/
uint24 length; /‗ remaining bytes in message ‗/
select (Handshake.msg_type) { /‗ handshake content ‗/

case client_hello: ClientHello;
case server_hello: ServerHello;
/‗ ... ‗/

};
} Handshake;

Figure 4.2: The Handshake message for-
mat, as defined in TLS 1.3 [75]. The
msg_type determines the format to use
for the handshake content (via select).
Furthermore, the comment for field
length encodes a semantic restriction: the
total length (in bytes) of the select ... field
is equal to length.

Formalization in F
∗
. Two flavors exist for the dependent pair combinator:

although the message format for the first element of the pair must always
be non-extensible, there is no such restriction on the second element
of the pair. Furthermore, the result is non-extensible if and only if the
second element of the pair is non-extensible. We reflect this with two
separate F∗ functions.

// When both mf_a and mf_b have the non-extensibility property
val prefix_message_format_for_dep_pair:
#a:Type→ #b:(a→ Type)→
mf_a:prefix_message_format_for a→
mf_b:(x:a→ prefix_message_format_for (b x))→
prefix_message_format_for (x:a & b x)

// When only mf_a has the non-extensibility property
val message_format_for_dep_pair:
#a:Type→ #b:(a→ Type)→
mf_a:prefix_message_format_for bytes a→
mf_b:(x:a→ message_format_for bytes (b x))→
message_format_for bytes (x:a & b x)

Encoding Handshake with dependent pairs. We illustrate the usage of
the dependent pair combinator on the type of handshake (Figure 4.2).
Assuming we have message formats for 𝑇 (HandshakeType),𝑈24 (uint24,
unsigned 24-bit integers) and𝑀(𝑡 , 𝑙) (data-dependent handshake content
of type 𝑡 and serialized length 𝑙), Handshake can be encoded as𝑇×(𝑈24×
𝑀) (or more precisely:

∑
𝑡:𝑇

∑
𝑙:𝑈24 𝑀(𝑡 , 𝑙)). We note that the resulting

dependent triple is no longer data-dependent.

We cannot yet show the definition of 𝑀; is it a dependent type, along
with an added restriction over its length. To express the latter, we need a
new format: the refinement combinator.

4.3.3 The refinement combinator

Message formats are sometimes described as subsets of other message
formats. For example, we can define a boolean as a byte restricted to the
value 0 or 1.

Message format combinator. If 𝑌 ⊂ 𝑋, and we have a message format
⇄𝑋 , then we can define 𝑚 ⇄𝑌 𝑏 := 𝑚 ⇄𝑋 𝑏.

Length restriction. A particularly useful usage of the refinement com-
binator is to enforce exact length restrictions on high-level messages.
Given a set of messages 𝑀, we define its subset RestrictLen(𝑀, 𝑙) =
{𝑚 ∈ 𝑀 | ∀𝑏.𝑚 ⇄𝑀 𝑏 =⇒ length(𝑏) = 𝑙}. This refinement, when used

4 Comparse: Provably Secure Formats for Cryptographic Protocols 88

in conjunction with a dependent pair, allows encoding length-prefixed
messages, wherein the first element of the pair is a (bounded) unsigned
integer that stands for the length of the second element.

Formally proven security properties. The refinement combinator pre-
serves non-ambiguity, non-extensibility, non-emptiness and represen-
tation unicity. When used with RestrictLen, it is unconditionally non-
extensible.

Formalization in F
∗
. The refinement combinator also comes in two

flavors, depending on whether the input format is extensible or not. We
show the extensible version here:

val refine:
#a:Type→ message_format_for a→ pred:(a→ bool)→
message_format_for (x:a{pred x})

We provide a dedicated combinator that captures the fact that an ex-
tensible format can be turned into a non-extensible one, via a length
restriction.

val fixed_length_format_to_non_extensible:
#a:Type→ len:nat→
mf_a:message_format_for a{∀ x. length (mf_a.serialize x) == len}→
prefix_message_format_for a

Encoding Handshake content with refinement. Now that we have re-
finements, we can revisit our earlier Handshake example (§4.3.2) and
use RestrictLen to encode the constraint on the length of the third
field. As mentioned above, this means the third field is uncondition-
ally non-extensible, which in turn makes the whole Handshake mes-
sage non-extensible. Our format for handshake is now of the form∑
𝑡:𝑇

∑
𝑙:𝑈24 RestrictLen(𝑀′(𝑡), 𝑙).

4.3.4 The list combinator

With the dependent pair combinator (§4.3.2), we can encode fixed-sized
lists as 𝑛-tuples, but cannot represent lists whose length is not known at
compile-time. For this, we need a new list combinator.

Message format combinator. Given a message format on 𝑀, we define
a message format on 𝑀∗, the type of lists of 𝑀s (with any number of
elements), as: [𝑚1 , . . . , 𝑚𝑛] ⇄𝑀∗ 𝑏 := ∃𝑏1 , . . . , 𝑏𝑛 .𝑏 = 𝑏1 + · · · + 𝑏𝑛 ∧
∀𝑖.𝑚𝑖 ⇄𝑀 𝑏𝑖 . Our format does not require that the list be prefixed by its
length, although if the protocol mandates it, we can always encode it
using a combination of refinement, dependent pair, and list combinator.

Formally proven security properties.

▶ ⇄𝑀∗ is non-ambiguous if ⇄𝑀 is non-ambiguous, non-extensible,
non-empty.

▶ ⇄𝑀∗ has representation unicity if ⇄𝑀 has representation unicity.

Role of non-emptiness. Requiring non-emptiness rules out degenerate
cases, such as the unit format ()⇄𝑢𝑛𝑖𝑡 𝜀. Lists of units all serialize to a
single empty bytestring, meaning lists of unit are ambiguous.

4 Comparse: Provably Secure Formats for Cryptographic Protocols 89

Formalization in F
∗
. To be secure, the list combinator takes as input a non-

extensible, non-empty secure message format. It returns an extensible
message format. Non-ambiguity and representation unicity are carried
over automatically, since they are bolted into the two message format
types.

val message_format_for_list:
#a:Type→ mf_a:prefix_message_format_for a{is_non_empty mf_a}→
message_format_for (list a)

Encoding the TLS 1.3 transcript. The TLS transcript is a list of Handshake
messages. Because Handshakes are non-ambiguous, non-extensible, non-
empty, and have representation unicity, the TLS 1.3 transcript is non-
ambiguous and has representation unicity, which are crucial properties
that guarantee the correct behavior of transcript hashes in the security
proof of TLS.

4.3.5 The isomorphism combinator

Given a message format defined in a document, such as in the TLS 1.3
RFC [75], we write a type in F∗ precisely capturing the expressivity of
the message format. This corresponds to the type 𝑀 of messages we
saw earlier. We give an example for the TLS 1.3 ClientHello message in
Figure 4.1.

The three combinators we have seen so far can parse ClientHello and
Handshake, but return tuples that are isomorphic to, but not equal, to
the type that the user would write in F∗ for Handshake (Figure 4.1).

We thus need one final combinator that goes from a generic representations
(base types, lists, and dependent pairs) into the “original”, user-defined
message type. This is the isomorphism combinator. The isomorphism
combinator is typically the final building block used to create a message
format.

Message format combinator. Given a bĳective function 𝑓 : 𝑇 → 𝐸,
which maps a high-level type 𝑇 to an encoding 𝐸, and a message format
for 𝐸, we define a message for 𝑇 as 𝑚 ⇄𝑇 𝑏 := 𝑓 (𝑚)⇄𝐸 𝑏.

Formally proven security properties. Because 𝑓 is a bĳection, the iso-
morphism combinator preserves non-ambiguity, representation unicity,
non-extensibility, non-emptiness.

Formalization in F
∗
. We rely on two functions for the bĳection, which we

require to be inverse of each other. We do this by adding a precondition to
the isomorphism combinator: we can use it only if we prove that the two
bĳection functions are inverse of each other. This precondition is crucial
to prove that the resulting message format is secure. The isomorphism
combinator comes in two flavors, depending on whether the message
format is non-extensible or not. Because they are so similar we only show
the signature of the non-extensible version.

val prefix_message_format_for_isomorphism:
#a:Type→ #b:Type→ mf_a:prefix_message_format_for a→
a_to_b:(a→ b)→ b_to_a:(b→ a)→
Pure (prefix_message_format_for b)
(requires (∀ x. a_to_b (b_to_a x) == x) ∧ (∀ x. b_to_a (a_to_b x) == x))

4 Comparse: Provably Secure Formats for Cryptographic Protocols 90

Finalizing our Handshake format. In §4.3.2, we obtained an encoding
of Handshake as a dependent tuple of 3 elements. However, Handshake
is not a dependent tuple, it is a nominal type in F∗:

type handshake = {
msg_type: handshake_type;
length: uint24;
msg: fixed_length_handshake_content msg_type length; }

We use the isomorphism combinator to link the nominal type (handshake)
and its encoding (the dependent tuple of 3 elements).

4.3.6 Automating Combinator Synthesis

Writing combinator applications by hand quickly becomes repetitive. We
now present a facility that allows the user to write only their top-level
type, such as ClientHello (Figure 4.1). With a few strategically placed
annotations, our facility inspects the type definition and automatically
generates the combinators that will parse and serialize elements of that
type.

Our facility relies on Meta-F∗ [90], a general-purpose compile-time [90]: Martínez et al. (2019), Meta-F* :
Proof Automation with SMT, Tactics, and
Metaprograms

metaprogramming framework. Using a technique known as elaborator
reflection, Meta-F∗ essentially allows the programmer to “script” the
compiler, to resolve proof obligations, or in our case, inspect terms and
generate fresh definitions.

We authored a meta-program that takes an annotated type definition and
produces a corresponding format, complete with proofs of non-ambiguity
and representation unicity.

Inner workings. When processing a type such as client_hello (Figure 4.1b),
the meta-program proceeds in two steps: first, it derives a message format
using anonymous types (dependent tuples), then it uses the isomorphism
combinator (§4.3.5) to produce a message format for the user-defined
type (client_hello, a record with user-provided field names).

For each field, a corresponding format is looked up in the environment. If
this corresponds to a user-defined type for which a format was previously
generated, or to a base type for which we provide a hand-written format
(such as uint24), all is well. Otherwise, the meta-program fails and the
user must annotate the type by hand to indicate which format ought to
be used for the given field.

Once again, this could be done entirely by hand: our automation relieves
the user of a repetitive task. Importantly, it also makes the program
easier to maintain: if an internet draft is updated to a new revision, the
programmer just needs to change the type definition, and the formats
automatically follow.

Handshake example. In the case of the handshake, the dependency of
the msg field over msg_type and length is handled naturally: the format
found in the environment for fixed_length_handshake_content takes two
parameters, so the tactic instantiates that format with its two arguments
brought in scope by the dependent tuple. Thanks to a judicious choice
for our default formats, handshake serializes exactly per the TLS 1.3
RFC [75].

4 Comparse: Provably Secure Formats for Cryptographic Protocols 91

Other supported types. F∗ sum types are also handled by our tactic,
which picks a tagged union scheme. By default, the tag occupies the
minimum number of bytes required to encode all cases; the user can
override that choice, and specify explicitly which type should hold the
tag (including its size). This allows the user to obey a precise format
specified e.g. in an RFC.

4.3.7 Implementation

The implementation described in this section occupies a total of about
2,500 lines of code. This includes the combinators and base types (942
lines), the derived types (776 lines) and the tactic (742 lines). The tactic is
among the three largest Meta-F∗ programs written to date. We estimate
that the total effort for formalizing Comparse in F∗ took a few person-
months.

The overall conciseness of our development is explained by the judicious
choice of a notion of format as our base abstraction, rather than parsers
and serializers. Furthermore, the judicious choice of combinators limits
the amount of work we need to perform. Finally, the fact that we do not
need to rely on effects, along with careful crafting of definitions, allow us
to maximize the amount of proofs performed automatically by SMT.

4.4 Verified Formats for TLS and cTLS

The Transport Layer Security (TLS) protocol, standardized by the IETF, is
used to secure the vast majority of Web traffic. The most recent version,
TLS 1.3, was standardized in 2018 [75] and is the the most commonly
used version of TLS, followed by TLS 1.2 [91]. More recently, the IETF
TLS working group has been working on standardizing Compact TLS 1.3
(cTLS) [92]. [92]: Rescorla et al. (2023), Compact TLS

1.3
In this section, we will discuss how we implemented all the formats used
in TLS and cTLS using Comparse, and show how our work provides
crucial missing properties needed for the security analyses of these
protocols, both in isolation and when they are deployed in parallel with
each other.

4.4.1 Format Confusion Attacks in TLS 1.0-1.2

The TLS protocol establishes a secure channel between a client and
a server. It works in two phases: first, a handshake phase performs an
authenticated key exchange to establish shared keys between the client
and server, then a transport phase allows them to exchange application
data protected with these shared keys. Typical TLS implementations
support multiple versions and ciphersuites for backwards compatibility
and to support maximum interoperability.

In TLS versions up to TLS 1.2, each handshake may use one of multiple key
exchange modes. Depending on the mode, each TLS handshake consists
of between 6 and 13 messages, which include various cryptographic
constructions: 2 MACs, 3 key derivations, 2 encryptions, and up to 2
signatures. The formats for all these messages and cryptographic inputs
are described in the custom TLS presentation language, which looks like
C structs.

4 Comparse: Provably Secure Formats for Cryptographic Protocols 92

struct {
select (KeyExchangeAlgorithm) {

case dhe_rsa, dhe_dss, // From TLS 1.2
dhe_rsa_export, dhe_dss_export: // From TLS 1.0
opaque client_random[32];
opaque server_random[32];
ServerDHParams params;

case ec_diffie_hellman: // From TLS 1.2 ECC
opaque client_random[32];
opaque server_random[32];
ServerECDHParams params;

};
} TLS12SignatureInput;

Figure 4.3: A common format for TLS 1.0-
1.2 signature inputs [91, 93].

For example, the input formats for server signatures used in implementa-
tions of TLS 1.0-1.2 is depicted in Figure 4.3. It includes the specification of
Ephemeral Diffie-Hellman signatures (DHE) from TLS 1.2, the signature
inputs for export ciphersuites in TLS 1.0, and the format for Elliptic Curve
Diffie Hellman (ECDHE) in TLS 1.2. These formats are actually defined
in three different documents, and we have brought them together for
illustration.

We note that the format depends on a value (the key exchange algorithm)
that is external to it, which is not authenticated by the signature itself.
Indeed, in the absence of this external input, the signatures used in DHE
key exchanges can be confused for those in ECDHE key exchanges, which
leads to a concrete cross-protocol attack [84] on TLS 1.2. Note also that [84]: Mavrogiannopoulos et al. (2012), A

Cross-Protocol Attack on the TLS Protocolthe format used in DHE is the same as the one used in Export DHE,
which is one of the factors exploited by the Logjam attack [94]. [94]: Adrian et al. (2015), Imperfect forward

secrecy: How Diffie-Hellman fails in practice
With our methodology (§4.2.3), we impose that every signature key
be associated to a single, self-contained, non-ambiguous message for-
mat. These properties are violated here, because the format is not self-
contained, owing to the key exchange algorithm which is an external
input.

We formalized the signature input format for TLS 1.2 (DHE, ECDHE) in
Comparse, and proved that given the data-dependency (KeyExchangeAlgorithm),
the format has non-ambiguity and representation unicity. We were not
able to do the same without the data-dependency, hinting at the cross-
protocol attack. We once again re-emphasize that we see all the inputs
to a single primitive as a single format, meaning that both TLS 1.2 and
TLS 1.3 signature formats are seen as sub-cases of the general “signature
input format”. This systematic approach forces us to reason globally
about all the signatures in the protocols.

4.4.2 Verified Formats for TLS 1.3

TLS 1.3 fixes many of the attacks in TLS 1.2, including the format confusion
attacks described above. In particular, it defines a uniform format for
all signature inputs, MAC inputs, and key derivations, by using the
handshake transcript in all three cases. TLS 1.3 also encrypts handshake
messages for privacy, hence the format of encryption inputs now includes
8 handshake messages.

The security of TLS 1.3 relies crucially on the non-ambiguity of the format
of the handshake transcript at each stage of the protocol. It also relies

4 Comparse: Provably Secure Formats for Cryptographic Protocols 93

enum {
profile(0),
version(1),
cipher_suite(2),
dh_group(3),
signature_algorithm(4),
random(5),
mutual_auth(6),
handshake_framing(7),
client_hello_extensions(8),
server_hello_extensions(9),
encrypted_extensions(10),
certificate_request_extensions(11),
known_certificates(12),
finished_size(13),
optional(65535)

} CTLSTemplateElementType;

struct {
CTLSTemplateElementType type;
opaque data<0..2^32−1>;

} CTLSTemplateElement;

struct {
uint16 ctls_version = 0;
CTLSTemplateElement elements<0..2^32−1>

} CTLSTemplate;
Figure 4.4: Compression templates for
Compact TLS 1.3

on the non-ambiguity of each handshake message format. Furthermore,
if TLS 1.3 is to be safely deployed alongside TLS 1.2, we need to prove
non-ambiguity across both protocols.

Despite its importance, this property is not accounted for in many pub-
lished proofs of TLS 1.3. The mechanized proofs of TLS 1.3 in ProVerif [49], [49]: Bhargavan et al. (2017), Verified Mod-

els and Reference Implementations for the
TLS 1.3 Standard Candidate

CryptoVerif [49], and Tamarin [50] all assume that the message formats

[49]: Bhargavan et al. (2017), Verified Mod-
els and Reference Implementations for the
TLS 1.3 Standard Candidate
[50]: Cremers et al. (2017), A Comprehen-
sive Symbolic Analysis of TLS 1.3

are injective and disjoint, and that the transcript can be treated unam-
biguously as a tuple of handshake messages. The pen-and-paper security
proofs of TLS 1.3 (e.g. [95–97]) abstract away all formatting details; they

[95]: Dowling et al. (2021), A Crypto-
graphic Analysis of the TLS 1.3 Handshake
Protocol
[96]: Kohlweiss et al. (2015), (De-
)Constructing TLS 1.3
[97]: Li et al. (2016), Multiple Handshakes
Security of TLS 1.3 Candidates

typically assume distinct labels for the different cryptographic inputs
in the protocol to simplify their analysis. Consequently, none of the
published proofs of the TLS 1.3 handshake actually apply to the bit-level
formats used in the protocol.

To close this gap in the literature, we formalized all the handshake
messages of TLS 1.3, the handshake transcript, and all inputs to signa-
tures, MACs, encryption, and key derivation, in Comparse, and proved
that these formats were non-ambiguous. This means that any proof of
TLS 1.3 that only considers a high-level abstraction of each message still
applies to the concrete protocol that uses low-level bitstrings within the
cryptographic inputs. Furthermore, we combined the TLS 1.2 and TLS 1.3
signature inputs to prove that the combined format is non-ambiguous.
This result shows that it is safe to deploy TLS 1.3 and TLS 1.2 in parallel.

Some prior works do prove injectivity for TLS 1.2 transcripts [98] but [98]: Swamy et al. (2016), Dependent Types
and Multi-Monadic Effects in F*they do not consider TLS 1.3, or both in parallel. There is also prior work

on specifications and efficient implementations of TLS 1.3 and TLS 1.2
message formats [87], but they do not model TLS and do not prove [87]: Ramananandro et al. (2019), Ever-

parse: Verified Secure Zero-Copy Parsers for
Authenticated Message Formats

non-ambiguity across TLS 1.3 and TLS 1.2 signatures.

4 Comparse: Provably Secure Formats for Cryptographic Protocols 94

4.4.3 Verified Formats for cTLS

The handshake messages exchanged in a TLS handshake can get very
large, primarily because TLS is designed to be interoperable across a
large range of devices and so the messages contain information that may
be needed in different scenarios.

Compact TLS 1.3 is a new proposal that aims to reduce the message size
by agreeing out-of-band on a compression template. For example, if the
client and server can agree beforehand on the ciphersuite and server
certificate, several elements in the handshake can be eliminated, and
others can be treated as fixed-length values (without length prefixes).

Other than the message formats being compressed, the cryptographic
steps in cTLS are identical to TLS 1.3. Consequently, one might hope
that all the TLS 1.3 security proofs will apply to cTLS. However, this
only holds if we can prove that the cTLS messages and transcripts are
unambiguous, and if we can show that the cTLS transcript is equivalent
(for each template) to the TLS 1.3 transcript. Finally, since cTLS is likely
to be deployed in parallel with TLS 1.3, we need to prove that the joint
formats between the two protocols are unambiguous.

Compressing TLS 1.3 using Templates. The cTLS protocol defines a
compression template that the client and server must agree to in advance.
CTLSTemplate (Figure 4.4) depicts all the elements that a certain template
can fix. Given such a template, the protocol describes how each message
in TLS 1.3 can be compressed at a fine-grained level. For example, in the
keyshare extension of the client hello, a length field can be omitted if
the template specifies a single Diffie-Hellman group. Consequently, each
message format in cTLS depends on the compression template.

We follow the methodology described in §4.3.1 by writing types that
precisely capture what is representable by the message format, and
depend on the compression template. On the example of the cipher suite
compression in ClientHello, we define a new type for the cipher_suites
field of client_hello. Although these new types are more complex than
the ones used in TLS 1.3, they are fully handled by the meta-program.

type ctls_cipher_suites (t:ctls_template) =
match get_template_element cipher_suite t with
| Some _→ unit
| None→ tls_list cipher_suite ({min=2; max=(pow2 16)−2}))

type ctls_client_hello (t:ctls_template) = {
(‗ ... ‗)
cipher_suites: ctls_cipher_suites t;
(‗ ... ‗)

}

Proofs for cTLS message formats and transcripts. We prove that given
a template, each cTLS message has non-ambiguity and representation
unicity. We do this by representing each cTLS message with a dependent
type (on the template), and use Comparse to derive and prove a format
on each cTLS message.

The cTLS transcript includes the compression template as a first (dummy)
message and then continues with the list of cTLS handshake messages.
We show that the first handshake message of the transcript carries
enough information to deduce what modification was applied on the

4 Comparse: Provably Secure Formats for Cryptographic Protocols 95

transcript, whether it is hashing the first ClientHello, or it is doing a cTLS
compression with a template.

We prove that all the cTLS messages are non-ambiguous with unique
representations, and that cTLS transcripts and TLS 1.3 transcripts are
non-ambiguous with respect to each other. This means that despite all the
format changes and optimizations, cTLS is free from format confusion
attacks, and that it is safe to deploy cTLS in parallel with TLS 1.3 (using
the same server certificates.)

Equivalence between TLS 1.3 and cTLS transcripts. We also prove
that each cTLS compressed transcript correspond to a unique TLS 1.3
transcript, up to extensions re-ordering. Each TLS 1.3 type that is modified
by cTLS is associated with a cTLS compressed type, that depends on
the compression template. We then write two compression and decom-
pression functions, that convert between the TLS 1.3 type and the cTLS
dependent type.

The compression function can fail, for instance if the compression template
enforces the some ciphersuite, but the TLS 1.3 message tries to negociate
the wrong ciphersuite. The decompression function can also fail, because
compression removes some length tags, meaning that there exist valid
compressed transcripts that contain elements whose length exceeds what
is admissible by TLS 1.3. This is a novel insight that seems to not have
been noticed by the cTLS designers before, and might be addressed in
future drafts.

We prove round-trip properties on compression and decompression: if
compression succeeds, then decompression on its result succeeds and
returns something equal to the compression input (up to extension re-
ordering); also, if decompression succeeds, then we can compress back its
result, it will succeed and return something equal to the decompression
input.

By proving these compression/decompression guarantees between
TLS 1.3 and cTLS, we show that the messages and transcripts in the
two protocols are interchangeable. Consequently, any proof of security
for TLS 1.3 that relies on high-level message formats still holds when
the messages are formatted (i.e. compressed) according to cTLS. This
provides a foundation upon which future proofs of cTLS can build, since
they now know that all of the formats are safe, and are in correspondence
with those of TLS 1.3.

4.5 Embedding Comparse in DY
∗

Existing protocol verification tools often miss format confusion attacks
since they do not account for bit-level precise formats. We now show
how to close this gap, by integrating Comparse into the DY∗ symbolic
protocol analysis framework. In so doing, we make it possible to apply
symbolic protocol analysis to low-level message formats. Despite this
additional precision, rather than incurring an additional proof burden,
Comparse actually significantly reduces the proof effort for DY∗ proofs
because of its support for automation.

4 Comparse: Provably Secure Formats for Cryptographic Protocols 96

4.5.1 Background: Symbolic verification with DY
∗

DY∗ [43] extends the F∗ [98] proof system with a symbolic verifica- [43]: Bhargavan et al. (2021), DY*: A Mod-
ular Symbolic Verification Framework for
Executable Cryptographic Protocol Code
[98]: Swamy et al. (2016), Dependent Types
and Multi-Monadic Effects in F*

tion framework for cryptographic protocols. In comparison to symbolic
provers like Tamarin and ProVerif, DY∗ proofs require more manual
annotations and are less automated. Conversely, DY∗ uses a more scal-
able proof technique, based on typechecking, and can exploit the full
expressiveness of the F∗ proof assistant. Consequently, DY∗ is particu-
larly well-suited to the formal analysis of large, complex cryptographic
protocols with recursive protocol flows and inductive data structures.
Indeed, DY∗ has been used to obtain state-of-the-art verification results
for advanced protocols like Signal [43], ACME [99], Noise [100] and [43]: Bhargavan et al. (2021), DY*: A Mod-

ular Symbolic Verification Framework for
Executable Cryptographic Protocol Code
[99]: Bhargavan et al. (2021), An In-Depth
Symbolic Security Analysis of the ACME
Standard
[100]: Ho et al. (2022), Noise*: A Library of
Verified High-Performance Secure Channel
Protocol Implementations

MLS [68].

[68]: Wallez et al. (2023), TreeSync: Authen-
ticated Group Management for Messaging
Layer Security

Symbolic Message Formats. Like other symbolic provers, DY∗ relies
on the Dolev-Yao model [56], where messages are treated as algebraic

[56]: Dolev et al. (1983), On the security of
public key protocols

terms that can be constructed and destructed using abstract functions
that obey simple symbolic equations. These constructors and destructors
are used to model cryptographic primitives like encryption/decryption
and signature/verification.

Most symbolic protocol analyses in tools like ProVerif and Tamarin ignore
message formatting, and simply use tuples to represent message contents.
DY∗ does a little better, by defining an abstract type and interface for
bytestrings that include ASCII strings, freshly generated random values,
cryptographic elements, and can furthermore be concatenated and split
to implement specific message formats.

However, the underlying model is still symbolic, and hence does not
precisely model concrete bytestrings or their lengths. For example, in
this model, concat(a,concat(b,c)) is different from concat(concat(a,b),c).
Consequently, it is possible that verified DY∗ code written against the
symbolic bytes API may potentially still be vulnerable to format confusion
attacks that exploit such inconsistencies. To counter this, we need to
prove that the the bytestring API is also sound with respect to a concrete
model of bytestrings.

Verifying Message Formats. Since DY∗ lacks a framework for auto-
matic format analysis, DY∗ programmers are expected to write, by hand,
serialization and parsing functions for all the message formats, crypto-
graphic inputs, and session states used in the protocol and then prove
non-ambiguity for all these formats, to use as lemmas within the security
proof.

DY∗ tracks the secrecy and authenticity of each bytestring using secrecy
labels and logical refinements, allowing users to reason about the security
guarantees of their protocol code. Hence, the programmer also needs to
prove that secrecy labels are preserved by formatting. For example, before
sending a message on the network, we need to prove that the serialization
of this message is “publishable”, so that revealing it to the attacker will
not leak secret values. To prove this, the programmer needs to reason
about the format, and show that a serialized message is publishable if
and only if every field of the high-level message is publishable.

These formatting proofs are currently done by hand in DY∗, inducing
a significant proof burden even for simple message formats. While
this is feasible for small protocols, it quickly becomes tiresome or even
impossible for real-world protocols like TLS. In the rest of this section,
we show how Comparse can help alleviate this proof burden and close a

4 Comparse: Provably Secure Formats for Cryptographic Protocols 97

gap in DY∗ by providing a concrete model for bytestrings. Furthermore,
by combining DY∗ and Comparse, we are able, for the first time, to
execute DY∗ applications concretely to create and process wire-compatible
message bytestrings.

4.5.2 Plugging DY
∗

and Comparse together

Handling multiple bytes types. Until now, we assumed that Comparse
worked on one defined type for byte sequences. However, DY∗ defines
its own type to do symbolic protocol verification, the aforementioned
symbolic bytes. To cover all the bytes types one might want to use, we now
parameterize Comparse over a typeclass for bytes, which contains the
minimal set of properties and lemmas that work for any instantiation of
the type class (i.e. for both symbolic and concrete bytes). This means that
the entire Comparse development is carefully crafted to never rely on
any extensionality hypothesis, namely that two bytestrings are equal if
they have the same length and coincide on every index. Comparse does
not rely on concatenation associativity either; none of these properties
hold for symbolic bytes.

To the best of our knowledge, no realistic parser framework was ever
devised before to work without the use of extensionality or associativity.
This is a key contribution of our work, and a core difference compared to
other frameworks such as EverParse [87]. [87]: Ramananandro et al. (2019), Ever-

parse: Verified Secure Zero-Copy Parsers for
Authenticated Message FormatsWe can therefore use Comparse both for concrete bytes, to execute crypto-

graphic protocols, and symbolic bytes, to prove security of cryptographic
protocols. We now give more details.

The typeclass. To simplify the instantiation of the typeclass with various
bytes types, we make it as minimal as we can. In the typeclass, we require
bytes to have a length, and an empty sequence of bytes whose length is
zero. We also require concat and split functions, which are well-behaved
with respect to length. The split function is allowed to fail, for example
if the index is out-of-bounds (in the concrete world) or if the index is
not exactly at the right position (in the symbolic world). We furthermore
require split and concat to be well-behaved with respect to each other.
We are as liberal as we can about this, so that it is easily implementable
with any symbolic bytes implementation. In particular, we know a split
succeeds only when the index is at the boundary of a concatenation.

Writing message formats combinators. We ensure the combinators in
§4.3 only rely on lemmas provided by the type class. This means our
proofs are more difficult to conduct, since we cannot assume concat to be
associative, we refer the reader to the supplementary material [101] for [101]: (2023), Comparse: Supplementary

Materialthe full details.

4.5.3 Improving message formats in DY
∗

Precise message formats. We are now able to precisely model message
formats as they are written in the RFCs (§4.3.1) by plugging Comparse
into DY∗. Combined with Comparse’s automation, this guarantees that
users of DY∗ can easily and accurately model real-world formats as
opposed to sketches of formats.

4 Comparse: Provably Secure Formats for Cryptographic Protocols 98

Non-ambiguity. Non-ambiguity is a built-in feature of the formats in
Comparse (§4.3.1), meaning we immediately satisfy the DY∗ requirement
after integrating Comparse.

Information flow. Given a predicate pred on bytes which is preserved by
concatenation and splitting, we define a predicate on high-level messages
is_well_formed pred, capturing the fact that every sequence of bytes in
the high-level message satisfies the predicate pred. Moreover, we have
the property that if is_well_formed pred msg then pred (serialize msg) and
if pred buf and parse buf = Some msg then is_well_formed pred msg. This
allows us to satisfy the DY∗ requirements regarding labeling of message,
and compose them with Comparse while retaining a high degree of
automation.

Impact on DY
∗

examples. We adapted two examples of DY∗ to use
Comparse for their formatting, as shown in Table 4.1. Before, the protocols
relied on hand-written definitions of parsers and serializers, along with
manual non-ambiguity proofs, resulting in 148 lines of code devoted to
message formats in the NSL example and 141 in the ISO-DH example.
With Comparse, this proof effort can be reduced by an order of magnitude
(respectively 19 and 24 lines of code) by boiling it down to writing the
type of messages, letting Comparse generates combinators and proofs
automatically.

Furthermore, with the use of Comparse, we are now able to execute
each DY∗ example both symbolically and concretely, providing two
independent forms of debugging. The symbolic traces show the high-level
protocol flow, while the concrete traces display the low-level bytestrings
obtained by applying all the specified cryptographic and formatting
functions.

Impact on MLS verification. We also used Comparse to formalize all
the formats of the MLS RFC. In so doing, we prove that the signature
confusion attack on MLS draft 12 [68] is now fixed, and provide strong [68]: Wallez et al. (2023), TreeSync: Authen-

ticated Group Management for Messaging
Layer Security

security guarantees for all the formats used in the MLS. Indeed, our
formal security proofs form part of a larger formal verification effort for
MLS, and were used in a recently published work on the TreeSync sub-
protocol [68]. Our proofs enjoy the automation provided by Comparse
(§4.3.6) to write and verify the 82 formats defined in the RFC [21]. [21]: Barnes et al. (2023), The Messaging

Layer Security (MLS) Protocol

4.6 Discussion

To evaluate the effectiveness of Comparse, we applied it to several case
studies, as shown in Table 4.1, including two examples from DY∗ (NSL,
ISO-DH), TLS 1.3, cTLS and MLS.

Lessons. During the course of this work, we learned several lessons.
Our approach is focused on formats used in cryptographic inputs and

Protocol Nb. formats RFC LoC F∗ LoC Lemmas Verif. time
NSL 7 — 19 16 1min
ISO-DH 9 — 24 21 45s
TLS 1.3 51 311 452 105 3min15s
MLS 82 482 624 164 2min45s
cTLS 30 623 608 110 2min45s

Table 4.1: Evaluation over a set of pro-
tocol case studies. Lemmas include non-
ambiguity, representation uniqueness
lemmas, and disjointness. TLS 1.3 proofs
include non-ambiguity with TLS 1.2;
cTLS proofs include non-ambiguity with
TLS 1.3, and properties of compres-
sion/decompression.

4 Comparse: Provably Secure Formats for Cryptographic Protocols 99

is justified by the cryptographic assumptions typically used in protocol
analysis. We believe this principled approach yields more precise security
conditions than other works that focus on parsers and serializers.

Second, our work makes it apparent why one needs to study all of the
usages of a given primitive across an entire protocol, in order to rule out
the entire class of format confusion attacks.

Third, proof assistants are crucial in making the analysis above tractable.
With pen and paper, tracking every usage of a given key across all of
TLS 1.3 (and TLS 1.2, because of backwards compatibility) would be
impossible. With a carefully crafted library, combinators take care of the
bulk of the work, and the library need not grow into a massive software
artifact: four well-chosen combinators suffice.

Finally, the format analysis does not need to live in isolation as a separate
development. It can be successfully integrated into a general-purpose
symbolic security analysis framework (in our case, DY∗), paving the way
for future evolutions of other tools (e.g. Tamarin or ProVerif) that might
make them, too, format-aware.

Limitations. We also identified several limitations throughout our
journey in the land of formats. First, there are some real-world, non-
ambiguous messages formats with unique representation that cannot
be expressed using our combinators. One example is TLSInnerPlaintext,
which must be parsed starting from the end. Fortunately, these are
few such cases, and we can use the escape hatch we mentioned earlier:
it suffices to write the formats by hand, without the distinguished
combinators from §4.3. Because such hand-written formats still use the
types from Comparse, they compose with the rest of the framework.

Second, there exist formats which intentionally do not enjoy representa-
tion unicity, such as protocol buffers [102]. We cannot account for such [102]: Varda (2008), Protocol buffers:

Google’s data interchange formatformats with Comparse, perhaps suggesting that they should not be used
for secure protocols.

Table 4.2: Related features of other verified parser frameworks. We intentionally omit unverified systems.

Paper Expressiveness Properties Execution

Str
ucts

Int
ern

al
dep

en
den

cy

Exte
rn

al
dep

en
den

cy

Su
pport

ex
ten

sib
le

for
mats

Te
xtu

al
for

mat
(e.

g.
XML)

Non
-am

big
uity

Rep
res

en
tat

ion
unic

ity

Disjo
int

for
mats

Refe
ren

ce
im

plem
en

tat
ion

Efficie
nt

im
plem

en
tat

ion

Sy
mbo

lic
exe

cu
tio

n

Comparse # #
Everparse+QD [87] # # # #
Everparse+3D [103] G# # # #
Narcissus [104] G# # # # # # # #
vGS17 [105] # # # # # #
MK14 [106] G# # # G# # # G#
Cheerios [107] Custom format # # # #
V2V [108] ASN.1 # # #
Verified Protobuf [109] Protocol Buffer v3 # # # #

4.7 Related work

Table 4.2 recaps the capabilities of the various tools we describe here.

4 Comparse: Provably Secure Formats for Cryptographic Protocols 100

Generic verified formats. EverParse with the QuackyDucky front-
end [87] generates efficient C implementation of validators and serializers, [87]: Ramananandro et al. (2019), Ever-

parse: Verified Secure Zero-Copy Parsers for
Authenticated Message Formats

proves non-ambiguity and representation unicity. QuackyDucky has
limited support for data-dependency, e.g. a union must have its tag im-
mediately preceding it. The work introduces the idea that non-ambiguity
and representation unicity are important properties for cryptographic
protocols, but does not provide a theoretical justification for it, and does
not exhibit a concrete set of recommendations like we do (§4.2.3).

EverParse3D [103] generates efficient C validators from an expressive [103]: Swamy et al. (2022), Hardening At-
tack Surfaces with Formally Proven Binary
Format Parsers

format description with good support for data-dependency. They prove
validator injectivity, which is related to representation unicity, but is
more implementation-centric, since it is a property of the validator, as
opposed to the underlying format (the relation).

Narcissus [104] is a Coq library for writing non-ambiguous and non- [104]: Delaware et al. (2019), Narcissus:
Correct-by-Construction Derivation of De-
coders and Encoders from Binary Formats

extensible message formats. It does not consider representation unicity.
Narcissus formats are defined using both a state and a relation, whereas
we avoid state by relying on our powerful dependent pair combinator.
Narcissus also uses combinators, but does not prove general results
regarding (say) the non-ambiguity of combinator applications.

[105] defines a deep embedding of data formats into Agda. They relate [105]: Geest et al. (2017), Generic Packet
Descriptions: Verified Parsing and Pretty
Printing of Low-Level Data

high-level data types to low-level formats by composing a series of
transformations. Lacking support for any sort of frontend format or
automatic combinator generation, their format descriptions are not as
concise as ours. They reason about non-ambiguity and non-extensibility,
but not representation unicity. They also rely on combinators such as
dependent pairs. Owing to the nature of the Agda proof assistant, it
is unclear to what extent this work can achieve a high degree of proof
automation; furthermore, their choice of combinators seems geared
towards their IPv4 example and we do not know if their work would
scale to e.g. all of the formats of TLS 1.3.

Verification of specific formats. Cheerios [107] is a serialization library [107]: (2016), Cheerios
for Coq types, relying on combinators. They prove non-ambiguity and
non-extensibility with an equation similar to ours (§4.3.1). They serialize
to a Cheerios-specific custom binary data format that is not user-defined,
meaning they cannot target real-world, RFC-prescribed formats.

[108] prove a C implementation of a specific ASN.1 format used in the [108]: Tullsen et al. (2018), Formal Verifica-
tion of a Vehicle-to-Vehicle (V2V) Messaging
System

automotive industry. They prove non-ambiguity and representation
unicity, using an equation similar to ours. The work does not tackle the
general question of proving those properties generically, for a certain
class of ASN.1 formats.

[109] builds upon Narcissus [104] to prove verified parsers and serializers [109]: Ye et al. (2019), A Verified Protocol
Buffer Compilerfor Protocol Buffer 3. They prove non-ambiguity, but not representation

unicity, which Protocol Buffer 3 does not enjoy.

Message formats and symbolic security. [106] propose sufficient criteria [106]: Mödersheim et al. (2014), A Sound
Abstraction of the Parsing Problemfor secure message formats in a protocol, and prove that an attack on a

protocol using concrete formats implies an attack on the protocol with
abstract formats. The criterion is that all message formats must be non-
ambiguous, moreover they must be pairwise disjoint. In our vocabulary,
it means that the protocol must rely on a single, non-ambiguous message
format.

These criteria are significantly stricter than the ones we propose in
§4.2.3, and we believe they are too strict for most real-world protocols. In

4 Comparse: Provably Secure Formats for Cryptographic Protocols 101

particular, composing two unrelated protocols in parallel (e.g. TLS and
SSH) violates this property, even though running both at the same time
does not impact the security of each protocol. Our criteria (§4.2.3) are
more likely to be true on real-world protocols, are preserved by parallel
composition, and can be used in DY∗ proofs.

Furthermore, their approach is less expressive than ours: they do not
support data-dependency such as tagged union (which explains their
strict disjointness conditions), and they cannot modularly analyze mes-
sage formats. Finally, they neither provide a formal analysis tool nor a
reference implementation for their formats.

4.8 Conclusion

Comparse is a framework to study the security of formats in cryptographic
protocols, allowing the user to prove crucial properties such as non-
ambiguity, representation unicity and (absence of) data dependency. We
demonstrate the expressiveness and effectiveness of Comparse by using
it to specify and verify all the formats in TLS 1.3, MLS, and cTLS. Our
formats and their guarantees are compatible with both symbolic and
computational cryptographic proofs. We integrate Comparse with DY∗
and show how the format proofs of Comparse can be composed with
symbolic security proofs for a variety of protocols. In particular, our
framework has been used as part of a security proof for a key component
of MLS [68]. Comparse encodes a strong yet flexible discipline that can [68]: Wallez et al. (2023), TreeSync: Authen-

ticated Group Management for Messaging
Layer Security

help protocol designers easily write formats that are provably secure.
Our case study on cTLS shows that cTLS formats are secure, and paves
the way to a complete security proof.

The Messaging Layer Security protocol,

and its security analysis in the symbolic

model

TreeSync: Authenticated group

synchronization 5

5.1 Introduction 103

5.2 MLS: TreeKEM, TreeDEM,

and TreeSync 106

5.3 A Formal Specification of

TreeSync 109

5.4 A security proof of

TreeSync 116

5.5 Implementation 123

5.6 Impact 125

5.7 Related Work 126

5.8 Conclusion 127

This chapter is adapted from the eponymous publication [68], presented
at USENIX Security ’23. This publication is a Distinguished Paper Award
Winner and Co-Winner of the 2023 Internet Defense Prize. The text is
identical, but was reformatted. Although the text talks about security
proofs on the draft 16 of MLS, they were later updated to the final version
of MLS (RFC 9420 [21]).

5.1 Introduction

Whether WhatsApp, Signal, Facebook Messenger, or Wire, virtually all
modern messaging applications prominently advertise end-to-end en-
cryption (E2EE) as one of their core features, confirming that private,
secure communications are becoming a baseline expectation for many
users. Unlike short-lived HTTPS connections, however, messaging con-
versations can run for years, and so the security guarantees of messaging
must account for the realistic possibility that one of the devices is stolen
or otherwise compromised during the lifetime of the conversation. If an
adversary compromises a device, it can of course read recent messages
and send new messages, but we would still like to protect messages
that were sent or received well in the past, i.e. forward secrecy (FS), and
messages that will be sent or received in the future after a period of
healing, i.e. post-compromise security (PCS).

For two-party conversations, messaging applications rely on modern
protocols like Signal [110] to provide FS and PCS by regularly updating (or [110]: Marlinspike et al. (2016), Signal Spec-

ificationsratcheting) the message encryption keys [53]. However, many messaging
[53]: Perrin et al. (2016), The Double
Ratchet Algorithm

conversations involve groups of more than two parties. Indeed, since
many users have several devices, even a chat between two individuals
becomes a group conversation under the hood.

Group Messaging. The fundamental difference between group messag-
ing and two-party conversations is that groups are dynamic: participants
may enter or leave at any time, meaning that the membership (or roster)
evolves over time. The message encryption keys must also evolve with
changes in the roster, so that, for example, a member who has been
removed from the group cannot read subsequent messages. To keep
track of the group membership, each member needs to continuously
synchronize and authenticate the current group state, so they know who
they are talking to.

The security requirements for group messaging are also more complex:
confidentiality properties like FS and PCS need to be adapted for groups
where any member device may be compromised, and authentication
guarantees must now also include group membership authentication
and sender authentication within the group. Groups can also grow quite
large, so a group messaging protocol must provide all these guarantees
while scaling to a roster with up to thousands of members. See [5] for a [5]: Unger et al. (2015), SoK: Secure Mes-

sagingdetailed discussion on the challenges of group messaging and a survey
of proposed designs.

5 TreeSync: Authenticated group synchronization 104

Current group messaging applications meet a subsets of these require-
ments. For example, WhatsApp uses the Signal Sender Keys protocol [20] [20]: Marlinspike (2014), Private Group

Messagingwhich uses two-party Signal channels between each pair of members
to distribute keys for group conversations. This protocol provides FS
and sender authentication, but does not authenticate group membership,
does not provide PCS, and its reliance on 𝑛2 Signal channels in groups
of size 𝑛 does not scale to large groups. Signal recently added a private
group system [111] that adds membership authentication and privacy [111]: Chase et al. (2020), The Signal Private

Group System and Anonymous Credentials
Supporting Efficient Verifiable Encryption

but does not improve efficiency.

To address this state of affairs, the IETF has convened a working group
tasked with designing a new secure group messaging protocol, dubbed
MLS (Messaging Layer Security). MLS is nearing publication, and an
early implementation is already deployed in RingCentral and Cisco’s
Webex video conferencing platform. The security of MLS is of great
interest, as it is likely to be adopted by several messaging applications.

IETF MLS. The IETF MLS working group is tasked with designing a
protocol that achieves the goals described in the MLS architecture [55]. [55]: Beurdouche et al. (2025), The Mes-

saging Layer Security (MLS) ArchitectureThe architecture assumes the existence of a trusted authentication service
(AS), which attests to relationships between member identities and their
authentication credentials. It also assumes the existence of a mostly-
untrusted delivery service (DS), which stores and delivers messages to
endpoints and defines a globally unique order for all group modifications.
A malicious DS may ignore some messages, or partition the group
by selectively delivering messages, but it cannot read or write group
messages.

The MLS protocol is currently at version 16 [21] and is in the final stages of [21]: Barnes et al. (2023), The Messaging
Layer Security (MLS) Protocolstandardization. The first few drafts of the MLS protocol were primarily

concerned with efficiently establishing group keys for large groups. The
starting point was Asynchronous Ratcheting Trees (ART) [112], a protocol [112]: Cohn-Gordon et al. (2018), On ends-

to-ends encryption: Asynchronous group
messaging with strong security guarantees

that uses a tree of Diffie-Hellman keys to efficiently update and distribute
group keys, providing both FS and PCS. ART was replaced (in draft 2) by
a more efficient alternative called TreeKEM [113] that is based on Hybrid [113]: Bhargavan et al. (2018), TreeKEM:

Asynchronous Decentralized Key Manage-
ment for Large Dynamic Groups A proto-
col proposal for Messaging Layer Security
(MLS)

Public Key Encryption [69]. Subsequent drafts refined and improved

[69]: Barnes et al. (2022), RFC 9180: Hy-
brid public key encryption

TreeKEM, but the fundamental key establishment mechanism remains
the same. The TreeKEM protocol (and many of its variants) have been
formally analyzed in the literature [51, 52, 114, 115].

[51]: Alwen et al. (2022), On The Insider
Security of MLS
[52]: Brzuska et al. (2022), Security Anal-
ysis of the MLS Key Derivation
[114]: Alwen et al. (2020), Security Anal-
ysis and Improvements for the IETF MLS
Standard for Group Messaging
[115]: Alwen et al. (2021), Modular Design
of Secure Group Messaging Protocols and
the Security of MLS

The group key established by TreeKEM is then used to derive a tree of
message encryption keys that each group member can use to send and
receive application messages, via a protocol we call TreeDEM (introduced
in draft 7).

Both TreeKEM and TreeDEM rely on a group state data structure that
must be synchronized across all current members. Most of the remaining
complexity of MLS is in defining this data structure, specifying how
members can modify the group state to add and remove members, and
how the group state is synchronized and authenticated between members.
Indeed, many of the recent significant changes in the protocol have been
motivated by strengthening the integrity and authentication guarantees
of the group state against insider and outsider attacks. For example, an
early attack called double join allowed a member to resist future removal
by surreptitiously adding itself to the group. Avoiding this attack resulted
in significant changes to the treatment of the member removal, at the cost
of making TreeKEM less efficient. More recent authentication attacks on
new members [51, 116] motivated the design of a complex parent hash [51]: Alwen et al. (2022), On The Insider

Security of MLS
[116]: Bhargavan et al. (2019), Formal Mod-
els and Verified Protocols for Group Messag-
ing: Attacks and Proofs for IETF MLS

mechanism to protect the integrity of the group state. Despite these

5 TreeSync: Authenticated group synchronization 105

attacks and resulting changes, the authentication mechanisms of MLS
have not been studied in their own right, and prior works have primarily
seen group management from the narrow lens of its impact on key
establishment in TreeKEM.

Contributions. In this paper, we focus specifically on the group state
management and authentication mechanisms of MLS, which we identify
as a separate sub-protocol called TreeSync. We show that MLS can be
cleanly decomposed into TreeKEM, TreeDEM, and TreeSync, allowing
us to state and prove the authentication and integrity guarantees of
TreeSync independently of TreeKEM and TreeDEM.

We present a machine-checked formal security analysis of a byte-level
precise specification of TreeSync written in the F∗ programming lan-
guage [98]. Our specification is executable and serves as a reference [98]: Swamy et al. (2016), Dependent Types

and Multi-Monadic Effects in F*implementation of MLS, which we test and evaluate against other imple-
mentations.

Our analysis uncovers a new attack that exploits the interaction between
TreeSync and TreeDEM, and also highlights other issues in MLS. We
propose fixes for these issues, which have been incorporated into MLS.

We prove a series of integrity and authentication theorems for TreeSync
in MLS draft 16, using the DY∗ symbolic protocol analysis framework [43]. [43]: Bhargavan et al. (2021), DY*: A Mod-

ular Symbolic Verification Framework for
Executable Cryptographic Protocol Code

Notably, our proofs make no assumptions on the security of TreeKEM,
and we only need minimal assumptions on the use of signatures in
TreeDEM.

Ours is the first testable, machine-checked, formal specification for MLS.
It covers all details of the protocol down to the precise message formats,
and hence may be of independent interest to developers and researchers
interested in MLS. Conversely, our proofs are only for TreeSync; al-
though we formally specify both TreeKEM and TreeDEM, we leave their
comprehensive security analysis for future work.

Outline. We start with a new presentation of MLS as the combination of
three independent subsystems (§5.2). We then turn our attention to one
of those, TreeSync, and precisely capture its behavior (§5.3). Equipped
with the specification, we then set out to formally prove the security of
TreeSync in the symbolic model (§5.4). Our contribution is not purely
theoretical: our implementation is usable, interoperable, and has been
successfully integrated in a prototype version of the Skype messaging
client (§5.5). Our proof and implementation combined have influenced
both the standard and other implementations: we describe changes to
the MLS draft that resulted from attacks we found, as well as bugs
in other implementations that were exposed through our work (§5.6).
We conclude with related work (§5.7). Our verified implementation is
available online as part of the anonymous supplement [117]. [117]: (2022), TreeSync: Supplementary Ma-

terial

5 TreeSync: Authenticated group synchronization 106

b c d ea
pka pkb pkc pkd pke

pkab pkc pkde

pkabc pkde

sabcde

sabc

sab

b c d ea
pka pk’b pkc pkd pke

pk’ab pkc pkde

pk‘abc pkde

s‘abcde

s’abc

s’ab

hpke(pkde ,
s‘

abcde)

hpke(pkc , s‘
abc)

hpke(pka , s‘
ab)

Figure 5.1: TreeKEM maintains a tree of subgroups, each associated with a secret (e.g. 𝑠𝑎𝑏𝑐) and corresponding public key (pk𝑎𝑏𝑐). The
root secret (𝑠𝑎𝑏𝑐𝑑𝑒) is the commit secret for the current epoch. Each member (e.g. 𝑏) only knows the secret keys for the subgroups it is a
member of (𝑠𝑎𝑏 , 𝑠𝑎𝑏𝑐 , 𝑠𝑎𝑏𝑐𝑑𝑒). To send a commit, a member (e.g. 𝑏) updates its subgroup secrets (to 𝑠′

𝑎𝑏
, 𝑠′
𝑎𝑏𝑐
, 𝑠′
𝑎𝑏𝑐𝑑𝑒

) and encrypts each
new subgroup secret (e.g. 𝑠′

𝑎𝑏𝑐
) to the corresponding sibling subgroup’s public key (hpke(pk𝑐 , 𝑠

′
𝑎𝑏𝑐
)). Hence, each commit for a group of 𝑛

(e.g. 8) members results in only log(𝑛) (= 3) public key encryptions.

5.2 MLS: TreeKEM, TreeDEM, and TreeSync

The Messaging Layer Security (MLS) protocol [21] enables a set of [21]: Barnes et al. (2023), The Messaging
Layer Security (MLS) Protocolendpoints to form a dynamic group and exchange end-to-end encrypted

messages that only the current members of the group can read or write.
We begin with a high-level view of this protocol before describing its
cryptographic components.

Dynamic Groups. To initiate a group conversation, an endpoint, called
the creator, creates a new group and assigns it a fresh group secret. The
creator can then add other members to this group by sending them
encrypted welcome messages containing group information, including the
current membership and the group secret. Each member is authenticated
by a credential issued by a trusted Authentication Service, which associates
the member with a signature keypair.

Any member of the group can subsequently propose to add or remove
members, or update its own credential and/or encryption keys. A group
member can commit a batch of pending proposals by modifying the
group, updating the group secret, and conveying the new secret to the
updated set of group members. Each commit is said to open a new epoch
(group creation is at epoch 0), so the group secret at epoch 𝑛 is more
precisely called the epoch secret at 𝑛.

An epoch secret should only be known to the current members of the
group in that epoch. Hence, the protocol seeks to ensure that members
cannot read or write messages after they are removed, and new members
cannot read old messages.

Secure Messaging. Within each epoch, the epoch secret is used to derive
message encryption keys that members of the group can use to securely
exchange application messages.

The protocol generates fresh encryption keys for each message to guaran-
tee forward secrecy (FS): compromising a member’s secrets should not
allow the adversary to decrypt previous messages sent or received by
that member. Note that the FS guarantee depends on the secure deletion
of these messages on each member device [118, 119]. [118]: Albrecht et al. (2021), Collective In-

formation Security in Large-Scale Urban
Protests: the Case of Hong Kong
[119]: Marlinspike (2016), Disappearing
messages for Signal

Furthermore, as long as each member regularly updates its encryption
keys, the protocol provides post-compromise security: an adversary who
learns a member’s secrets at epoch 𝑛, but does not interfere until the
member’s keys are updated at epoch 𝑚 > 𝑛, cannot decrypt messages
after epoch 𝑚.

Decomposing MLS. Given this high-level view of MLS, the main
cryptographic elements that need elaboration are: how a committer

5 TreeSync: Authenticated group synchronization 107

computes the new epoch secret and conveys it to the current group
members, how application messages are encrypted in a way that provides
authentication and forward secrecy, and how the protocol guarantees
that all members of the group have a consistent view of the group
membership and structure. In the remainder of this section, we describe
sub-protocols of MLS that implement each of these components.

5.2.1 TreeKEM: Establishing Epoch Secrets

To participate in an MLS group, each endpoint 𝑒must first upload a signed
key package containing its credential (including a signature verification
key), a public encryption key pk𝑒 , and other protocol parameters (e.g.
supported ciphersuites). So, when a group member decides to add 𝑒 to
a group, it can use pk𝑒 to encrypt a welcome package for 𝑒 containing
enough information for 𝑒 to initialize its state and join the group.

At epoch 0, the epoch secret is derived from a fresh random value.
Thereafter, at each commit, the committer computes a commit secret and
sends it to all the members of the new epoch. Each member then mixes
the commit secret with the previous epoch secret (at 𝑛 − 1) to obtain the
new epoch secret (at 𝑛). A naive approach would be for the committer to
generate a fresh commit secret and encrypt it for each group member
using their public keys. However, in a group of size 𝑛, this design requires
𝑛 expensive public-key encryptions for each commit, which does not
scale well to large groups.

TreeKEM defines a more efficient commit operation by structuring the
group as a complete binary tree, as depicted in Figure 5.1. The non-empty
leaves of the tree contain the key packages of the current group members
(𝑎, 𝑏, 𝑐, 𝑑, 𝑒). Each internal node (also called parent node) corresponds
to a subgroup consisting of the members underneath that node, and is
associated with a node secret (e.g. 𝑠𝑎𝑏𝑐) that is known only to its members
(𝑎, 𝑏, 𝑐). Each node secret (𝑠𝑎𝑏𝑐) is used to derive a public encryption
key for the corresponding subgroup (pk𝑎𝑏𝑐). The node secret at the root
(𝑠𝑎𝑏𝑐𝑑𝑒) is known to the full group and is used as the commit secret for
the epoch.

The benefit of the binary tree data structure is that when a committer
(say 𝑏) wishes to convey a new commit secret to a group of size 𝑛, it
only needs to compute and convey a single message containing log(𝑛)
public-key encryptions. Essentially, the committer (𝑏) generates a fresh
secret 𝑠𝑏 , uses it to derive a sequence of node secrets for the path from
its leaf to the root (𝑠′

𝑎𝑏
, 𝑠′
𝑎𝑏𝑐
, 𝑠′
𝑎𝑏𝑐𝑑𝑒

), and conveys each new node secret
to the rest of the subgroup by encrypting it under the corresponding
sibling node’s public key (pk𝑎, pk𝑐 , pk𝑑𝑒). Each recipient (e.g. 𝑐) decrypts
the node secret for the smallest subgroup it shares with the committer
(𝑠𝑎𝑏𝑐), and derives the sequence of node secrets up to the root (𝑠′

𝑎𝑏𝑐𝑑𝑒
).

In general, a parent node can be blank, or it may have unmerged leaves,
which means that it is associated with not one but a set of public keys
that collectively covers the members below that node. Consequently, the
cost of each commit can actually vary between log(𝑛) and 𝑛. TreeKEM
also optimizes for the case when one of the children of a parent node is
an empty subtree, by skipping the computation of that node’s secret and
treating it as blank, with the same public key as its non-empty subtree.
Such nodes (e.g. the parent of 𝑑𝑒 in Figure 5.1) are called filtered nodes.

5 TreeSync: Authenticated group synchronization 108

We have given only a simplified summary of TreeKEM. The full TreeKEM
protocol has many other details that we elide here, since they are unimpor-
tant for this paper. Several prior works have formally analyzed TreeKEM
and its variants and shown that it implements a security definition called
Continuous Group Key Agreement (CGKA) [114, 115]. Other work has [114]: Alwen et al. (2020), Security Anal-

ysis and Improvements for the IETF MLS
Standard for Group Messaging
[115]: Alwen et al. (2021), Modular Design
of Secure Group Messaging Protocols and
the Security of MLS

analyzed the way epoch secrets are derived in TreeKEM [52].

[52]: Brzuska et al. (2022), Security Anal-
ysis of the MLS Key Derivation

TreeKEM Tree Invariants. For our purposes, the pertinent observation
is that the security of TreeKEM crucially relies on a tree secrecy invariant:
if an internal node is associated with a node secret, then it can only be
known to the members underneath that node. Recall that each parent
node secret is chosen during a commit by a member below that node, but
it is then encrypted under one of its children’s public keys. Consequently,
the TreeKEM secrecy invariant relies on the integrity of the public keys in
the tree, which can be expressed as a tree integrity invariant: if an internal
node is associated with a public encryption key, then this public key was
computed for (a subset of) the current members of the node’s subgroup,
by one of the members of the subgroup.

5.2.2 TreeDEM: Group Message Encryption

Given an epoch secret, the TreeDEM protocol derives message encryption
keys for each member in the current group and specifies how they are
used to send and receive application messages, handshake messages
(containing TreeKEM proposals and commits), and Welcome messages
for new members. We briefly describe how TreeDEM authenticates and
encrypts application messages.

Each application message is serialized into a bitstring along with metadata
indicating the group, epoch, and sender. This bitstring is then signed
with the sender’s signing key (to authenticate which member sent the
message) and then MACed with a key derived from current epoch secret.
The serialized message, its signature, and MAC are then encrypted
using an authenticated encryption (AEAD) scheme using the sender’s
current message encryption key. The recipient performs the reverse set
of operations to decrypt the message, verify the signature and MAC to
ensure that the message was sent by a sender who is a member of the
group.

After each message is sent or received, the sender’s message encryption
key is updated (or ratcheted) using a key derivation function to provide
forward secrecy: compromising a group member after a key has been
updated does not reveal prior keys or messages encrypted under those
keys.

Each group member needs to keep track of the current encryption keys
for all members and update these keys at every application message. In
large groups, maintaining all these keys can be costly, especially if only a
small minority of members send messages in a each epoch. Consequently,
TreeDEM uses a tree-based message key derivation technique that lazily
derives keys for each sender, to reduce the number of keys each member
needs to maintain.

The security functionality provided by TreeDEM is sometimes called
Forward-Secure Group Authenticated Encryption with Associated Data
(FS-GAEAD) and has been analyzed in prior work [115]. For the purposes [115]: Alwen et al. (2021), Modular Design

of Secure Group Messaging Protocols and
the Security of MLS

of this paper, the pertinent feature of TreeDEM is its reliance on the group

5 TreeSync: Authenticated group synchronization 109

tree data structure for key derivation, and that it uses sender signatures
to authenticate MLS messages.

5.2.3 TreeSync: Group State Synchronization

MLS relies on group members having a consistent view of the group
state. Specifically all members must agree on (and authenticate) the
membership of the group and the structure and contents of the public
key tree (as depicted in Figure 5.1). Otherwise, a member may be fooled
by an attacker into sending messages to groups it did not intend to
communicate with.

Our key observation in this paper is that the task of synchronizing and
authenticating the group state can be seen as an independent generic
sub-protocol with minimal dependencies on TreeKEM and TreeDEM.
This allows us to modularly analyze the group authentication guarantees
of MLS without getting bogged down by the details of these other
protocols.

We identify a protocol called TreeSync that encapsulates all operations on
the MLS group state, while treating TreeKEM-related content as opaque
bitstrings. We describe TreeSync in detail in §5.3, and we formalize
and analyze its integrity and authentication guarantees in §5.4, under
minimal assumptions on TreeKEM and TreeDEM. We also show that
TreeSync provides some of the prerequisites for the security of TreeKEM
and TreeDEM, such as the TreeKEM tree integrity invariant, and the Tree
Hash construction.

Our treatment of TreeSync is in contrast to the MLS specification [21], [21]: Barnes et al. (2023), The Messaging
Layer Security (MLS) Protocolwhich tightly interleaves its description of group synchronization with

the key derivations of TreeKEM. Prior work on the authentication
mechanisms in MLS [51] also follows this pattern by combining them [51]: Alwen et al. (2022), On The Insider

Security of MLSwith TreeKEM, which in our opinion results in unnecessarily complex
proofs.

Authentication Attacks on MLS. Furthermore, many prior attacks on
MLS can actually be better understood as attacks on TreeSync. For exam-
ple, a double join attack occurs when a malicious member at leaf 𝑖 manages
to modify the content of a parent node that is not its ancestor [120]. In the [120]: Barnes (2018), Remove without

double-join (in TreeKEM)welcome message attack, an attacker fools a new member into accepting
a tampered tree with compromised public keys [116]. In the tree signing [116]: Bhargavan et al. (2019), Formal Mod-

els and Verified Protocols for Group Messag-
ing: Attacks and Proofs for IETF MLS

attack, the attacker changes the position of leaves in the tree to fool a
new member [51]. Each of these attacks resulted in major changes to the

[51]: Alwen et al. (2022), On The Insider
Security of MLS

protocol, significantly raising its complexity and reducing its efficiency.
By identifying and analyzing TreeSync, we provide a formal framework
for finding such attacks and evaluating defenses against them. Indeed,
we identified flaws in the authentication and integrity mechanisms of
MLS and fixed them during this work.

5.3 A Formal Specification of TreeSync

In this section, we describe the TreeSync protocol and its detailed formal
specification in the F∗ language [98]. Unlike prior analyses of MLS that [98]: Swamy et al. (2016), Dependent Types

and Multi-Monadic Effects in F*are based on high-level models written as pseudocode [51, 52, 114, 115],
our F∗ specification is executable, and hence testable against the RFC test
vectors and other MLS implementations. It accounts for all the low-level

5 TreeSync: Authenticated group synchronization 110

details of MLS, and so serves as both a formal companion to the RFC and
a reference implementation.

The precision of our specification also means that our analysis is less
likely to miss attacks. For example, in §5.4.5, we show a new attack that
results from the ambiguity of the message formats between TreeSync
and TreeDEM, and would not appear in more abstract models.

The authentication mechanisms of TreeSync are complex, with perfor-
mance optimizations interleaved with cryptographic constructions. Our
goal is to informally explain the design and its motivations, and guide
the reader to the F∗ specification for full details. Our full specification
and all proofs are included in supplementary material [117]. [117]: (2022), TreeSync: Supplementary Ma-

terial

5.3.1 TreeSync data structures

We present a generic tree data structure that can be instantiated to obtain
the TreeSync and TreeKEM trees. This is in contrast with the RFC, which
combines the two trees.

type tree (leaf_t:Type) (node_t:Type) (l:nat) (i:tree_index l) =
| TLeaf:
data: leaf_t{l == 0}→
tree leaf_t node_t l i

| TNode:
data: node_t{l > 0}→
left: tree leaf_t node_t (l−1) (left_index i)→
right: tree leaf_t node_t (l−1) (right_index i)→
tree leaf_t node_t l i

The type tree left_t node_t l i describes a complete binary tree indexed
by its height 𝑙 – we follow the RFC convention that a standalone leaf
has height 0. The type tree is parametric over leaf_t, the payload of the
leaves, and node_t, the payload of the non-leaf (a.k.a. “parent”) nodes.
The leaves of the tree (i.e. the participants) are numbered left-to-right
from 0 to 2𝑙 − 1. Hence, each leaf has an absolute leaf index that represents
its position in the full tree.

We leverage F∗’s dependent types to encode structural invariants on the
tree. Notably, the i argument to tree enforces a correct-by-construction
tracking of leaf indices, rules out programmer errors, and enforces the
MLS invariant that two sub-trees at different positions, even if otherwise
identical, are never interchangeable.

To obtain the TreeSync tree (called treesync), we instantiate the tree with
the content of parent and leaf nodes:

5 TreeSync: Authenticated group synchronization 111

type parent_node = {
opaque_content: node_content;
parent_hash: mls_bytes;
unmerged_leaves: mls_list uint32; }

type leaf_node = {
opaque_content: leaf_content;
parent_hash: leaf_node_parent_hash;
signature_key: signature_public_key;
...
signature: mls_bytes; (‗ signs all the fields above, and more ‗) }

let treesync = tree (option leaf_node) (option parent_node)

The TreeSync tree must include some content provided by and useful
for TreeKEM, such as public keys, but our specification treats these
protocols as independent modules, as evidenced by the opaque_content
fields: TreeSync is oblivious to the particular payload that its nodes
carry.

Note that the mls_bytes type is a convenient abbreviation that enforces that
the length of bytes we manipulate does not exceed 230 − 1, a requirement
coming from the compact integer encoding of the QUIC standard [121], [121]: Iyengar et al. (2021), QUIC: A UDP-

Based Multiplexed and Secure Transportwhich MLS itself adopts. We refer the reader to the supplementary
material for the full definitions of all our data structures.

Parent nodes and leaf nodes. In TreeSync, participants reside at the
leaves; a participant is therefore identified by its leaf index. Non-leaf
nodes are known as parent nodes, and contain the cryptographic material
that allows efficiently updating the tree while preserving authentication
guarantees.

Blank nodes and empty leaves. In the treesync datatype above, the leaf
and parent node payloads are optional. Empty leaf nodes happen because
the RFC mandates a complete binary tree, meaning some participant
(leaf) nodes might be empty, as illustrated in Figure 5.2. Empty parent
(inner) nodes are called blank nodes in the RFC, and arise either from
participant removals, or because of filtered nodes (§5.2.1).

5.3.2 TreeSync operations

TreeSync offers a series of group management operations that members
can use to modify and synchronize the group state. In particular, any
member can create a proposal message to suggest a change (e.g. add or
remove a member) and send it to the rest of the group, via the Delivery
Service (DS). A group member can then collect a set of proposals and
send a commit message for these proposals along with a path update. None
of these sending operations actually change the TreeSync tree; instead,
each member waits for a commit to be accepted by the DS and sent back
before executing the proposed changes. Hence, the DS resolves potential
conflicts by choosing the order of commits for the whole group.

When a commit is processed, each of the proposals is executed in order
to modify the local TreeSync state. In the rest of this subsection, we
discuss how each of these changes is implemented. The key guiding
principle for all the operations in TreeSync is that they must preserve the
tree integrity invariant: every subtree with a non-blank node must have

5 TreeSync: Authenticated group synchronization 112

c ea

Y

X Figure 5.2: An MLS tree with three par-
ticipants 𝑎, 𝑐 and 𝑒 at leaf indices 0, 2
and 4; other leaf nodes are empty. Due
to the filtered node optimization, 𝑋 and
𝑌 are the only parent nodes that are not
blanked.

been authenticated by a participant at one of the leaves of the subtree.
To enforce this invariant, TreeSync relies on the parent hash mechanism
described in §5.3.4.

Processing Path Updates. Each commit operation ends with a path update
that updates all the nodes on the path from the root down to the sender’s
leaf, updating the tree integrity mechanisms along the way. The function
implementing path updates in F∗ has type as follows, where we omit
boilerplate:

val apply_path: #l:nat→ #li:leaf_index l 0→
t:treesync l 0→ p:pathsync l 0 li→ treesync l 0

The apply_path function allows the client to update tree t of height l with
a new path p, where p follows the path from root to leaf li, and carries
fresh content for each node (including leaf) found along the path. The
apply_path function, in addition to updating content along p, also updates
the integrity protections at each node, as we will see later in Figure 5.3.

In line with our dependent type definition for trees, the leaf index li
not only guarantees that the path terminates at participant (leaf) li, but
also allows us to keep track of the leftmost leaf index as we move along
the path. Once again, carrying such indices not only avoids errors, but
greatly simplifies and automates our proofs. The 0 in the type signature
is another invariant enforced “for free” by typing: this function is only
intended to be called on a path starting at the root.

Processing Removal and Addition. The functions implementing add
and remove have types as follows.

val tree_remove: #l:nat→ #i:tree_index l→ t:treesync l i→
li:leaf_index l i→ treesync l i

val tree_add: #l:nat→ #i:tree_index l→ t:treesync l i→
li:leaf_index l i→ ln:leaf_node→ treesync l i

We note that adding a member may increase the size of the tree, and
removal can shrink the tree. The full types of these functions include
preconditions (omitted here, see [117]) that rule out various overflow [117]: (2022), TreeSync: Supplementary Ma-

terialconditions in various TreeSync structures whose length is bounded by
the RFC.

If 𝑎 wishes to remove 𝑐 from the tree (Figure 5.2), MLS requires blanking
out all of the nodes starting from 𝑐 (a leaf), all the way up to, and
including, the root. The net effect is that any cryptographic material that
𝑐 may have authored is now gone from the tree. The RFC also mandates
that each removal be enclosed in a commit that includes a path update
by the committer 𝑎, which updates the contents of all nodes from 𝑎 to
the root, authenticates the removal, and restores integrity protections for
the full tree at the root.

If a committed 𝑒 wishes to add 𝑏 to the tree (Figure 5.2), 𝑒 fills out the
first non-empty leaf (at index 1) with 𝑏’s data. The path update from 𝑒
then updates the nodes between 𝑒 and the root (e.g. 𝑋). However, there

5 TreeSync: Authenticated group synchronization 113

may be nodes between 𝑏 and the root which are not updated (e.g. 𝑌).
These nodes will only be updated in a subsequent commit by one of
the members under them (𝑎 or 𝑏). In the meantime, TreeSync performs
supplemental book-keeping using unmerged leaves.

Unmerged leaves. Each node now contains a list of unmerged leaves (or
unmerged list), with the invariant that participants in that list belong to
the node’s subtree. If 𝑏 is in the unmerged list of 𝑌, then it indicates that
the addition of 𝑏 to the subtree under 𝑌 postdates the modification of
the node 𝑌.

Addition now works as follows: after the first non-empty leaf has been
filled with the new participant data, addition also extends the unmerged
list of every node on the path from the new participant all the way up to
the root. Concretely, after adding 𝑏’s data at leaf index 1, 𝑒 inserts 𝑏 into
the unmerged list of 𝑌 and 𝑋. Only then does 𝑒 issue a path update.

Path updates clear the unmerged list of each node they visit, so when 𝑒
issues a path update, the root’s unmerged list is empty after the update,
meaning that any integrity protections added to the root now cover the
entire group – all is well.

Serialization and Parsing. Our specification implements the serializa-
tion and parsing of all the MLS data structures, for trees, messages, and
signature contents down to the byte level – we follow the RFC to the
letter. This is to be contrasted with all prior formal approaches, which
study a model of MLS that is not guaranteed to be faithful to the RFC.
As a consequence, our specification can actually be extracted and exe-
cuted to establish that we are interoperable with test vectors and other
implementations (§5.5); this level of precision also allowed us to find new
attacks, such as signature collisions (§5.4.5).

5.3.3 Tree Hash

The MLS specification defines a tree hash operation that computes a
digest for an entire tree; we rely on this operation in subsequent sections.
The implementation details are of little importance for the rest of this
paper: it suffices to say that the RFC implements an efficient recursive
hash procedure akin to that of a Merkle Tree, and should two different
MLS trees exhibit the same tree hash, then one has found a collision for
the underlying hash function (§5.4.3). Proving this requires, naturally,
reasoning about injectivity of serialization.

The tree hash provides an integrity mechanism for the MLS tree: if
two members have the same tree hash they must have the same tree
(barring hash collisions). Consequently, by including the tree hash within
a signature, a sender can authenticate the full tree to a receiver. However,
this integrity guarantee is not strong enough to protect new group
members from tree tampering attacks by old members, such as the
welcome message attack [116] and tree signing attack [51]. Consequently, [116]: Bhargavan et al. (2019), Formal Mod-

els and Verified Protocols for Group Messag-
ing: Attacks and Proofs for IETF MLS
[51]: Alwen et al. (2022), On The Insider
Security of MLS

MLS includes a second, stronger integrity mechanism called the Parent
Hash.

5.3.4 Parent Hash

We have now exposed all of the TreeSync operations. Throughout our
explanations, we have consistently referred to the need for a mechanism

5 TreeSync: Authenticated group synchronization 114

let rec apply_path_loop #l #i #li (t: treesync l i) (p: pathsync l i li)
parent_parent_hash

= match t, p with
// End of path: apply new contents from p onto t
| TLeaf _, PLeaf lp→ TLeaf (Some lp)
| TNode _ left right, PNode opt_opaque_content ps→
let _, sibling = get_child_sibling t li in
let opt_content’ = // Compute the new node content
match opt_opaque_content with
| None→ None // We skip filtered nodes
| Some content→ Some ({
opaque_content = content;
// Carried from previous loop iteration
parent_hash = parent_parent_hash;
// Notice we clear the unmerged leaves list
unmerged_leaves = []; }) in

// Compute the parent’s parent hash for recursive call
let parent_parent_hash’ =
match opt_opaque_content with
| None→ parent_parent_hash // We skip filtered nodes
| Some content→
compute_parent_hash content parent_parent_hash sibling

in
// Update the tree recursively
if is_left_leaf li then (// relative to tree of height l at position i
let left’ = apply_path_loop left ps parent_parent_hash’ in
TNode opt_content’ left’ right

) else (
let right’ = apply_path_loop right ps parent_parent_hash’ in
TNode opt_content’ left right’)

Figure 5.3: Implementation of the
apply_path function, simplified. We write
x’ for the updated value for x.

that can protect the integrity of the whole tree, while i) correctly ac-
counting for both unmerged leaves and blank nodes mechanisms, and
ii) satisfying the constraint that a path update can only modify nodes
along the path. That integrity mechanism is known as the Parent Hash,
and must accommodate further requirements: first, the number of hash
computations and recomputations should be minimal (for efficiency);
second, the parent hash should cover the contents of all the subtrees that
existed in the tree when the parent hash was last modified.

We now expose the Parent Hash mechanism as specified within the RFC.
After being confronted with its ungodly amount of complexity, the reader
will, we hope, be convinced that this warrants a formal analysis that can
state, with full confidence, that TreeSync not only is correct, but also
provides proper authentication guarantees.

Computation. Each node in the tree stores a parent hash. When a
path update is applied, the parent hash of each node on the path is
recomputed, starting at the root, and continuing all the way down to
the leaf (participant) that issued the path update. We show the inner
(recursive) loop of apply_path, in Figure 5.3.

To initialize recursion, the parent hash stored in the root node is always
a special empty value. Then, at any given step along the way (with 𝑁 the
current node, 𝑆 its sibling, and 𝑃 their parent), the parent hash stored in
𝑁 is updated to the hash of a serialized structure containing:

▶ the (new) parent hash stored in 𝑃,
▶ the (new) opaque payload stored in 𝑃, and

5 TreeSync: Authenticated group synchronization 115

▶ the tree hash of 𝑆, which fully captures the contents of 𝑆, unmerged
leaves included.

At the end of the path update issuance, the leaf signs its own parent hash.
Doing so, the participant signs (authenticates) their own membership in
the tree, as well as the content of their parent P, the entire sibling tree S,
and whatever else the parent hash of P recursively covers. Transitively,
this means that the leaf contains a hash value that protects the integrity
of every node, sibling and parent, all the way up to the root.

Recall that when a node in the path has a blank subtree, it is called a
filtered node and is treated as blank; in this case, apply_path_loop skips the
node and moves down to its child. Figure 5.2 illustrates this optimization:
if 𝑐 issues a path update, its parent node is skipped, and only 𝑌 and 𝑋 get
updated.

Each path update also clears the unmerged list of every node on the path,
as the nodes that were in the unmerged list are now authenticated by the
update. Accounting for unmerged leaves and filtered nodes significantly
complicates the implementation of all the operations in TreeSync; this is
one of the many reasons that motivate a formal proof.

Verification. Perhaps harder than updating the parent hash is verifying
its correctness to prevent against malicious actors. This happens in two
circumstances: first, upon joining a group; second, upon receiving a
commit from another group member. In the first scenario, the whole tree
must be visited; in the second scenario, this is only an incremental process
wherein a lot of values from tree hash can be cached and reused.

Several subtleties arise in the process. We give an intuition for two of
those, and leave a formal discussion of correctness properties to §5.4.
First, a node N might have a non-empty unmerged list. This means that
in order to validate the parent hash stored at N, one must consider the
subtree at the time of the last authentication of N, that is, the subtree
without the unmerged leaves. This requires introducing a new operation
revert_add(P,leaves) operation that allows us to revert back the addition
of a set of unmerged leaves (leaves) from a tree rooted at a parent node
(P), so that we can compute a correct, albeit outdated, hash. The second
complexity arises from the filtered nodes optimization. Notably, one
must ensure that a malicious actor cannot surreptitiously introduce new
nodes in an otherwise filtered (skipped) subtree.

Failing to account for both of these subtleties breaks our integrity invariant
and can allow attacks on the protocol. Our authentication proof for
TreeSync relies on a novel criterion, the “parent-hash link”, that ties
together the parent hash, the blank (skipped) nodes, and unmerged
leaves together (§5.4).

This concludes our overview of the main elements of TreeSync, which
itself only forms a small part of the MLS standard. The protocol is large
enough and complex enough that we believe that it is hard, even for
experts, to understand all the details, let alone reason about its security.
We provide a testable specification for all of MLS in F∗ [117], which [117]: (2022), TreeSync: Supplementary Ma-

terialreaders can inspect and run to hopefully gain a better understanding of
the protocol and the machine-checked authentication theorems we proof
for the TreeSync component.

5 TreeSync: Authenticated group synchronization 116

5.4 A security proof of TreeSync

In this section, we describe a series of invariants and lemmas we prove
for our TreeSync specification leading up to the main integrity and
authentication guarantees of the protocol.

5.4.1 TreeSync State Invariants

As we saw in §5.3.1, the TreeSync tree data type already incorporates
several structural invariants (complete tree, correct leaf index). In addition,
we state and prove a series of invariants for all TreeSync states that
are reachable by a sequence of operations. We describe three of these
invariants, which play important roles in our security proofs:

Unmerged Leaves. At each parent node 𝑛, the unmerged leaves list must
be sorted in increasing order, each unmerged leaf must point to a leaf
index within the subtree rooted at 𝑛, and the leaf at this index must be
non-blank.

This invariant can be easily checked for every TreeSync tree, and is neces-
sary to prove the parent-hash invariant described below, but surprisingly,
the latter two conditions were not required by the MLS draft. On our
suggestion, they are now included since draft 15.

Leaf Validation. We require and enforce an invariant that all leaf
signatures in the tree have been verified, and that the credential at each
leaf has been issued (out-of-band) by the Authentication Service. Hence,
we can assume that the verification key in the credential belongs to the
member at the leaf and has been used to sign the leaf content. These are
crucial pre-conditions for the authentication guarantees of TreeSync.

Parent-hash Linking. The parent hash construction (§5.3.4) creates
links between parent nodes and their descendants. Formally, if a parent
node 𝑃 has two children 𝐶 and 𝑆, we say that there is a direct parent
link between 𝐶 and 𝑃 if, once we revert all the unmerged leaves of 𝑃
(revert_add(P,P.unmerged_leaves)): (1)𝑃 and𝐶 are non-blank, (2)𝐶 has no
unmerged leaves, and (3) 𝐶 contains a parent-hash computed from 𝑃 and
𝑆 (C.parent_hash is equal to ParentHash(P.content, P.parent_hash, TreeHash(S))).

More generally, we say that there is a parent link from a descendant node
𝐷 to 𝑃 (written 𝐷 ⇝ 𝑃) if 𝑃 and 𝐷 satisfy the conditions above and
there is a path from 𝐷 up to 𝑃 such that all intermediate nodes on this
path are filtered, i.e. they are blank and the corresponding sibling trees
are fully blank. This generalization is needed because filtered paths may
introduce blank nodes between a node and its linked parent.

We show that TreeSync enforces the invariant that each non-blank node 𝑃
must have a descendant 𝐷 such that 𝐷 ⇝ 𝑃. By applying this invariant
recursively, we obtain a more general notion of path linking: a leaf 𝐿 is
path linked to an ancestor node 𝑃, if all the non-blank nodes on this path
(𝑇1 , . . . , 𝑇𝑛) are sequentially parent linked (𝑇𝑖 ⇝ 𝑇𝑖+1). As we shall see,
this is a crucial invariant for our authentication theorem.

F
∗

Proofs. We formalize all our invariants on the TreeSync tree as a
predicate which we attach to the treesync data structure as a refinement
type. Thereafter, we use the F∗ type checker to prove that all TreeSync
operations that modify the tree data structure preserve this predicate. The
proofs rely on some auxiliary lemmas but are mostly straightforward.

5 TreeSync: Authenticated group synchronization 117

5.4.2 Verified Parsing and Serialization

Our F∗ specification includes parsers and serializers for all the byte
formats defined in the MLS RFC, whether they represent trees, messages,
or inputs to cryptographic constructions. We uniformly prove correctness
properties for all these parsers and serializers, whether or not they belong
in TreeSync.

In particular, for every MLS type T, we define a function serialize_T
that translates T to bytes, and function parse_T that translates bytes to
option T. We then prove that these functions are inverses of each other,
and as a corollary, obtain that the serialization of each MLS type is injective.

∀ (x:T). parse_T (serialize_T x) = Some x
∀ (x:T) (b:bytes). parse_T b = Some x =⇒ serialize_T x = b

These properties are essential for functional correctness, but also for
security. For example, the TreeHash construction relies on the serialization
of a structure called TreeHashInput that includes the node type and hashes
of the children (if any). We rely on the injectivity of this serialization to
prove the integrity of TreeHash. Conversely, the failure of an injectivity
lemma may point to an attack, as we will see in the case of the signature
confusion attack on TreeSync authentication.

F
∗

Proof. To prove all our parsers and serializers correct, we rely on a
verified library of parser combinators in F∗ that largely automate the
process of defining and verifying this code. This library allows us to
write the RFC types as regular F∗ data types decorated with annotations
describing how they should be serialized. Using F∗’s metaprogramming
feature, these types are automatically translated to parsers and serializers
equipped with proofs of correctness.

5.4.3 Tree Hash Integrity Lemma

The TreeHash construction is used to verify the integrity of TreeSync
trees: two members of a group can compare their tree hashes to verify if
the trees are the same.

This integrity guarantee relies on the injectivity of TreeHash: if two
subtrees 𝑡1 and 𝑡2 have the same tree hash (TreeHash(𝑡1) =TreeHash(𝑡2)),
then either two trees are equal (𝑡1 = 𝑡2), or else we can exhibit a pair
of bitstrings 𝑏1 and 𝑏2 that exhibit a hash collision (𝑏1 ≠ 𝑏2 ∧ 𝐻(𝑏1) =
𝐻(𝑏2)).
In other words, a collision in TreeHash deterministically reduces to a
collision in the underlying hash function. By structuring the lemma in
this manner, we avoid making any symbolic or probabilistic assumption
on hash functions.

The formal statement of this lemma in F∗ is given below:

5 TreeSync: Authenticated group synchronization 118

val tree_hash_injectivity:
#l1:nat→ #i1:tree_index l1→ #l2:nat→ #i2:tree_index l2→
t1:treesync l1 i1→ t2:treesync l2 i2→ Pure (bytes ‗ bytes)
(requires tree_hash t1 == tree_hash t2)
(ensures 𝜆 (b1, b2)→
// Either the trees are equal and at the same position
(l1 == l2 ∧ i1 == i2 ∧ t1 == t2) ∨
// Or we computed a hash collision
(hash b1 == hash b2 ∧ ¬(b1 == b2)))

Importantly, note that the lemma not only guarantees that the trees
have the same content and structure, but also that they are at the same
position, which is needed in the Parent Hash Integrity lemma below. The
integrity of TreeHash is also relevant for TreeDEM, which authenticates
the current tree hash in every message, hence guaranteeing that recipients
and senders of each MLS message have the same tree.

F
∗

Proof. Our proof of this lemma in F∗ is by induction on the structure
of the two trees and case analysis on the TreeHash definition. It relies on
the injectivity of serialization for the TreeHashInput type and as it travels
down the trees, it inductively constructs the bitstrings that must exhibit
the hash collision if the trees are not the same.

Our proof is similar to prior proofs for Merkle Trees (e.g. see [122, Section
7]). However, we note that even well known Merkle Tree implementations [122]: Protzenko et al. (2020), Evercrypt:

A fast, verified, cross-platform cryptographic
provider

sometimes have subtle bugs [123], making them good targets for formal

[123]: Voight (2012), CVE-2012-2459 (block
merkle calculation exploit)

proof.

5.4.4 Parent Hash Integrity Lemma

Unlike the TreeHash, which is invalidated every time the tree is modified,
the Parent Hash provides a more flexible integrity guarantee for subtrees
that may, for example, have some unmerged leaves added after the last
commit. To state the Parent Hash Integrity lemma, we first define a notion
of tree equivalence that captures this flexibility, then define one step of
the lemma before defining the lemma for the full tree.

Canonicalization and Equivalence. We define the canonicalization of a
subtree 𝑇 with respect to leaf index 𝐿, written canonicalize(T, L), by re-
verting the unmerged leaves at its root (revert_add(T, T.unmerged_leaves))
and by ignoring the signature value from leaf 𝐿. As we will see, if 𝐿 is
path-linked to 𝑇, canonicalize(T, L) captures precisely what is covered by
𝐿’s signature. Because 𝐿’s signature covers neither itself nor the unmerged
leaves of 𝑇, we omit both in the canonicalization.

We say that two trees 𝑇 and 𝑇′ are equivalent with respect to a leaf index
𝐿, written 𝑇 ≃𝐿 𝑇′, if the two trees have the same canonicalization with
respect to 𝐿.

Parent Link Integrity. Next we prove a lemma that shows how the parent
link relation (𝐷 ⇝ 𝑃) protects the integrity of the tree. Consider two
trees 𝑃1 and 𝑃2 where, 𝑃1 has a descendant 𝐷1 such that 𝐷1 ⇝ 𝑃1, and
𝑃2 has a descendant 𝐷2 such that 𝐷2 ⇝ 𝑃2. We prove that if 𝐷1 ≃𝐿 𝐷2
then 𝑃1 ≃𝐿 𝑃2. That is, the parent link relation (⇝) enables us to lift the
equivalence relation (≃𝐿) up the tree.

5 TreeSync: Authenticated group synchronization 119

As with TreeHash, we state this lemma in terms of a function that
either proves the equivalence of 𝑃1 and 𝑃2 or finds a hash collision. The
statement of the lemma in F∗ is:

val parent_link_integrity:
#ld1→ #ld2→ #lp1:nat{ld1 < lp1}→ #lp2:nat{ld2 < lp2}→
#id1:tree_index ld1→ #id2:tree_index ld2→
#ip1:tree_index lp1→ #ip2:tree_index lp2→
d1:treesync ld1 id1{node_has_parent_hash d1}→
d2:treesync ld2 id2{node_has_parent_hash d2}→
p1:treesync lp1 ip1{node_not_blank p1}→
p2:treesync lp2 ip2{node_not_blank p2}→
(‗ leaf index of L ‗) li:leaf_index ld1 id1→ Pure (bytes ‗ bytes)
(requires equivalent d1 d2 li ∧ parent_hash_linkedP d1 p1 ∧

parent_hash_linkedP d2 p2) // Given the hypotheses
(ensures 𝜆 (b1, b2)→
equivalent p1 p2 li ∨ // Either the theorem is true
(hash b1 == hash b2 ∧ ¬(b1 == b2))) // Or we have a collision

Parent Hash Integrity. By recursively applying the Parent Link Integrity

lemma above, we obtain the full integrity guarantee for a path from a leaf
to each of its ancestor nodes. Consider two trees 𝑇1 and 𝑇2, where 𝑇1 has a
leaf 𝐿1 such that 𝐿1 is path-linked to 𝑇1, and 𝑇1 has a leaf 𝐿2 such that 𝐿2
is path-linked to 𝑇2. We show that if 𝐿1 and 𝐿2 have the same content and
same leaf index, and if 𝑇1 and 𝑇2 have the same height, then 𝑇1 ≃𝐿 𝑇2.

As a corollary, we obtain a lemma that is more directly useful for TreeSync
authentication: if 𝑇1 is the root node (i.e. its parent hash field is empty) ,
then 𝑇2’s height cannot be greater than 𝑇1’s, and all the subtrees between
𝐿2 to 𝑇2 must be point-wise equivalent to the corresponding subtrees on
from 𝐿1 to𝑇1. In practice, after every commit, the path update corresponds
to a linked path from the committing leaf (e.g. 𝐿1) to the root (𝑇1). However,
as other leaves subsequently commit to the tree, the linked path no longer
goes to the root and may be shorter (e.g. up to 𝑇2).

F
∗

Proofs. The proof for the parent link integrity lemma is similar
to that of the Tree Hash integrity lemma. We rely on the injectivity
of serialization, and the injectivity of tree hashes, and perform a case
analysis on the parent hash definition to construct a hash collision if
the two trees are not equivalent. The full parent hash integrity lemma
is proved by induction on the length of the trees, propagating the hash
collision up the tree. Due to the subtleties and many corner cases of the
parent hash computation, we found that having a proof assistant like F∗
to check all the cases was quite valuable.

Weakness in Previous Drafts. We note that previous drafts of MLS
(before draft 13) did not satisfy the Parent Hash Integrity lemma we state
and prove in this section. This is because the parent hash construction did
not include the Tree Hash of the sibling and instead only included the list
of public keys (called the resolution) in the sibling tree, i.e. C.parent_hash is
equal to ParentHash(P.content, P.parent_hash, Resolution(S)). Notably, the
Resolution does not include the credentials of the leaves in 𝑆. This allows
an adversary to tamper with the tree, by changing the leaf credentials in
𝑆, without it being detected via the parent hash mechanism.

Incidentally, the resolution mechanism was itself introduced in response
to an attack (described in [51]) on the integrity protections of the parent [51]: Alwen et al. (2022), On The Insider

Security of MLShash mechanism in draft 9. Our analysis shows that there still are integrity
attacks on the parent hash mechanism after this fix. We proposed the

5 TreeSync: Authenticated group synchronization 120

change to include the Tree Hash instead of the resolution and this was
adopted in draft 13 of the standard. The change also has the benefit of
more cleanly separating TreeSync mechanisms like parent hash from
TreeKEM objects like public keys.

5.4.5 TreeSync Authentication Theorem

We can finally state the high-level TreeSync Authentication theorem.
Consider the TreeSync tree 𝑇 at group member 𝑏, obtained as a result of
a valid sequence of TreeSync operations. Then, the theorem states that
within every subtree 𝑇′ of 𝑇 where the root of the subtree is non-blank,
there exists a leaf 𝐿 in 𝑇′ with a credential for some member 𝑎, such that
either at some point in the past, the TreeSync tree at 𝑎 contained the
canonicalization of 𝑇′ with respect to 𝐿 (canonicalize(T’, L)), or else 𝑎’s
signature key must have been compromised.

In other words, in every TreeSync state, every subtree with a non-blank
root node is authenticated (up to the flexibility offered by equivalence)
by one of the leaves in that tree. Notably, after a path update, the root
of the full tree is guaranteed to neither be blank nor have unmerged
leaves; the full TreeSync tree is thus always authenticated by some group
member.

The authentication guarantee above is the first instance in our formal
development where we are relating the state at one member (𝑏) with
the state at a different member (𝑎). To formally state and prove this
theorem, we need a runtime model that incorporates multiple parties
and their interactions. To this end, we employ the DY∗ symbolic protocol
framework.

Verifying Crypto Protocols with DY
∗
. The DY∗ framework [43] defines [43]: Bhargavan et al. (2021), DY*: A Mod-

ular Symbolic Verification Framework for
Executable Cryptographic Protocol Code

a trace-based symbolic runtime model, where different principals can
participate in protocols by calling cryptographic functions, generating
keys and nonces, sending messages to each other, storing and modifying
local state, and logging events to indicate authentication events. The
attacker controls the network and can compromise principals: it can read
and write any message, generate any number of keys, read the state of
compromised principals, and store any amount of state for itself.

DY∗ implements a symbolic (or Dolev-Yao) abstraction of cryptographic
functions, modeled using constructors and functions in F∗. Here, we
only use the hashing and signature functions in DY∗. Hash functions
are modeled as opaque one-way functions with no collisions. Signature
schemes are modeled as three functions: a key generation function that
produces signature keypairs, a signature function that signs a bitstring
using a signature key, and a verification function that takes a verification
key, a bitstring, and its signature to verify. Verification succeeds if (and
only if) the signature was computed with the signature function, meaning
signatures are unforgeable unless the signature key is known to the
attacker.

The trace-based runtime model and symbolic cryptographic assumptions
of DY∗ are quite standard for symbolic verification and similar to models
used in ProVerif [41] and Tamarin [42]. The main difference is the way [41]: Blanchet et al. (2016), Modeling and

verifying security protocols with the applied
pi calculus and ProVerif
[42]: Meier et al. (2013), The TAMARIN
prover for the symbolic analysis of security
protocols

proofs work in DY∗. DY∗ is built as a library within the F∗ verification
framework and hence has access to a rich higher-order dependently-typed
programming language and a full-fledged theorem prover. Consequently,
DY∗ is well suited to verify protocol implementations, and protocols

5 TreeSync: Authenticated group synchronization 121

with recursive data structures like trees, which automated provers like
ProVerif and Tamarin struggle with. For example, DY∗ has been used to
verify properties like PCS for recursive protocols like Signal [43] for an [43]: Bhargavan et al. (2021), DY*: A Mod-

ular Symbolic Verification Framework for
Executable Cryptographic Protocol Code

unbounded number of rounds. DY∗ has also been used to verify detailed
protocol specifications like ACME [99] and protocol implementations

[99]: Bhargavan et al. (2021), An In-Depth
Symbolic Security Analysis of the ACME
Standard

like Noise* [100].

[100]: Ho et al. (2022), Noise*: A Library of
Verified High-Performance Secure Channel
Protocol Implementations

Applying DY
∗

to TreeSync. The definitions we presented earlier (§5.3.1)
are simplified ones. In reality, all of our TreeSync code is parametric over
the type of bytes, and over operations on such bytes, which we achieve
via F∗’s type class mechanism. This allows us to write a single TreeSync,
but instantiate it twice “for free”: once with concrete bytes, to obtain an
executable specification that can be tested over the wire, and once with
symbolic DY∗ bytes. Similarly, our cryptographic primitives are either
concrete, and call actual implementations; or symbolic, and annotated
with DY∗ labels. To enable both concrete and symbolic crypto, we had
to extend the DY∗ libraries with some missing features, like a proper
treatment of bitstring lengths.

We then wrap the protocol code within a high-level API that offers
functions for creating groups, adding and removing members, etc. This
API internally stores session state for each open session, sends and
receives messages, and logs events before each state change. This API is
exposed to the attacker, so it can create any number of TreeSync sessions,
and trigger any sequence of add, removes, and updates. However, the
attacker does not get access to the internal state of uncompromised
members. Our goal is to show that in all traces of honest TreeSync
participants with the symbolic Dolev-Yao attacker, our confidentiality
and authentication guarantees hold.

The first step is to typecheck that our protocol code obeys the DY∗ labeling
discipline which ensures that secret values are kept secret; in TreeSync the
only secrets are signature keys, which are used only to create signatures,
so all data structures are labeled public, and the labeling proofs are
straightforward.

Stating and Verifying TreeSync Authentication. Next, we need to
annotate our code with signature predicates that describe all the possible
uses of signatures in our full specification, including TreeKEM, TreeDEM,
and TreeSync.

Within TreeSync, signatures are used only for leaf signatures. We require
that before creating a leaf signature in a group 𝑔, the committer at leaf 𝐿
must log an event of the form Send(g,canonicalize(T,L)), for every subtree
𝑇 it modifies.

We can then state our authentication theorem as an invariant on the
TreeSync state: in all reachable TreeSync session states at a member 𝑏
of a group 𝑔, in every non-blank subtree 𝑇, there is a leaf 𝐿 occupied
by some principal 𝑎 such that 𝑎 previously logged an event of the form
Send(g,canonicalize(T,L)), or else 𝑎 was compromised. In DY∗, this is
stated as follows.

5 TreeSync: Authenticated group synchronization 122

val treesync_authentication_theorem:
#b:identity→ #time:timestamp→ #l:nat→ #i:tree_index l→
st:treesync_state→ t:treesync l i→
Lemma (requires
is_reachable b time st ∧
is_subtree_of t st.tree ∧
root_node_is_not_blank t)

(ensures ∃ li, a. has_leaf_identity t li a ∧
// a logged the corresponding Send event
event_happened_before a time
(Send st.group_id (canonicalize t author_li))

// or was corrupted by the attacker before time
∨ is_corrupt a time)

To prove this theorem, we first rely on the unforgeability of signatures
to show that the leaf signature in 𝐿 ensures the existence of a linked
path from 𝐿 to 𝑇, and of corresponding Send events in the trace. We then
combine the path-link invariant and the parent hash integrity lemma to
conclude that the corresponding subtrees at 𝑏 and 𝑎 must be equivalent,
and hence have the same canonicalization, to complete the proof.

Signature Confusion Attack. In fact, our first attempt at the authentica-
tion proof for TreeSync in draft 12 failed, because we were unable to prove
that the attacker could not use a TreeDEM signature to forge a TreeSync
signature. This is because both protocols use the same signature keys and
there is an ambiguity between their signature formats. Consequently, we
could not prove that the signature predicate for TreeSync is independent
of the predicate used in TreeDEM.

This proof failure actually points to a real attack, and we can generate
concrete instances of the signature contents used in the two protocols
that collide after serialization. We note that this attack only appears if
one models bitstring-level serialization (like our specification) since the
two signatures would otherwise appear to be on different MLS types.

We presented this attack to the MLS working group and it was fixed as
per our recommendation in draft 13. The fix uniformly disambiguates all
signatures used in MLS for different purposes using different string labels.
With this fix incorporated, we completed our authentication proof.

Interpreting TreeSync Authentication. The TreeSync authentication
theorem tells us that the trees at different members are consistent as long
as enough honest (uncompromised) members keep creating commits. In
particular, the theorem prevents all the known tree tampering attacks
that plagued earlier versions of MLS [51, 116]. [51]: Alwen et al. (2022), On The Insider

Security of MLS
[116]: Bhargavan et al. (2019), Formal Mod-
els and Verified Protocols for Group Messag-
ing: Attacks and Proofs for IETF MLS

Interestingly, our proof makes no assumptions at all about TreeKEM, and
our TreeSync specification treats all content provided by TreeKEM as
opaque. We also do not make any assumptions about TreeDEM except for
the signature disambiguation property described above. Consequently,
TreeSync provides this authentication guarantee even if TreeKEM and
TreeDEM were replaced by other (even broken) protocols.

Although we do not analyze TreeKEM and TreeDEM in this paper,
TreeSync authentication is a necessary precondition for both these proto-
cols, since they rely on tree agreement between members. We also prove
that the authentication guarantee of TreeSync implies the TreeKEM tree
integrity invariant, and that the tree hash used in TreeDEM provides
strong integrity guarantees.

5 TreeSync: Authenticated group synchronization 123

Component F∗ LoC Verification time
Library code 836 1min30s
TreeSync 1274 4min30s
TreeKEM 396 1min
TreeDEM 1384 2min45s
High level API 1024 1min30s
Library proofs 1170 1min45s
TreeSync proofs 4018 13min30s
Tests 2782 2min45s
Total specification 4914 11min15s
Total proofs 5188 15min15s

Table 5.1: Verification and coding effort
for MLS on an Intel® Xeon® CPU E5-
2620 v4 @ 2.10GHz with 32GB of mem-
ory.

5.5 Implementation

MLS formal specification. Our complete F∗ specification totals 4914
lines of non-blank, non-comment code. We follow the modular approach
described earlier (§5.2): our specification spans three namespaces, one
for each subsystem. Table 5.1 gives a sense of how many lines of code
(LoC) our implementation contains, grouped as run-time code, proofs,
and tests.

Recall that we chose to materialize two trees for TreeSync and TreeKEM,
favoring clarity and readability over conciseness; this tradeoff appears
in numerous other places in our specification, where we always prefer
a readable specification over a clever optimized implementation. For
comparison, we evaluate mlspp and OpenMLS, two industrial imple-
mentations of MLS written in C++ and Rust respectively. The mlspp
implementation, just like us, relies on an automated framework to derive
parsers and serializers, and they use modern C++ with copious amounts
of type inference to keep boilerplate to a minimum, totaling 4250 lines of
non-blank, non-comment code. The OpenMLS implementation, in Rust,
totals 15,000 lines of non-test, non-blank, non-comment code.

Based on those two points of comparison, we conclude that we success-
fully managed to write a compact, concise, readable modular specification
that can serve as a blueprint for any future MLS implementations.

MLS reference implementation. As mentioned earlier, our specification
also serves as a reference implementation: all of our code is also fully
executable. To run our code, we rely on F∗’s extraction feature to produce
OCaml code, which we then compile and execute using the standard
OCaml toolchain. Our code interoperates with mlspp and OpenMLS and
we participate in the IETF MLS interoperability meetings.

Our code requires numerous cryptographic primitives: we rely on the
HACL∗ library [71, 122, 124] for those, thereby preserving the property [71]: Zinzindohoué et al. (2017), HACL*:

A verified modern cryptographic library
[122]: Protzenko et al. (2020), Evercrypt:
A fast, verified, cross-platform cryptographic
provider
[124]: Polubelova et al. (2020), Haclxn:
Verified generic SIMD crypto (for all your
favourite platforms)

that the entire codebase is verified. Furthermore, HACL∗ is one of the
few libraries that support the latest version of HPKE, which we require
for interoperability.

Performance evaluation. We compare our OCaml-extracted code to both
mlspp (written in C++) and OpenMLS (written in Rust). We benchmark
high-level integration tests that call the API functions for participant
addition, participant removal, and sending of messages. The results are
in Table 5.2.

We are comparing implementations written using different languages and
toolchains. As such, we can only draw a broad conclusion, namely, that all

5 TreeSync: Authenticated group synchronization 124

Measurement This paper mlspp OpenMLS
Adds 2.7s 1.2s 0.7s
Messages 3.2s 0.6s 0.2s
Removes 5.5s 0.9s 0.7s

Table 5.2: Performance comparison be-
tween this paper and two other imple-
mentations of MLS. The time measured
is the cumulative computation time for
all participants in the group, measured
on an Intel® Xeon® CPU E5-2620 v4 @
2.10GHz with 32GB of memory. Adds:
Add 10 participants, one by one, with
20 messages from each participant after
each add; Messages: Add 3 participants,
with 400 messagers from each partici-
pant after each add; Removes: Add 15
participants, with 1 message from each
participant after each add, then remove
every participant with an odd position
in the tree, then add participants until
there are 15 participants again, with 1
message from each participant after each
add.

implementations exhibit comparable performance, and generally execute
within the same order of magnitude. We remark that our implementation,
in spite of being written with no performance concerns in mind, still
performs competitively. This means our code can be used off the shelf
for rapid prototyping, interoperability testing, or generally, as a drop-in
verified component when the highest degree of assurance is desired.
Rudimentary profiling analysis indicates that a majority of the execution
time is spent within the cryptographic primitives, which partially explains
why our implementation has only limited overhead.

We have several plans in the works to address the performance overhead.
In the short term, we will investigate the use of better data structures (e.g.
semi-persistent arrays) to make our pure, persistent byte manipulations
more efficient. In the long run, we want to perform a proof of refinement
that an efficient implementation, written in Rust, satisfies our high-level
specification.

Skype integration. As a proof-of-concept, we integrated our reference
implementation in a prototype version of the Skype messaging client.
This was done as a one-time collaboration with a Microsoft team, where
we added support in an experimental branch for a new feature called
"secure group chats", powered by our MLS reference implementation. We
tested and benchmarked the code on small groups exchanging a handful
of messages. Overall, this allowed us to show that our code is deployable
within a mainstream messenger.

Skype already features 1:1 private conversations using Signal; our imple-
mentation extended this functionality to actual groups. Skype is written
using the Electron framework, i.e. a Web-based runtime environment.
We used js_of_ocaml [125] to compile our extracted code to JavaScript, [125]: Vouillon et al. (2014), From bytecode

to JavaScript: the Js_of_ocaml compilerand linked it against HACL-WASM [126], a version of HACL∗ compiled
[126]: Protzenko et al. (2019), Formally
verified cryptographic web applications in
webassembly

directly to WebAssembly [127] while preserving security properties. The

[127]: Haas et al. (2017), Bringing the web
up to speed with WebAssembly

Skype team generously enabled the backend changes to implement the
so-called Directory Service and Authentication Service that MLS relies
upon.

We were able to successfully converse across endpoints, and there were
no noticeable slowdowns in the user interface once we linked our code
against efficient WASM-based cryptographic primitives. We conclude
that the efficiency of MLS is bounded by the underlying cryptographic
primitives, and that our reference implementation is a valid choice for
security-conscious consumers.

5 TreeSync: Authenticated group synchronization 125

5.6 Impact

Improving the standard. Our work identified several issues and attacks
in the MLS drafts, and led to our proposing numerous changes that were
ultimately adopted by the IETF.

The first issue we found was the signature confusion attack described in
§5.4.5. We fixed this defect by uniformly adding labels to all signatures
in MLS, to disambiguate their intent. This change was adopted in draft
13 and is required for our authentication theorem.

A second issue we found was that the integrity guarantee provided by
the parent hash mechanism was too weak (§5.4.4), since it authenticated
only TreeKEM related content in the tree. We proposed replacing this
mechanism with one that uses the tree hash to authenticate the full
content of the tree, including leaf credentials. This change, which enables
our strong parent hash integrity lemma, was adopted in draft 13.

A third series of issues we found relates to the parent hash computation.
In the process of performing the proof, we ended up with the four
conditions for the well-formedness of the parent-hash link in the presence
of unmerged leaves and filtered paths. We also identified several key
criteria that must be met for the parent hash to recursively authenticate
the whole tree, and for the corresponding inductive reasoning to succeed.
The RFC was failing to enforce some of these, and we showed protocol
traces that would break the TreeSync property.

Finally, we identified further well-formedness conditions for unmerged
leaves that were not enforced upon joining a group (an unmerged leaf
must point to a non-blank leaf). The protocol was missing this check,
which we showed could break the parent-hash invariant. This is also
fixed in draft 15.

Fixing Implementation Bugs. In addition to bugs in the standard itself,
we also found implementation issues throughout the course of our
interoperability testing. The first faulty implementation we identified
was ours: we had some serialization errors, e.g. serializing a field as a
uint8 instead of uint16. We also found issues in both mlspp and OpenMLS,
the two major industrial implementations of MLS at the time of writing.
Both bugs were reported, and fixed.

A benefit of executable specifications is that they can be extensively tested
for interoperability, like we did. This is the only way to gain confidence
that the security theorem refers to the actual protocol, not a variant of it
with an alternate serialization scheme. It is our opinion that any serious
security analysis of a real-world protocol must include an executable
specification; otherwise, one might prove properties over a different
protocol, without realizing.

Lessons Learned. During our engagement with the IETF MLS stan-
dardization process, we found that the benefits of formal verification
are now appreciated and understood when it comes to designing a new
secure protocol. Notably, the MLS working group was highly reactive
and appreciative of any bugs found by various teams; gladly accepts
well-argued revisions and improvements; and, we posit, enjoys the added
confidence that a formal analysis brings. We suspect that the many suc-
cesses from the earlier TLS 1.3 have created a fruitful ground for this sort
of collaboration.

5 TreeSync: Authenticated group synchronization 126

Our approach of building an executable specification of the standard
proved very useful for interactions with the working group. This not
only makes security proofs much easier (as opposed to, say, having
to perform them on a production codebase), but also allows rapid
prototype and testing of proposed changes: for example, we were able to
modify the specification and adapt the proofs to understand the security
implications of a last-minute protocol modification. We encourage other
standardization efforts to promote reference implementations written in
high-level languages.

Conversely, MLS has grown to become a large protocol standard, and
even understanding, let alone analyzing, the full protocol is a challenge
even for cryptographic developers and protocol experts. One of the
contributions of this paper is the modular decomposition of MLS from
a monolithic protocol into three independent components with a clean
separation of concerns. In retrospect, this kind of modular design should
have been built into the protocol standard itself, and perhaps should be a
goal for the next version of MLS.

5.7 Related Work

Although group key establishment has been well studied in the literature
(see e.g. [128, 129]), group messaging differs from traditional group [128]: Manulis (2006), Security-Focused

Survey on Group Key Exchange Protocols
[129]: Poettering et al. (2021), SoK: Game-
Based Security Models for Group Key Ex-
change

protocols in that it supports asynchronous messaging in dynamic groups.
Unger et al. [5] provide a survey of messaging protocols, including

[5]: Unger et al. (2015), SoK: Secure Mes-
saging

some that support groups, conclude that “conversations between larger
groups still lack a good solution”. Since that survey, most academic work
on group messaging has either been in the context of Signal or MLS.
The extension of Signal with private authenticated groups was formally
described and analyzed by Chase et al. [111], but Signal’s sender-driven [111]: Chase et al. (2020), The Signal Private

Group System and Anonymous Credentials
Supporting Efficient Verifiable Encryption

group messaging protocol does not scale to large groups. In the rest
of this section, we compare our work with work on MLS and on other
efforts to formally analyze cryptographic protocols.

Prior Analyses of MLS. The initial draft of MLS relied on Asynchronous
Ratcheting Trees (ART) whose authors provide a cryptographic proof of
their tree-based protocol design [112]. The original design of the TreeKEM [112]: Cohn-Gordon et al. (2018), On ends-

to-ends encryption: Asynchronous group
messaging with strong security guarantees

protocol was presented in [113] and was adopted in MLS draft 2, and

[113]: Bhargavan et al. (2018), TreeKEM:
Asynchronous Decentralized Key Manage-
ment for Large Dynamic Groups A proto-
col proposal for Messaging Layer Security
(MLS)

has since been extended with many features including blank nodes,
unmerged leaves, and the proposal-commit pattern. Various versions
of TreeKEM have been analyzed in a variety of security models. [114]

[114]: Alwen et al. (2020), Security Anal-
ysis and Improvements for the IETF MLS
Standard for Group Messaging

presents a cryptographic analysis of TreeKEM in draft 7 against a passive,
non-adaptative attacker, and defines continuous group key agreement
(CGKA). They also analyze using Updatable Public Key Encryption
to improve forward secrecy guarantees of TreeKEM. [115] modularly

[115]: Alwen et al. (2021), Modular Design
of Secure Group Messaging Protocols and
the Security of MLS

analyzes MLS in draft 11 against an active attacker. Their proof reason
on high-level messages and miss the signature ambiguity attack, which
we found by doing proofs on byte-level precise executable specifications.
[52] analyzes the key derivation component of MLS in draft 11. [130] [52]: Brzuska et al. (2022), Security Anal-

ysis of the MLS Key Derivation
[130]: Cremers et al. (2021), The Complexi-
ties of Healing in Secure Group Messaging:
Why Cross-Group Effects Matter

studies the multi-group security of MLS. All of these focus on the key
exchange (TreeKEM) and data encapsulation (TreeDEM) components of
MLS and do not consider tree integrity and authentication (TreeSync),
our main focus.

Alwen et al. [51] study the security of TreeKEM against insider attacks [51]: Alwen et al. (2022), On The Insider
Security of MLSand find a flaw on tree authentication. They propose different fixes by

modifying the parent hash scheme, one of which is used in draft 16 and

5 TreeSync: Authenticated group synchronization 127

we study in this work (the “tree parent hash”). However, unlike this work,
they study TreeKEM and TreeSync together as a monolithic protocol.

All the works mentioned above rely on manual pen-and-paper proofs.
As the MLS standard grows, so do these manual proofs, making them
hard to check and maintain. In this work, we use a formal verification
tool to build a byte-level precise machine-checked specification for MLS
that can be independently tested, modified, and verified.

A symbolic analysis of TreeKEM for forward security in Tamarin appears
in [131] but it does not consider PCS or authentication. [116] uses F∗ [131]: Cremers et al. (2023), Subterm-

Based Proof Techniques for Improving the
Automation and Scope of Security Protocol
Analysis
[116]: Bhargavan et al. (2019), Formal Mod-
els and Verified Protocols for Group Messag-
ing: Attacks and Proofs for IETF MLS

to symbolically analyze TreeKEM in draft 7, finding an attack on tree
authentication. However they do not identify TreeSync as an independent
protocol and do not analyze the current parent hash design.

Mechanized Proofs of Crypto Protocols. Our approach follows a long
line of work on the mechanized formal verification of cryptographic
protocols (see [36] for a survey). Some protocol verification tools, like [36]: Barbosa et al. (2021), SoK: Computer-

Aided CryptographyProVerif [41], Tamarin [42], and DY∗ [43], rely on the symbolic model
which treats cryptography abstractly and focuses on logical protocol
flaws. Other tools, like CryptoVerif [38], EasyCrypt [37], and Squirrel [39],
rely on the computational model which includes a more precise model of
cryptography but provides less automation. Both kinds of tools have
been applied to the analysis of real-world protocols like Signal [43, 54] [43]: Bhargavan et al. (2021), DY*: A Mod-

ular Symbolic Verification Framework for
Executable Cryptographic Protocol Code
[54]: Kobeissi et al. (2017), Automated ver-
ification for secure messaging protocols and
their implementations: A symbolic and com-
putational approach

and TLS 1.3 [49, 50].

Except for DY∗, most existing tools struggle to analyze protocols with
unbounded state (like trees) and with recursive structure (like ratcheting).
Indeed, very little prior work applies to the mechanized analysis of group
protocols [131, 132] and even these works do not consider authenticated [131]: Cremers et al. (2023), Subterm-

Based Proof Techniques for Improving the
Automation and Scope of Security Protocol
Analysis
[132]: Schmidt et al. (2014), Automated Ver-
ification of Group Key Agreement Protocols

data structures like TreeSync trees.

Finally, many prior works verify reference implementations of protocols
like Signal [133], Noise [100], and TLS [134]. Like us, these handle the full
complexity of the protocol, including detailed message formats, yielding
precise theorems that apply to running protocol code, not just abstract
models.

5.8 Conclusion

We present a precise formal specification of the current version of the MLS
protocol, along with a machine-checked proof of its TreeSync component.
This work is part of a long-term engagement between the authors and the
MLS working group, where we analyzed multiple intermediate versions
of the protocol, found and fixed issues, and contributed design improve-
ments to the protocol. Our specification consolidates our understanding
of MLS and we hope it can serve as a formal guide to readers interested
in this protocol.

Our proofs are only for TreeSync and do not cover TreeDEM and TreeKEM,
although we formally specify and account for the interaction between
TreeSync and these. We leave the comprehensive composite security
analysis of all three components of MLS for future work.

5 TreeSync: Authenticated group synchronization 128

Acknowledgments

We are indebted to Franziskus Kiefer, Raphael Robert and Richard Barnes
for proofreading a draft of this paper and providing precious feedback.
We are grateful to Jaroslav Franek for setting up a hackathon that allowed
us to try out our MLS implementation in the Skype client, along with team
members Jakub Kermaschek, Jurav Blazek, Lukas Liska and Katerina
Cizkova.

TreeKEM: Efficient continuous

group key establishment 6

6.1 Introduction 129

6.2 The MLS TreeKEM Proto-

col 132

6.3 An executable specifica-

tion of TreeKEM 139

6.4 A security theorem for

TreeKEM 142

6.5 Proof methodology . . . 147

6.6 Discussion 151

6.A Lack of epoch authentica-

tion in Welcome 153

There are two ways of constructing a software design: One way is to
make it so simple that there are obviously no deficiencies, and the other
way is to make it so complicated that there are no obvious deficiencies.
The first method is far more difficult.

C. A. R. Hoare, in his 1980 Turing Award Lecture

This chapter is adapted from the eponymous publication [135], to appear
at IEEE S&P 2025. The text is identical, but was reformatted.

6.1 Introduction

The Messaging Layer Security (MLS) standard [21], published in 2023, [21]: Barnes et al. (2023), The Messaging
Layer Security (MLS) Protocolis the first and till-date only Internet standard for secure end-to-end

encrypted messaging. It is currently implemented by multiple messaging
software vendors, including Cisco, AWS, Wire, and XMTP, and several
vendors have announced their intention to support it in the future. With
the advent of new regulations that require messaging interoperability, like
the EU Digital Markets Act, an open standard like MLS is seen by many
as the basis for the next generation of secure messaging applications.

Compared to popular and widely-deployed messaging protocols like
Signal [110] and its many variants, the design of MLS distinguishes itself [110]: Marlinspike et al. (2016), Signal Spec-

ificationsin two important ways.

First, MLS puts group messaging front and center and seeks to scale up to
groups with thousands of members. To achieve this, MLS is built around
a new tree-based protocol that scales logarithmically with the group size
(in the ideal case) and linearly in the worst case. In contrast, protocols
that build group messaging using two-party channels, such as Signal
Sender Keys [136], scale linearly with group size in the best case and [136]: Balbás et al. (2023), WhatsUpp with

Sender Keys? Analysis, Improvements and
Security Proofs

quadratically in the worst. Furthermore, these protocols do not provide
important properties like membership agreement and post-compromise
security for group conversations. With the growth in popularity of group
messaging, and with the increase in message sizes entailed by post-
quantum cryptography, the improved security and scalability of MLS is
increasingly desirable.

Second, inspired by the experience of the Transport Layer Security
(TLS) working group in the standardization of TLS 1.3, the design of
MLS was structured as a collaboration between protocol designers and
cryptographic experts with the goal of developing security proofs of the
protocol alongside standardization. This process resulted in a number
of formal security analyses of MLS (and its variants) using a variety of
security models and techniques [51, 52, 68, 114–116, 131]. The current work
is also a result of this long-term collaboration, and it contributes a new
machine-checked security proof for TreeKEM, the core key agreement
component of MLS.

MLS: TreeSync, TreeKEM, and TreeDEM. In previous work, Wallez
et al. [68] identified a modular decomposition of MLS into three sub- [68]: Wallez et al. (2023), TreeSync: Authen-

ticated Group Management for Messaging
Layer Security

6 TreeKEM: Efficient continuous group key establishment 130

protocols, as depicted in Figure 6.1:

Figure 6.1: A Modular Treatment of
Messaging Layer Security: TreeSync,
TreeKEM, and TreeDEM

▶ TreeSync: a protocol that synchronizes the shared group state
across group members. The shared state includes the current group
membership and is structured as a tree, with each occupied leaf
corresponding to a member, and each internal node representing
a subgroup. TreeSync uses signatures and Merkle-tree style hash
computations to authenticate the initial group state provided to
a member and all subsequent changes to the state. It also ensures
that the tree data structure maintains an internal integrity invariant.
This authenticated, synchronized state is then passed to TreeKEM.

▶ TreeKEM: a protocol that allows each member to use its private keys
and the sequence of authenticated states provided by TreeSync to
derive a sequence of group keys, called epoch secrets (𝐾𝑛). TreeKEM
uses the tree structure to efficiently update the epoch secret; in the
best case, this requires only a logarithmic number of public key
encryptions and a single decryption at each recipient. Furthermore,
TreeKEM provides post-compromise security, and in particular,
security against members that have been removed.

▶ TreeDEM: a protocol that takes the epoch secret 𝐾𝑛 computed by
TreeKEM and uses it to derive message encryption keys for each
group member. These keys are then used to encrypt and decrypt
group messages so that only the current members can send or
receive them. After each message, the message encryption keys are
ratcheted forward to provide forward secrecy.

When compared with a two-party secure channel protocol like TLS,
TreeKEM corresponds to the handshake protocol, and TreeDEM cor-
responds to the record layer. Of course, the complexity of MLS is in
handling the dynamic group setting where the list of participants can
grow and change. While all three of these protocols are novel and deserve
close scrutiny via formal security analyses, in this paper, we will focus
on modeling and analyzing TreeKEM.

Security Analyses for Abstract Models of MLS. A key challenge
when analyzing a protocol standard is in finding the right level of
abstraction. The MLS standard is 132 pages long; it defines the high-level
cryptographic constructions and algorithms of TreeSync, TreeKEM, and
TreeDEM, but also defines the concrete tree data structure and operations
on it, the precise low-level formats of all messages and cryptographic
inputs, and handles the negotiation of versions and ciphersuites. Most

6 TreeKEM: Efficient continuous group key establishment 131

prior works on analyzing MLS ignore most of these low-level details and
instead model MLS as an abstract group key agreement protocol so that
its specification can fit in a few pages and a formal proof of its security
can be feasible.

Some works have analyzed the core key agreement of MLS with pen-and-
paper proofs: [137] defines a new security definition called continuous [137]: Alwen et al. (2020), Continuous

group key agreement with active securitygroup key agreement (CGKA) for protocols like TreeKEM; [114] presents a
[114]: Alwen et al. (2020), Security Anal-
ysis and Improvements for the IETF MLS
Standard for Group Messaging

proof that TreeKEM as specified in MLS draft 7 is a CGKA; [115] presents

[115]: Alwen et al. (2021), Modular Design
of Secure Group Messaging Protocols and
the Security of MLS

a modular proof of MLS draft 11, by decomposing it into a CGKA protocol
(essentially TreeSync+TreeKEM) and a stateful group AEAD protocol
(i.e. TreeDEM); [51] analyzes the security of MLS draft 12 against mali-

[51]: Alwen et al. (2022), On The Insider
Security of MLS

cious group members, by focusing on the integrity mechanisms within
TreeSync. Other pen-and-paper proofs focus on aspects of MLS outside
the core TreeKEM component: [52] analyzes the MLS key schedule, [130]

[52]: Brzuska et al. (2022), Security Anal-
ysis of the MLS Key Derivation
[130]: Cremers et al. (2021), The Complexi-
ties of Healing in Secure Group Messaging:
Why Cross-Group Effects Matter

studies post-compromise security for group messaging protocols like
MLS.

There have also been some attempts at using (semi-)automated tools to
obtain machine-checked symbolic security proofs for abstract models
of TreeKEM: [116] analyzes the original version of TreeKEM [113] using [116]: Bhargavan et al. (2019), Formal Mod-

els and Verified Protocols for Group Messag-
ing: Attacks and Proofs for IETF MLS
[113]: Bhargavan et al. (2018), TreeKEM:
Asynchronous Decentralized Key Manage-
ment for Large Dynamic Groups A proto-
col proposal for Messaging Layer Security
(MLS)

a symbolic model in F∗ [98] and compares its security with alternate

[98]: Swamy et al. (2016), Dependent Types
and Multi-Monadic Effects in F*

designs; [131] shows how a simplified version of TreeKEM can be analyzed

[131]: Cremers et al. (2023), Subterm-
Based Proof Techniques for Improving the
Automation and Scope of Security Protocol
Analysis

in the Tamarin prover for forward secrecy (but not post-compromise or
post-remove security).

Several of these works suggest improvements to MLS, some of which
were incorporated into the MLS standard before publication. Still other
works present and analyze new group messaging protocols inspired by
MLS, but we do not consider these works here. However, none of the
proofs in these works applies to the published MLS standard, since they
analyze abstract models that leave out many of the details and options
that make MLS complex.

Verifying an Executable Specification of TreeKEM. In contrast to the
above works, our work is directly inspired by the work of [68], which [68]: Wallez et al. (2023), TreeSync: Authen-

ticated Group Management for Messaging
Layer Security

presents a proof for a bit-level precise, executable, testable specification
of the TreeSync component of MLS. The advantage of working on such a
specification is that one can run it against protocol test vectors, or test
it for interoperability with other implementations, to gain confidence
that the model we are proving security for is not missing any important
protocol details.

Handling low-level details can be crucial for security. For example, none
of the papers on MLS cited above precisely model the signatures used in
MLS. Even the pen-and-paper security proof for MLS in [51] abstracts [51]: Alwen et al. (2022), On The Insider

Security of MLSaway from the formats of the signature inputs, which would have been
tedious to handle in a manual proof, and assumes that these signatures
cannot be confused for each other. As a consequence, this proof misses an
important signature ambiguity attack on MLS, which was subsequently
found in the machine-checked proof of TreeSync [68] which did model [68]: Wallez et al. (2023), TreeSync: Authen-

ticated Group Management for Messaging
Layer Security

all the low-level signature formats.

In this paper, we present an executable, testable, interoperable model
of TreeKEM and a security proof for this model using a symbolic proof
framework called DY∗ (the same methodology as [68]). Consequently, our
proof accounts for all the low-level details of the MLS standard, and our
confidentiality theorem for TreeKEM composes with the authentication
theorem for TreeSync in [68].

6 TreeKEM: Efficient continuous group key establishment 132

Contributions. We present the first machine-checked proof for the
TreeKEM component of the published MLS standard. Ours is also the
first proof for a bit-level precise, executable, interoperable specification
of TreeKEM, which can be seen as a reference implementation. Our
proof shows how to modularly compose the guarantees of TreeKEM and
TreeSync, and provides some important insights on key management
and erasure for MLS implementations and deployments. Finally, ours is
likely the first machine-checked symbolic security proof for group key
exchange in dynamic groups (supporting add, remove, and update), and
the first to establishing properties like post-compromise security in the
group setting.

Outline. We start with an informal, accessible description of TreeKEM
(§6.2); next, we show how to capture TreeKEM in formal language,
encoding its specification using the F∗ proof assistant (§6.3). Then, we
state the security properties we proved (§6.4), with a precise and extensive
discussion of potential paths to compromise, followed by insights about
our proof techniques (§6.5). Finally, we discuss our results and conclude
(§6.6).

6.2 The MLS TreeKEM Protocol

We now describe TreeKEM as specified by the MLS standard [21]. We [21]: Barnes et al. (2023), The Messaging
Layer Security (MLS) Protocolstart by describing the overall goals of TreeKEM (§6.2.1), then define

the two main mechanisms of TreeKEM: the use of a tree to produce a
fresh commit secret shared by the group, guaranteeing post-compromise
security and remove-security (§6.2.2), and key schedule that provides
forward secrecy and add-security (§6.2.3).

6.2.1 Goals of TreeKEM

The goal of TreeKEM is, at each epoch, to establish an epoch secret that
is known to exactly the participants currently in the group. This epoch
secret is then used in TreeDEM to derive the same message encryption
keys at each participant. The functionality provided by TreeKEM is
sometimes called continuous group key agreement [137]. [137]: Alwen et al. (2020), Continuous

group key agreement with active security

Design constraints. The initial design of group key establishment in
MLS was based around Asynchronous Ratcheting Trees [112] which [112]: Cohn-Gordon et al. (2018), On ends-

to-ends encryption: Asynchronous group
messaging with strong security guarantees

used a tree of Diffie-Hellman operations to enable efficient asymmetric
ratcheting for groups. TreeKEM [113] was proposed as a KEM-based more

[113]: Bhargavan et al. (2018), TreeKEM:
Asynchronous Decentralized Key Manage-
ment for Large Dynamic Groups A proto-
col proposal for Messaging Layer Security
(MLS)

efficient alternative to ART. The current version of TreeKEM in the MLS
standard is the culmination of multiple revisions and extensions since
these early designs. It aims to satisfy several constraints; in particular, the
protocol must i) handle dynamic groups (i.e. participants can join and
leave the group over time), ii) be asynchronous, (i.e. participants are not
required to always be online), iii) be efficient (i.e. scale better than linearly
on the number of participants) and iv) provide security properties like
key confidentiality, forward secrecy and post-compromise security. Goal
iv) is the main topic of study in this paper.

Additionally, TreeKEM makes certain assumptions about the design of the
overall system, which are captured in the MLS architecture document [55]. [55]: Beurdouche et al. (2025), The Mes-

saging Layer Security (MLS) ArchitectureNotably, TreeKEM relies on an untrusted Delivery Service, which is
tasked with receiving messages from individual group participants, and

6 TreeKEM: Efficient continuous group key establishment 133

broadcasting them back to all other group participants. In other words,
MLS is not a peer-to-peer service where messages are sent directly from
one participant to another.

TreeKEM Terminology. MLS is an asynchronous, distributed protocol.
The TreeKEM specification therefore distinguishes the construction
(locally, by a participant) of operations over the group (e.g. addition and
removal of participants), known as proposals; the bundling of possibly
many such operations into a commit; the application of this commit to
the group to reach the next epoch.

The matter of how competing concurrent commits (by two different
participants) are dealt with falls outside the scope of the MLS protocol;
this is a matter handled by the untrusted delivery service, which we
do not cover in the present paper. MLS assumes that each participant
receives a sequence of commits from the delivery service and attempts
to process them in order.

Upon processing a commit, the group enters a new epoch and TreeKEM
outputs an epoch secret for the group to use. In other words, each commit
does a round of key derivation which produces a fresh epoch secret:
intuitively, this means that should anything change with the group (the
membership, a member’s public key, etc.), then a new epoch secret will
be derived for the group.

Crucially, a commit may apply a path update operation on the internal
state of TreeKEM (explained in §6.2.2) and output a commit secret, which
is used in the computation of the next epoch secret (explained in §6.2.3).
Such path updates are mandatory except in add-only commits, a special
flavor of commit that does not contain a path update operation (we leave
the description of add-only commits to §6.2.3). We explain path updates
and commit secrets in detail in the remainder of this section.

An additional element that flows into the construction of the epoch secret
is the group context, which summarizes information about the current
state of the group – as we will see later, this is important for the security
proofs.

Security properties, informally. TreeKEM aims to offer several security
guarantees on the epoch secret:

▶ add security (i.e. new participants must not know epoch secrets
that predate their joining the group),

▶ remove security (i.e. removed participants must not know epoch
secrets after they have left the group),

▶ forward secrecy (i.e. the compromise of a participant by an attacker
must not reveal past epoch secrets) and

▶ post-compromise security (i.e. the epoch secret can eventually heal
from a past compromise).

These properties will be more formally studied in §6.4.4. Suffices to
say, for now, that forward secrecy and add security are achieved by
judicious key erasure and that post-compromise security and remove
security are achieved with by sharing fresh randomness (through the path
update operation). In the rest of this section, we describe the state and
mechanisms of the TreeKEM protocol and informally explain how it
achieves these desired security guarantees.

6 TreeKEM: Efficient continuous group key establishment 134

𝑎0 𝑏0 𝑐0 𝑑0 𝑒0 𝑓0 𝑔0 ℎ0

𝑡0 𝑣0 𝑥0 𝑧0

𝑢0 𝑦0

𝑤0

(a) An initial TreeKEM state.

𝑎1 𝑏0 𝑐0 𝑑0 𝑒0 𝑓0 𝑔0 ℎ0

𝑡1 𝑣0 𝑥0 𝑧0

𝑢1 𝑦0

𝑤1

(b) A issues a path update and commits

𝑎1 𝑏0 𝑐0 𝑑0 𝑒0 𝑓0 𝑔0 ℎ0

𝑡1 𝑣0 𝑥0 𝑧0

𝑢1 𝑦0

𝑤1

(c) B and G are removed

𝑎2 𝑏0 𝑐0 𝑑0 𝑒0 𝑓0 𝑔0 ℎ0

𝑡1 𝑣0 𝑥0 𝑧0

𝑢2 𝑦0

𝑤2

(d) A issues a path update and commits

𝑎2 𝑏′1 𝑐0 𝑑0 𝑒0 𝑓0 𝑔0 ℎ0

𝑡1 𝑣0 𝑥0 𝑧0

𝑢𝑏
′

2
𝑦0

𝑤𝑏′
2

(e) B′ is added

𝑎2 𝑏′1 𝑐0 𝑑0 𝑒1 𝑓0 𝑔0 ℎ0

𝑡1 𝑣0 𝑥1 𝑧0

𝑢𝑏
′

2
𝑦1

𝑤3

(f) E issues a path update and commits

Figure 6.2: Evolution of a group’s tree in TreeKEM. Nodes in bold are the nodes updated by the current operation, plain arrow ()
indicates hashing the path secret and dashed arrow () indicates encrypting the path secret (the cryptographic operations are detailed
in Figure 6.3).

ps𝑎

ps𝑡

ps𝑢

ps𝑤

cs

ns𝑎

ns𝑡

ns𝑢

ns𝑤

xpd

xpd

xpd

xpd

xpd

xpd

xpd

xpd

dkp

dkp

dkp

dkp

pk𝑎1
sk𝑎1

pk𝑡1
sk𝑡1

pk𝑢1
sk𝑢1

pk𝑤1
sk𝑤1

c𝑏

c𝑣

c𝑦

enc(pk𝑏0)

dec(sk𝑏0)

enc(pk𝑣0)

dec(sk𝑣0)

enc(pk𝑦0)

dec(sk𝑦0)

Figure 6.3: Cryptographic operations
performed during A’s path update in
Figure 6.2b. xpd is HKDF.Expand, dkp is
HPKE.DeriveKeyPair, enc is HPKE.Seal,
dec is HPKE.Open, ps is “path secret”,
ns is “node secret”, cs is “commit secret”,
c is “ciphertext”.

6 TreeKEM: Efficient continuous group key establishment 135

6.2.2 A Tree for Group Key Agreement

Throughout this section, we will use uppercase letters to denote nodes
of TreeKEM’s tree (A to H for leaves and T to Z for internal nodes) and
lowercase letters to denote the content stored in these nodes during the
lifetime of the group (e.g. 𝑎0, 𝑎1, etc).

In TreeKEM, group participants are arranged in the leaves of a complete
binary tree, as depicted in Figure 6.2a (nodes A to H). Each node contains
a public-key encryption keypair, whose secret key is known by (and only
by) the participants in the subtree rooted at that node (e.g. the secret key
of 𝑣0 is known to 𝑐0 and 𝑑0, and the secret key of the root 𝑤0 is known to
every participant in the group). This property is called the tree invariant
in the MLS standard [21]. [21]: Barnes et al. (2023), The Messaging

Layer Security (MLS) Protocol
By relying on the tree invariant, we can efficiently encrypt data to specific
sub-groups in the tree. For example, we can perform one encryption to 𝑦0
instead of separate encryptions to 𝑒0, 𝑓0, 𝑔0 and ℎ0. This optimization is
the essence of TreeKEM; we will see how it permits the efficient creation
of path updates, i.e. refreshing secrets from a leaf node to the root without
modifying every node in the tree.

For encryption, TreeKEM relies on the Hybrid Public Key Encryption
(HPKE) construction [69], which uses a key encapsulation mechanism [69]: Barnes et al. (2022), RFC 9180: Hy-

brid public key encryption(KEM), a key derivation function (HKDF), and an authenticated encryp-
tion (AEAD) algorithm to build a public-key encryption scheme that
provides integrity for the plaintext and for additional data.

We now describe how the group evolves through a series of updates
depicted in Figure 6.2, and explain how each tree modification preserves
the tree invariant.

Path update. In Figure 6.2b (and more precisely in Figure 6.3), A wants to
recover from a potential compromise and benefit from post-compromise
security properties of TreeKEM. Hence, it updates any secret (potentially
compromised) it knows in the tree. To do so, A updates the HPKE
keypairs of the nodes between its leaf and the root (i.e. of the nodes A, T,
U, W, shown in bold in Figure 6.2b), while ensuring the new secret keys
are known by participants in the corresponding subtree (e.g. the secret
key of 𝑢1 is transmitted to 𝑏0, 𝑐0 and 𝑑0), and issues a new commit secret
to the group.

Here is how the new secrets are generated. A generates an initial path
secret ps𝑎 (at the bottom of Figure 6.3), from which the new commit
secret and all new keypairs will be derived. Here is how it happens: each
updated node is associated with a path secret (ps□ in Figure 6.3), from
which two secrets are derived: the node secret for the same node (ns□ in
Figure 6.3), and the path secret for the node directly above (depicted as

in Figure 6.2b). The node secret is used to derive a new HPKE keypair
(pk□, sk□ in Figure 6.3). The commit secret (cs in Figure 6.3) is the path
secret corresponding to the node that would be above the root.

Here is how the new secrets are transmitted to the participants that
should know them (e.g. 𝑏0 must learn the new secret key of 𝑡1). The path
secret of a node can be used to compute the secret keys of this node and all
the nodes between them and the root, and hence can be used to compute
the commit secret. Therefore, it is sufficient for every participant to obtain
the path secret of the least common ancestor between them and A (the
updater). We could use this criterion to encrypt one path secret to each
group participant: this requires a linear number of encryptions in the size

6 TreeKEM: Efficient continuous group key establishment 136

of the group. We can instead do a logarithmic number of encryptions,
by relying on the fact that group participants that obtain a given path
secret are arranged in a subtree, and benefit from the tree invariant to do
only one encryption to this subtree root. Hence it is sufficient to encrypt
ps𝑡 to 𝑏0, ps𝑢 to 𝑣0 and ps𝑤 to 𝑦0 (depicted as in Figure 6.2b). The
ciphertexts obtained (c□ in Figure 6.3) and the new public keys are then
sent to every group participant through the Delivery Service.

Removing participants. In Figure 6.2c, B and G are removed from the
group. This action is performed using the concept of blank node. To remove
B and G, the contents of their leaf nodes are erased: their leaf nodes
are now blank. Without further action, this breaks the tree invariant:
for example, B knows 𝑡1 although it is not in its subtree anymore. As a
drastic solution to restore the tree invariant, any node whose secret value
is known by B (such as 𝑡1) is also blanked, and the same is done for G
(the nodes that were blanked are shown in bold in Figure 6.2c).

In Figure 6.2d, A issues a path update to create a commit secret known
neither by B nor G, thereby obtaining security after their removal. Blank
nodes make this operation more complex than in Figure 6.2b, we now
describe how a path update is performed in this situation and introduce
two new concepts: filtered nodes and resolution.

Path update & filtered nodes. In Figure 6.2d, A issues a path update to
obtain security back after the removal of B and G. It happens similarly as
in Figure 6.2b and Figure 6.3, with one difference about the path secret of
T. In Figure 6.2b, the path secret of T is encrypted to B, but in Figure 6.2d,
B is not here because it was removed in Figure 6.2c. There is no c𝑏 as
in Figure 6.3, hence computing a path secret for T does not achieve any
purpose. The node T is therefore filtered: it stays blank, and what should
have been its path secret is now the path secret of U, or graphically, the
path-secret arrow () goes directly from A to U.

This optimization ensures that from the viewpoint of the tree invariant,
there are no redundant non-blank nodes in the tree. Indeed, if during
a path update, a bigger subtree (e.g. rooted at T) covers the same set of
participants as a smaller subtree (e.g. rooted at A), because of the tree
invariant their secret keys will be known by the same set of participants
(e.g. {A}) hence the bigger subtree (e.g. rooted T) is redundant and its
root (e.g. T) is filtered.

This filtering happens each time a bigger subtree covers the same set of
participants as a smaller subtree. For example, if C and D were blanked,
then the node U would also be filtered, and what should have been the
path secret of T would become the path secret of W.

Path update & resolution. In Figure 6.2d (again), A issues a path update
to obtain security back after the removal of B and G. It happens similarly
as in Figure 6.2b and Figure 6.3, with one difference about the encryption
of the path secret of W. In Figure 6.2b, the path secret of W is encrypted
to Y, but in Figure 6.2d, Y is blank after the removal of G in Figure 6.2c.
Instead, we encrypt ps𝑤 with the smallest set of public keys such that all
participants in the subtree rooted at Y can decrypt, here, 𝑥0 and ℎ0. This
set of public keys is called the resolution of the node Y. In the simplest
case (as it happened in Figure 6.2b), the resolution of a node is the public
key at that node (when it is not blank). In the other cases, the resolution
of a node is computed by descending in the tree until encountering a
non-blank node and collecting the public keys of all these non-blank

6 TreeKEM: Efficient continuous group key establishment 137

is𝑛

cs𝑛 gc𝑛

js𝑛

psk gc𝑛

ws𝑛

es𝑛

. . .

is𝑛+1

ct𝑛

gc𝑛gi𝑛

xtr xpd xtr xpd

xpd

xpd

xpd

sig

aenc(𝑠𝑘𝑖𝑛𝑖𝑡 ,□) senc(□,□)

Figure 6.4: Cryptographic operations
performed in the key schedule of
TreeKEM (§6.2.3) and Welcome (§6.2.4).
xtr is HKDF.Extract, xpd is HKDF.Expand,
aenc is HPKE.Seal, senc is AEAD.Seal,
sig is signature, is is init secret, cs is com-
mit secret (see §6.2.2), gc is group con-
text (appears 3 times), js is joiner secret,
psk is pre-shared key, es is epoch secret
(the output of TreeKEM), ws is welcome
secret. gi is group info (see §6.2.4), ct is
confirmation tag. In “. . . ” are the various
keys derived from TreeKEM. Decryption
functions of the Welcome process (§6.2.4)
are left implicit to simplify the diagram.

nodes. This is how we find in Figure 6.2d that the resolution of Y is the
set of public keys {𝑥0 , ℎ0}.

Adding participants. In Figure 6.2e, B′ is added to the group. To perform
this operation, we place the keypair of B′ in the left-most blank leaf. If
there were no such blank leaf, we would extend the tree to the right,
adding a new root whose left child is the current tree and right child is
an all-blank tree, thereby doubling the number of leaf nodes and creating
new blank leaves.

This operation breaks the tree invariant, which specifies that the private
key of 𝑢2 is known by (and only by) 𝑎2, 𝑏′1, 𝑐0 and 𝑑0. This is not true,
because 𝑏′1 doesn’t know the private key of 𝑢2 which was generated by
the path update in Figure 6.2d when 𝑏′1 was not in the tree at that time.

To account for this fact, we keep track that 𝑏′1 doesn’t know the private
key of 𝑢2: we say that 𝑏′1 is unmerged for 𝑢2. We do this bookkeeping
for all nodes above 𝑏′1, and note that 𝑏′1 is also unmerged for 𝑤2. With
this new concept, we now reveal the complete formulation of the tree
invariant: the secret key of each non-blank node is known by (and only
by) the merged participants in the subtree rooted at that node.

Path update & unmerged leaves. In Figure 6.2f, E issues a path update. It
happens similarly to Figure 6.2b and Figure 6.3, with one difference about
the encryption of the path secret of W: it is encrypted to the resolution
of 𝑢2 which is the set {𝑢2 , 𝑏

′
1}. Indeed, recall that the resolution of 𝑢2 is

the smallest set of keys to cover all participants in the subtree of U, and
𝑏′1 is unmerged for 𝑢2, meaning that it does not know the private key
at 𝑢2. Hence, the resolution of 𝑢2 must include the public key of all its
unmerged leaves.

In Figure 6.2e, 𝑏′1 was unmerged for 𝑤2. Now, the path secret of 𝑤3 has
been encrypted to 𝑏′1, hence 𝑏′1 is not unmerged for 𝑤3: a path update
clears unmerged leaves on the updated nodes.

6.2.3 The MLS Key Schedule

Intuitively, the tree component of TreeKEM provides post-compromise
security (because secrets are refreshed upon a path update), and remove
security (because a new commit secret is derived after removing a partic-
ipant). We leave a precise characterization of these security guarantees
to §6.4, and continue our tour of TreeKEM, now describing the second
component of TreeKEM: its key schedule.

6 TreeKEM: Efficient continuous group key establishment 138

Recall that the path secret above the root of the tree is the commit
secret (§6.2.2). This secret has add-security, remove-security and post-
compromise security. We can deduce this from the tree invariant: indeed,
the commit secret is as secret as the root node secret key, hence is known
by (and only by) participants in the tree, because after a path update the
root has no unmerged leaves. However, this ensures only a weak form
of forward secrecy: for example, compromising ℎ0 in Figure 6.2f would
allow the attacker to decrypt the path secret of 𝑤2 in Figure 6.2d (because
it is encrypted with a key now known by the attacker and we suppose
the attacker knows the ciphertexts), hence compute the commit secret of
this previous epoch.

Strong forward secrecy. Therefore, the commit secret cannot be used
directly for our purposes. We now explain how to derive the epoch secret
(§6.2.1) from the commit secret; the epoch secret has the guarantees we
desire, such as strong forward secrecy: a compromise of a participant
should not reveal past epoch secrets. To obtain strong forward secrecy,
the commit secret is injected into a key schedule from which the epoch
secret is computed. The key schedule inherits all security properties of
the commit secret, and further provides add-security and strong forward
secrecy (independently of the commit secret security) because previous
secrets can be erased upon key derivation. The key schedule is depicted
in Figure 6.4 and is explained below. It is structured as a loop, we present
the keys in the order they are derived, starting with the epoch secret and
ending with the epoch secret of the next epoch.

Key schedule. The epoch secret (es𝑛 in Figure 6.4) is the main key
established by TreeKEM, which is used to derive the keys used by
TreeDEM (§6.2.1). It is also used to derive the next init secret, which serves
to initialize the next epoch. The init secret (is𝑛 and is𝑛+1 in Figure 6.4)
is combined with the commit secret and the group context to obtain the
joiner secret. The group context is a summary of the current group state,
in particular, it contains (in hashed form) the initialization keys (see §6.2.4)
with which the joiner secret is encrypted (see below and §6.2.4), this
will be crucial in the security proof in §6.5.3. The joiner secret (js𝑛 in
Figure 6.4) is encrypted with the initialization key of new participants
(or “joiners”) in the group. (We explain initialization keys in §6.2.4.) It
is then combined with the pre-shared keys and the group context to
obtain the epoch secret (thereby closing the keyschedule loop), and is also
used to derive the welcome secret. The welcome secret (ws𝑛 in Figure 6.4)
produces a symmetric key that is used to encrypt the group context to
new participants (as we will see in §6.2.4). Only a minimal amount of
information is encrypted with the initialization key; the information that
is the same for every joiner (such as the group context) is encrypted
symmetrically via the welcome secret.

Add-only commits. Because the key schedule provides forward secrecy
and add-security, when the set of group proposals since the last epoch only
contains participant additions (hence contains no participant removal), it
is not necessary to issue a path update to obtain a commit secret: instead,
we can move to the next epoch using an empty commit secret. Doing
such “add-only commits” still provides forward secrecy and add-security
(because we do a round of key schedule) and remove-security (because
we only do that when there were no removals). However, this doesn’t
provide post-compromise security (because no new randomness was
injected in the key schedule), hence shouldn’t be used when we want to
recover from a potential compromise.

6 TreeKEM: Efficient continuous group key establishment 139

6.2.4 Welcoming New Group Members

We briefly mentioned how new participants join a group in §6.2.2 and
§6.2.3, we now describe in depth how it happens. These explanations
support the description of our security proofs in §6.5.

Key packages. Because participants are added asynchronously, they
publish key packages on the Delivery Service, which can be used by any
group member to add them to an MLS group. A key package contains a
leaf node that is added to the tree (§6.2.2), and an initialization key (𝑠𝑘𝑖𝑛𝑖𝑡
in Figure 6.4) that is used to encrypt the joiner secret (js𝑛 in Figure 6.4),
which bootstraps the key schedule. Notice that as we have described
things, two asymmetric encryptions are required to add a new participant
to the group: the joiner secret is encrypted with the initialization key (in
§6.2.3), and the path secret is encrypted with the leaf node key (described
in §6.2.2, but omitted from Figure 6.4). In reality, TreeKEM features an
optimization and performs only one asymmetric encryption: both the
joiner secret and the path secret are encrypted with the initialization
key, in a package called encrypted group secret – this is the aenc node in
Figure 6.4. Our TreeKEM API (§6.3.2) is designed to support this behavior,
and the fact that the path secret is encrypted with the initialization key
and not the leaf node key will also need to be taken into account in the
security proof in §6.5.4.

Group info. To join a messaging group, it is not sufficient to know the
group secrets. For example, the TreeKEM protocol (§6.2.2) requires each
participant to know the tree of public keys, and the key schedule requires
each participant to know the group context which summarizes the group
state (gc𝑛 in Figure 6.4). The tree may come from an untrusted source
(e.g. the Delivery Service), and the group context is packaged in the
group info (gi𝑛 in Figure 6.4), which also contains a value derived from
the current epoch secret, called confirmation tag (ct𝑛 in Figure 6.4). The
group info is further signed by a group participant, this will be crucial
in the security proofs for the Welcome process (§6.5.2). Although the
group info contains in principle only public data, it is opportunistically
encrypted with the welcome secret (ws𝑛 in Figure 6.4, see §6.2.3).

6.3 An executable specification of TreeKEM

In §6.2 we have explained at a high-level the inner workings of the
TreeKEM protocol. We now describe how we specify TreeKEM in F∗ [98], a [98]: Swamy et al. (2016), Dependent Types

and Multi-Monadic Effects in F*dependently-typed functional programming language. The specification
is byte-level precise, passes the published test-vectors [138], and is [138]: (n.d.), MLS test vectors
used in a broader MLS specification that interoperates with other MLS
implementations. Although the explanations in §6.2 are from a global
viewpoint, we here specify the local computations performed by one
TreeKEM participant.

6.3.1 TreeKEM’s Tree in F
∗

Earlier work [68] modularizes MLS into three sub-protocols (TreeSync, [68]: Wallez et al. (2023), TreeSync: Authen-
ticated Group Management for Messaging
Layer Security

TreeKEM and TreeDEM) and proves that the TreeSync sub-protocol
authenticates all of the TreeKEM state. Our specification is based on
their work, and in particular, we reuse their definition of trees to define
TreeKEM trees as follows:

6 TreeKEM: Efficient continuous group key establishment 140

1 type treekem_leaf = {
2 public_key: bytes; }
3

4 type treekem_node = {
5 public_key: bytes;
6 unmerged_leaves: list nat; }
7

8 type treekem_public =
9 tree (option treekem_leaf) (option treekem_node)
10

11 type treekem_private = path (bytes) (option bytes)

To each node is associated an HPKE keypair (§6.2.2); since we are
implementing TreeKEM from the (local) point of view of a participant,
we know the public HPKE keys of all participants; but we only know
the private keys on the path from the leaf (us) to the root. Therefore,
tree nodes and leaves contain public keys only (lines 2 and 5), and
internal nodes additionally contain the list of unmerged leaves (line 6).
An additional data structure, named treekem_private (line 11) contains the
private keys known to us. Because nodes can be blank, we use the option
type whose empty value represent blank nodes, except for the private
HPKE key for leaf nodes (second argument of path line 11), because it
points to our leaf that is non-blank.

We give an example of code that decrypts the path secret in Figure 6.5. This
function searches for the least common ancestor between the updater and
us (e.g. node U for participant C in Figure 6.2b), finds which ciphertext
we must decrypt depending on our position in the resolution (e.g. second
ciphertext for participant H in Figure 6.2d) and find for which private key
it was encrypted (e.g. private key of 𝑢2 for participant A in Figure 6.2f, but
private key of 𝑏′1 for B’ because it is unmerged for U). We remark that this
function exhibits many different behaviors depending on the participant
executing it. This level of complexity, combined with the asymmetry
between the sets of operations performed by different participants, is
exactly why a mechanized proof of security is, in our opinion, necessary
to trust that MLS provides the expected security guarantees.

6.3.2 TreeKEM API

Users of TreeKEM are not expected to use low-level functions as shown in
Figure 6.5. Instead, they use a high-level API that handles modifications
to both the public state (the tree of public keys) and the private state
(our path of private keys from our leaf to the root). We structure our
F∗ code to implement a high-level API that only exposes functions to
process proposals and commits, and to generate commits. Note that
the group management functions (add, remove, update) are part of the
TreeSync API and are orthogonal to TreeKEM. We focus on the functions
for TreeKEM commits as they are the most interesting.

Processing a commit. Each participant needs to process two kinds of
commits: add-only commits (without path update), and full commits
(§6.2.3). For this reason, we process commits in two steps: first, we update
our state and compute the commit secret, second, we perform a round of
key schedule. Furthermore, the first step comes in two flavors, one for
each commit type.

6 TreeKEM: Efficient continuous group key establishment 141

val decrypt_path_secret:
my_li:leaf_index→ upd_li:leaf_index {my_li ≠ upd_li}→
treekem_public→ treekem_private→ update_path→
bytes

let rec decrypt_path_secret my_li upd_li t p_priv p_upd =
if leaf_index_same_side t my_li upd_li then (
// The update path and the path to our leaf are on the same
// side of the tree. Recurse in that subtree.
let (child, _) = get_child_sibling t upd_li in
decrypt_path_secret child (next p_priv) (next p_upd)

) else (
// We are at the least common ancestor between us and the
// updater. Obtain the path secret by decryption.
let ciphertext_list = get_data p_upd in
let (_, sibling) = get_child_sibling t upd_li in
// Find our ciphertext by descending in the tree until we find
// a non-blank node, and recover the index in the resolution.
let my_index = find_resolution_index sibling my_li in
let my_ciphertext = ciphertext_list[my_index] in
// Find the corresponding decryption key. This involves
// checking whether we were encrypted to as an unmerged leaf.
let private_key = find_private_key sibling (next p_priv) in
// With all this data gathered, we can now decrypt.
decrypt private_key my_ciphertext

)
Figure 6.5: Implementation of the
decrypt_path_secret function, simplified.

val prepare_process_full_commit:
treekem_state→ path_update→ group_context→
result pending_process_commit

val prepare_process_add_only_commit:
treekem_state→
result pending_process_commit

val finalize_process_commit:
pending_process_commit→
pre_shared_keys→ group_context→
result (treekem_state & bytes)

These functions might fail, as indicated by the fact that return values are
wrapped in a result. Reasons for failure include failed decryptions, or
malformed path updates – the error case of result describes the nature of
the error so that the client can act accordingly.

Creating a commit. Just like processing commits, creating new commits
happens in two steps. In the case of a full commit, the first step, which
handles the refresh of the tree and the commit secret, must itself be
decomposed into two sub-steps, below.

6 TreeKEM: Efficient continuous group key establishment 142

val prepare_create_commit:
treekem_state→ entropy→
result (pending_create_commit & pre_path)

val continue_create_commit:
pending_create_commit→
added_leaves:list nat→ group_context →
entropy→
result (pending_create_commit_2 & path & list bytes)

The first function generates fresh path secrets and outputs the new public
keys (in pre_path), for nodes along the affected path. The user can feed
these new public keys into TreeSync to compute the new signature of our
leaf node (that authenticates these new public keys) and compute a hash
of the new tree – as mentioned earlier, we treat TreeSync as a signature
primitive for the tree itself. This new tree hash is used within the group
context, which is itself used when encrypting path secrets: this is what
the second function does. It returns a pending commit creation object,
an updated path, and the path secret that will be sent over to the joiners
along with their welcome package to invite them into the group.

6.3.3 Execution model

One detail we omitted from our presentation (for conciseness and read-
ability) is that all of those specification-level functions are actually
parametric over the type of bytes, and over operations that operate on
such bytes. We do so efficiently using the type class mechanism of F∗.

This allows us to instantiate the specification either with concrete bytes
(i.e. bitstrings) or with abstract symbolic bytes that are used in DY∗ [43] [43]: Bhargavan et al. (2021), DY*: A Mod-

ular Symbolic Verification Framework for
Executable Cryptographic Protocol Code

proofs (see §6.4.1). The former allows us to show that we are byte-for-
byte conformant with the MLS standard, by running our specification
(via F∗’s extraction mechanism to OCaml) against test vectors and other
implementations for interoperability testing. The latter, naturally, allows
us to conduct our proof of security, in the next section.

Furthermore, we point out that our specification is free of any side effects:
there is no memory (we never use a pointer or reference type), meaning
the functions take, and return, a state, rather than modifying a global
memory. Should some IO action (or, effect) need to happen, it suffices for
the function to return, e.g., a list of messages to be effectively sent on the
network.

To execute our specification and test it for interoperability, we wrote some
glue code to allow our pure specification to interact with the effectful
libraries such as networking. For proofs, we embed our specification in
the trace-based semantics of DY∗, as explained next.

6.4 A security theorem for TreeKEM

6.4.1 Background on DY
∗

DY∗ [43] is an F∗ [98] framework to state and prove security properties of [43]: Bhargavan et al. (2021), DY*: A Mod-
ular Symbolic Verification Framework for
Executable Cryptographic Protocol Code
[98]: Swamy et al. (2016), Dependent Types
and Multi-Monadic Effects in F*

cryptographic protocols. DY∗ uses a symbolic trace-based runtime model,
where various participants can participate in a cryptographic protocol by
calling cryptographic functions, generating random bytestrings, storing

6 TreeKEM: Efficient continuous group key establishment 143

local state, logging events that indicate progress in the protocol execution,
and sending messages on the network.

Threat model. DY∗ considers an active attacker that controls the network
(hence can intercept, replay, or modify messages) and can dynamically
compromise participants to learn the content of their private state.

Cryptographic assumptions. DY∗ abstracts cryptographic functions
using the Dolev-Yao (or symbolic) model [56]. The symbolic model treats [56]: Dolev et al. (1983), On the security of

public key protocolscryptographic functions as being perfect: for example, when sending a
ciphertext on the network, the attacker learns nothing about the associated
plaintext unless the attacker knows the corresponding decryption key
(e.g. by compromising a participant), in which case they also learn the
content of the plaintext.

Security theorems. DY∗ users can express security properties as reachabil-
ity properties, meaning that all traces reachable through protocol execution
satisfy some security property (specific to each protocol). An example
of trace property that encodes confidentiality would be: if a participant
finishes the key exchange protocol and the attacker knows the exchanged
key, then the attacker must have compromised one of the participants
involved in the key exchange.

Security proofs. DY∗ relies on its user to provide a trace invariant,
then prove that each protocol step preserves the invariant (hence any
reachable trace satisfies the trace invariant) and prove that the trace
invariant implies the desired security properties. Note that the trace
invariants are not trusted, they are only a proof technique to prove
properties on all reachable traces. To define the trace invariant, DY∗
provides two tools. The first tool, related to confidentiality, are security
labels, which encode an over-approximation of the compromises for an
attacker to know some given bytestring. Hence, if the attacker knows
some bytestring (e.g. the private signature key of participant 𝑝) then this
bytestring’s label ensures that the attacker must have compromised some
particular state (e.g. the state where participant 𝑝 stores their private
signature keys). Some labels are more secure than others, in which case
we say the less secure label flows to the more secure one (which we
note 𝑙1 ≳ 𝑙2). Security labels will be the main workhorse of security
proofs for TreeKEM (§6.5). The second tool, related to authenticity, are
cryptographic predicates: for example, every participant will only sign
messages that satisfy the (protocol-specific) signature predicate. When a
signature verifies, we can then deduce that it was either computed by
an honest participant, in which case the signature predicate holds on
the message, or that it was computed by the attacker, in which case they
know the signature key, hence must have performed some compromise
depicted by the signature key security label. Signature predicates will
also be a workhorse for security proofs in TreeKEM, mostly through the
work of TreeSync [68]. [68]: Wallez et al. (2023), TreeSync: Authen-

ticated Group Management for Messaging
Layer Security

6.4.2 Preliminaries

History of a group. In our security theorem, we consider everything from
the viewpoint of a participant 𝑝 belonging to a TreeKEM group 𝐺. This
participant has seen the group evolve over time, resulting in several epoch
secrets being established throughout the group’s lifetime. At each epoch,
participant 𝑝 logs an event containing the information on their local group

6 TreeKEM: Efficient continuous group key establishment 144

state at this epoch: the epoch secret 𝐾𝑛 , the group roster p(𝑛)1 , . . . , p(𝑛)𝑚
(containing 𝑝), the joiners j(𝑛)1 , . . . , j(𝑛)𝑞 (contained in the group roster), the
tree 𝑇𝑛 (whose leaves form the group roster), and whether the commit is
add-only. For example in Figure 6.2, assuming we start at epoch 0, we
have p(0)1 = 𝑎0 and p(1)1 = 𝑎1, however, p(0)5 = p(1)5 = p(2)5 = 𝑒0 and p(3)5 = 𝑒1.
Participants that didn’t update since they joined have a special tag in
𝑇𝑛 . When that is the case, we write stale𝑛(𝑝′); for example in Figure 6.2f,
p(3)2 = 𝑏′1 and stale𝑛(p(3)2). Naturally, joiners of this epoch didn’t update
since they joined, so stale𝑛(j(𝑛)𝑖). If we did not create the group, we have
been invited in it by participant 𝑝𝑖𝑛𝑣 at epoch 𝑛0. Furthermore participant
𝑝 records the time at which they verify signatures: we write T(p(𝑛)

𝑖
) the

time of verification of the signature of leaf node of p(𝑛)
𝑖

, and T(j(𝑛)
𝑖
) the

time of verification of the signature of key package of j(𝑛)
𝑖

.

State storage. We consider a fine-grained model, where different parts
of the state may be compromised independently. For instance, to account
for a deployment that may use higher-security storage (e.g. HSMs) to
store (long-term) signature keys, we can let the private node keys stored
by a participant be compromised, without necessarily compromising the
signature keys. Furthermore, we consider that different signature keys
can themselves be compromised independently, just like initialization
keys and epoch secrets. However, we consider that all nodes private
keys are compromised together, since compromising one reveals all node
private keys on the path from the compromised participant to the root.

State identifiers. We write 𝐾𝑛@𝑝 to identify the state of participant 𝑝
that stores the epoch secret 𝐾𝑛 of group 𝐺 at epoch 𝑛. We write Sig(p(𝑛)

𝑖
)

to identify the state that stores the signature key of p(𝑛)
𝑖

. We write Init(j(𝑛)
𝑖
)

to identify the state that stores the initialization key of j(𝑛)
𝑖

. We write
Node(p(𝑛)

𝑖
) to identify the state that stores the node keys of p(𝑛)

𝑖
for

the current version of p(𝑛)
𝑖

. For example in Figure 6.2, p(2)5 = 𝑒0 hence
Node(p(2)5) corresponds to the node keys of {𝑒0 , 𝑥0 , 𝑦0 , 𝑤0 , 𝑤1 , 𝑤2}, while
Node(p(3)5) corresponds to the node keys of {𝑒1 , 𝑥1 , 𝑦1 , 𝑤3}.

Notations. We write Att𝑡(𝑏)when the attacker knows the bytestring 𝑏 at
time 𝑡. We write Compromise𝑡(𝑆)when the attacker has compromised
the state identified by 𝑆 before time 𝑡.

6.4.3 Security properties

We now describe the security properties we have proved on TreeKEM.
We state confidentiality as a trace property: if the attacker knows some
epoch secret, then some set of states must have been compromised at
some time in the past. In turn, we will see in §6.4.4 that this trace property
implies the desired security guarantees of TreeKEM, such as add-security,
remove-security, forward secrecy and post-compromise security (see
§6.2.1). For the purpose of stating security goals in this paper, we assume
that some state stores the epoch secret, but in our code, this secret is never
actually stored since it would break forward secrecy of TreeDEM.

We consider three scenarios: in the first scenario, we consider a participant
in a group that has moved into a new epoch, in the second scenario, we
consider a participant that has just joined a group, in the third scenario, we

6 TreeKEM: Efficient continuous group key establishment 145

consider a participant that has just created a group. These three scenarios
cover all that may happen within an MLS group; indeed, advancing
an epoch in the first scenario is done via a commit that may contain
any number of add, remove, or other operations, and optionally a path
update. These three scenarios come with different security guarantees.

Confidentiality theorem for new epochs. Suppose a participant 𝑝 is in a
group 𝐺 at epoch 𝑛 with epoch secret 𝐾𝑛 , participants p(𝑛)

𝑖
, PSKs psks𝑛

and joiners j(𝑛)
𝑖

. If Att𝑡(𝐾𝑛), then one of the following cases hold:

(1) ∃𝑖.Compromise𝑡(𝐾𝑛@p(𝑛)
𝑖
): the attacker has compromised before 𝑡

the state containing the epoch secret of one of the participants p(𝑛)
𝑖

in the current group.
(2) ∃𝑖.Compromise𝑡(Init(j(𝑛)

𝑖
)) and Att𝑡(psks𝑛): the attacker has com-

promised before 𝑡 the initialization key used to invite the joiner j(𝑛)
𝑖

into the group at epoch 𝑛.
(3) ∃𝑖.CompromiseT(j(𝑛)

𝑖
)(Sig(j(𝑛)

𝑖
)) and Att𝑡(psks𝑛): the attacker has

compromised the signature key of one of the joiners j(𝑛)
𝑖

in the
group at epoch 𝑛, namely the one that signed their initialization
key. In that case, the compromise must have happened before we
checked their key package signature. This is a variant of case (2)
where the attacker is active.

(4) Att𝑡(𝐾𝑛−1) and add-only𝑛 and Att𝑡(psks𝑛): the attacker knows the
previous epoch secret, and the commit that led to epoch 𝑛 is an
add-only commit (as explained in §6.2.3).

(5) Att𝑡(𝐾𝑛−1) and ∃𝑖.Compromise𝑡(Node(p(𝑛)
𝑖
)) and Att𝑡(psks𝑛): the

attacker knows the previous epoch secret, and has compromised
before 𝑡 the node keys stored by a participant p(𝑛)

𝑖
of the current

group after they last issued a path update.
(6) Att𝑡(𝐾𝑛−1) and ∃𝑖.CompromiseT(p(𝑛)

𝑖
)(Sig(p(𝑛)

𝑖
)) and Att𝑡(psks𝑛):

the attacker knows the previous epoch secret, and has compro-
mised the signature key of a participant of the current group p(𝑛)

𝑖
,

namely the one that signs their leaf node is the tree. In that case,
the compromise must have happened before we checked their leaf
node signature. This is a variant of case (5) where the attacker is
active.

(7) Att𝑡(𝐾𝑛−1) and ∃𝑖.Compromise𝑡(Init(p(𝑛)
𝑖
)) and stale𝑛(p(𝑛)𝑖) and

Att𝑡(psks𝑛): the attacker knows the previous epoch secret, and has
compromised before 𝑡 the initialization keys stored by a stale par-
ticipant p(𝑛)

𝑖
of the current group. This possibility of compromise

exists because the path secret is encrypted using the initialization
keys of joiners. Note that 𝑝 might not know what precise initial-
ization key was compromised – it might be that 𝑝 joined after p(𝑛)

𝑖
,

meaning 𝑝 never saw the key package of p(𝑛)
𝑖

. However, 𝑝 knows it
is an initialization key of p(𝑛)

𝑖
that got compromised (i.e., 𝑝 knows

𝑖).

Confidentiality theorem when joining. Suppose a participant 𝑝 joined
a group 𝐺 at epoch 𝑛 with epoch secret 𝐾𝑛 , participants p(𝑛)

𝑖
, PSKs psks𝑛 .

If Att𝑡(𝐾𝑛), one of the following cases hold:

(8) CompromiseT(𝑝𝑖𝑛𝑣)(Sig(𝑝𝑖𝑛𝑣)): the attacker has compromised the
signature key of the participant that invited 𝑝. In that case, the

6 TreeKEM: Efficient continuous group key establishment 146

signature must have happened before we checked the signature
in the GroupInfo part of the Welcome message (as explained in
§6.2.4).

(9) Participant 𝑝𝑖𝑛𝑣 (who invited participant 𝑝 in the group 𝐺) belongs
to a group 𝐺 at epoch 𝑛 with epoch secret 𝐾𝑛 , participants p(𝑛)

𝑖
,

PSKs psks𝑛 and joiners that are a subset of {p(𝑛)
𝑖
| stale𝑛(p(𝑛)𝑖)}. In

that scenario, we have all the hypotheses required to apply this
theorem inductively on 𝑝𝑖𝑛𝑣 .

Confidentiality theorem when creating. Suppose a participant 𝑝 created
a group 𝐺 (hence at epoch 0) with epoch key 𝐾0. If Att𝑡(𝐾0), then:

(10) Compromise𝑡(𝐾0@𝑝): the attacker has compromised before 𝑡 the
state containing the epoch secret of participant 𝑝 (the only partici-
pant in the group).

Malicious participants. In previous MLS drafts, TreeKEM was vulnerable
to attacks wherein a malicious participant could break the tree invariant
and compute the epoch secrets after they are removed from the tree,
hence breaking remove-security (e.g. “double-join attack” in [116, Fig
5 and Fig 8], or “attack on tree-signing” in [51, Fig 8]). In DY∗, we [116]: Bhargavan et al. (2019), Formal Mod-

els and Verified Protocols for Group Messag-
ing: Attacks and Proofs for IETF MLS
[51]: Alwen et al. (2022), On The Insider
Security of MLS

model malicious participants as participants whose complete state is
fully compromised: this has the same effect as if they were the attacker.
Hence our security theorem accounts for malicious participants in its
threat model, and we will see in §6.4.4 that it entails remove-security,
making such attacks impossible. Indeed, the “double-join attack” [116,
Fig 5] was since fixed by introducing the concept of blank nodes, and [116]: Bhargavan et al. (2019), Formal Mod-

els and Verified Protocols for Group Messag-
ing: Attacks and Proofs for IETF MLS

the “attack on tree-signing” [51, Fig 8] was since fixed by introducing the

[51]: Alwen et al. (2022), On The Insider
Security of MLS

concept of parent hash and formally analyzed as part of the TreeSync
sub-protocol [68].

[68]: Wallez et al. (2023), TreeSync: Authen-
ticated Group Management for Messaging
Layer Security6.4.4 Security corollaries

Using the TreeKEM security theorem in §6.4.3, we can now prove as
corollaries the desired TreeKEM security guarantees stated in §6.2.1. What
follows is manual reasoning: we are auditing our theorem statement to
make sure it does indeed provide the security guarantees we want.

Add-security, remove-security. The security theorem implies that neces-
sarily, one of the participants in the current epoch must be compromised.
Indeed, each of the cases (1) to (3), (5) to (8) and (10) implies the com-
promise of a participant of the current group, because j(𝑛)

𝑖
and 𝑝𝑖𝑛𝑣 are

participants of the current group. By induction, (4) implies a compro-
mise of a participant in the group at epoch 𝑛 − 1 which is a subset of
participants at epoch 𝑛 because the commit is add-only. In case (9), by
instantiating the theorem inductively on 𝑝𝑖𝑛𝑣 we deduce that a compro-
mise must have happened in the current group roster. This implies that
if no group participant at epoch 𝑛 is compromised, then compromising
any participant that was removed or that is not yet added provides no
useful knowledge to the attacker.

Forward secrecy. The security property implies that some compromise
of keys must have happened in the past, or not too far in the future.
Indeed, in the case of compromise of a signature (cases (3), (6) and (8)),
the compromise must have happened before we checked the signature,
hence in the past. In cases (1) and (10), because participants delete epoch

6 TreeKEM: Efficient continuous group key establishment 147

secrets when moving to the next epoch, the compromise must happen
before group participants move to the next epoch. In case (2), we notice
that forward-secrecy relies on initialization keys being deleted quickly
after processing a Welcome message. Not doing this undermines the
forward-secrecy guarantees of MLS. We have found this was not part of
the MLS deployment recommendations by the architecture document
of MLS and notified the working group. In cases (4), (5) and (7), we
do an induction on epoch 𝑛 − 1, and in case (9) we do an induction on
participant 𝑝𝑖𝑛𝑣 .

Post-compromise security. The security theorem implies that a compro-
mise cannot happen too far in the past. We can do a case analysis again.
In cases (1) and (10) the compromise must have happened after p(𝑛)

𝑖
has

computed the epoch secret 𝐾𝑛 . Similarly, in case (5) the compromise
must have happened after p(𝑛)

𝑖
has last issued a path update. In case (4),

the group cannot heal from a compromise (unless psks𝑛 is unknown to
the attacker), hence we rely the healing of the previous epoch by doing
an induction on epoch 𝑛 − 1. This means that if the group keeps doing
add-only commits, there is no opportunity to recover from compromise
(and implementations might need to adopt a policy encouraging updates
to avoid this situation). In the cases of signature key compromise (cases
(3), (6) and (8)) notice that such a compromise might have happened a
while ago if the signature key is not rotated. This highlights that signature
keys must be rotated regularly (so that it is changed before the attacker
has the chance to forge a signature with it and perform an active attack)
or stored securely e.g. in a hardware security module (HSM): this is
recommended by the MLS architecture document. In cases (2) and (7),
we note that to provide post-compromise security, the initialization key
must not have been generated too long ago, otherwise this compromise
may have happened far in the past. This highlights that key packages
(hence initialization keys) must expire: adding a key package that was
created too long ago could undermine post-compromise security. We
have communicated to the MLS working group that this recommendation
should be added to the MLS architecture document. The last case left to
consider is (9), on which we do an induction on 𝑝𝑖𝑛𝑣 .

Lack of epoch authentication in Welcome. Note that in case (9) our
theorem do not give the guarantee to the invitee (𝑝) that that the inviter
(𝑝𝑖𝑛𝑣) did invite them at this epoch. Indeed, in the presence of an active
attacker, it may be possible that although the invitee successfully joined
the group at epoch 𝑛, they were actually invited to join the group in a
previous epoch (say, 𝑛 − 1). As discussed above, this cannot be used to
affect the confidentiality guarantees of TreeKEM, hence is not a practical
attack. We describe this more thoroughly in §6.A.

6.5 Proof methodology

We now discuss the methodology we used to prove the security theorem
in §6.4.3. At a high level, we will use secrecy labels to prove that we only
encrypt messages that are less secret than the key they are encrypted with,
we will prove how secrecy labels evolve throughout the key derivations,
and we will rely on the signature invariant when needed.

We describe our security proofs in the order keys are used in TreeKEM:
we start with proofs on initialization keys (§6.5.1), then move on how they
are used to encrypt the joiner secret in the Welcome message (§6.5.2),

6 TreeKEM: Efficient continuous group key establishment 148

then see how the key schedule produces a sequence of forward secret
epoch secrets (§6.5.3), and finally dive into the tree invariant proofs
(§6.5.4).

6.5.1 Security lemmas for initialization keys

The first key used by a participant in a group is its initialization key (𝑠𝑘init
in Figure 6.4), to process the Welcome message (§6.2.4). In this section,
we present security lemmas for initialization keys that will be crucial
in proofs associated with the Welcome message (in §6.5.2) and with
the key schedule (in §6.5.3). As with the rest of the proofs, we describe
security properties from the viewpoint of a participant, at a specific
time point. In what follows, a crucial design choice is that we store each
key in a separate state, which allows us to talk about the compromise
of a particular key, instead of the compromise of the whole state of a
participant.

Lemma for a participant’s own key. Each participant generates its
initialization key from fresh randomness, stores it in its private state and
only uses it to decrypt Welcome messages. As such, we expect the only
way for the attacker to obtain the key is to compromise the participant’s
state. We formally prove this fact, by showing any reachable trace falls
into two categories: (1) either the initialization private key is currently
unknown to the attacker (2) or the attacker has previously compromised
the state storing the initialization private key.

Lemma for others’ initialization keys. Each participant receives the
initialization public key of each other participant in a key package
(described in §6.2.4). To prevent the attacker from tampering with keys,
the key package is signed by the corresponding participant. We expect
that if the signature was computed by a honest participant, they have
honestly computed their initialization key, otherwise the attacker must
have compromised the signature key before we verified the key package.
We formally prove this fact, by showing any reachable trace falls into
three categories: (1) (2) as in the paragraph above or (3) the attacker has
compromised the other participant’s signature key before we verified the
key package.

Using security labels. We encode the trace properties above using
security labels, namely we prove that if we have verified a key pack-
age, then Init(j(𝑛)

𝑖
) ⊔ Sig(j(𝑛)

𝑖
) ≳ L(𝑠𝑘𝑖𝑛𝑖𝑡) where j(𝑛)

𝑖
is the joiner we are

considering and L(𝑠𝑘𝑖𝑛𝑖𝑡) is the label of the initialization private key in
their key package. This labeling property allows us to prove that any
reachable trace falls into one of the three categories mentioned above,
and is composable with rest of the security proofs.

6.5.2 Security lemmas for Welcome

The Welcome message consists of two parts: first, the GroupInfo object
(gi𝑛 in Figure 6.4) is signed, and the joiner secret (js𝑛 in Figure 6.4) is
encrypted with the initialization keys of joiners (𝑠𝑘𝑖𝑛𝑖𝑡 in Figure 6.4).
We now see the security proofs related to these two cryptographic
computations.

6 TreeKEM: Efficient continuous group key establishment 149

Encrypting the joiner secret. To prove that it is safe to encrypt the joiner
secret with the initialization keys of joiners, we must prove that the
joiner secret is less secret than the initialization private key (as explained
in §6.4.1). We prove this by combining the theorem on secrecy label
of initialization keys in §6.5.1 and the theorem on key schedule that
we will prove in §6.5.3. Formally, we prove that L(js𝑛) ≳ L(𝑠𝑘𝑖𝑛𝑖𝑡) by
transitivity using the chain L(js𝑛) ≳ Init(j(𝑛)

𝑖
)⊔Sig(j(𝑛)

𝑖
) (proved in §6.5.3)

and Init(j(𝑛)
𝑖
) ⊔ Sig(j(𝑛)

𝑖
) ≳ L(𝑠𝑘𝑖𝑛𝑖𝑡) (proved in §6.5.1).

Signing GroupInfo. We use the epoch secret (es𝑛 in Figure 6.4) to derive
the confirmation tag (ct𝑛 in Figure 6.4) and combine it with the group
context (gc𝑛 in Figure 6.4) to form the GroupInfo object (gi𝑛 in Figure 6.4).
Further, the GroupInfo is signed by the inviter. In doing so, the inviter
attests that they are in a group with group context gc𝑛 (which includes
the epoch number, group identifier, a hash of the tree, etc), and with an
epoch secret es𝑛 that produces the confirmation tag ct𝑛 .

Verifying GroupInfo. When the joiner verifies the GroupInfo signature,
they deduce that either the attacker knew the inviter signature key before
they have verified the GroupInfo (and the attacker is doing an active
attack), or that the inviter is in a group with the same group context and
with an epoch secret that produces the same confirmation tag. Finally, by
collision resistance for the hash function, we deduce that we must have
the same epoch secret. In doing so, we have proved the cases (8) and (9)
of the security theorem in §6.4.3.

6.5.3 Security lemmas for the key schedule

The key schedule (Figure 6.4) derives a stream of secrets through ex-
traction (xtr) and expansion (xpd). We prove two things about the key
schedule. First, we prove that the epoch secret (es𝑛) combines the security
of the commit secret (cs𝑛) and the previous epoch secret (es𝑛−1). Second,
we prove that the joiner secret is less secret than the private key of joiners
(𝑠𝑘𝑖𝑛𝑖𝑡). The first goal is easily proved using the semantics of extraction
in DY∗, we therefore focus on the joiner secret.

Labeling of the joiner secret. The joiner secret can be trivially compro-
mised if the attacker knows is𝑛 and cs𝑛 . If not, the attacker can gain access
to js𝑛 if they compromise the initialization key 𝑠𝑘𝑖𝑛𝑖𝑡 of a joiner at epoch
𝑛. The joiner secret js𝑛 is thus the first secret in the key schedule that is
revealed to the attacker when they compromise 𝑠𝑘𝑖𝑛𝑖𝑡 . This fact means
that the joiner secret is less secret than the secret that directly precedes it
in the key schedule, hence that interesting proofs must happen in the
expansion with the group context that produced js𝑛 . In DY∗ the security
label of the output of KDF.expand may be weaker than the label of its
input, and it may depend on additional inputs of the KDF (here, the
group context). Indeed, the group context contains the transcript hash,
which contains the proposals adding the key packages of joiners in the
group. This allows us to say that the label of the joiner secret is weakened
using the label of the joiners’ initialization keys. More precisely, we prove
that L(js𝑛) ≳ Init(j(𝑛)

𝑖
) ⊔ Sig(j(𝑛)

𝑖
) which is then used in §6.5.2 to prove

that it is safe to encrypt the joiner secret to each new joiner.

Note that the use of group context in the key derivation here is important
for security, without it it would be possible that two group participants

6 TreeKEM: Efficient continuous group key establishment 150

who don’t agree on the key packages added at this epoch still compute
the same joiner secret, which would break the security theorem.

6.5.4 Formally proving the tree invariant

The tree invariant follows the same principle as earlier (§6.5.1): first, we
consider the security invariant from our own point of view, then when
receiving an update from another participant, we consider the possibility
that their signature key might have been compromised. To establish our
security lemma, we rely on a tree invariant.

The tree invariant. The tree invariant captures the security guarantees
offered by TreeKEM; we show that this invariant is preserved through
every step of the protocol, which ultimately allows us to conclude
that the cryptographic tree state of TreeKEM (§6.2.2) is secure. The
tree invariant is a disjunction that captures the two points of view we
mentioned earlier, and states that if the private key of a (possibly internal)
node 𝑛 is known by the attacker, then either Compromise𝑡(Node(𝑝))
or CompromiseT(𝑝)(Sig(𝑝)), where 𝑝 belongs to the subtree rooted at 𝑛
and is not an unmerged leaf for 𝑛. The former disjunct captures the
fact that a participant may simply have been compromised; the latter
disjunct captures that we may have been the victim of an active attack, in
which the attacker injects a malicious path update that is signed with
another participant’s compromised signature key. Note that the T(𝑝) in
subscript indicates a temporal relation: the signature key must have been
compromised before we verified that participant’s leaf node.

Concretely, we prove this invariant by relying on DY∗ secrecy labels,
described below.

Lemma on the sender side. We use labels to track the usage of path secrets
throughout the specification of a commit. Every base cryptographic
operation in DY∗ is annotated with labels in its type; this means that
every usage of the path secret forces us to reason about the set of
compromises by the attacker that would lead to knowledge of this path
secret.

The label of each refreshed path secret (i.e., the output of the KDF)
flows towards all of the sub nodes secrets. Looking back at Figure 6.2b,
performing a KDF expansion with the path secret of 𝑡1 produces the path
secret of 𝑢1. Because the label of 𝑢1 covers participants 𝑎1 , 𝑏0 , 𝑐0 , 𝑑0, it is
weaker than the label of 𝑡1 that covers participants 𝑎1 and 𝑏0 only. The
path secret of 𝑢1 is encrypted with 𝑣0’s node secret – this is a safe thing
to do, because the label of 𝑢1 is weaker than the label of 𝑣0 (that covers
𝑐0 and 𝑑0), which is imposed by encryption in DY∗: the label of the key
must be stronger than the label of the message.

At this stage, we have almost obtained the tree invariant: if the attacker
knows the path secret of 𝑢1, it must have compromised a participant 𝑝
that is one of 𝑎1, 𝑏0, 𝑐0 or 𝑑0. Because we chose the label of path secrets
to be the same as that of node secrets, and combined with the tree
invariant that previously held upon entering the function, it means that
Compromise𝑡(Node(𝑝)) or CompromiseT(𝑝)(Sig(𝑝)), and the invariant is
re-established.

Lemma on the receiver side. We reuse an earlier formalization (and
proofs) of TreeSync [68], in order to use TreeSync as a signature mecha- [68]: Wallez et al. (2023), TreeSync: Authen-

ticated Group Management for Messaging
Layer Security

nism specialized for TreeKEM. This follows the same logic as with signing

6 TreeKEM: Efficient continuous group key establishment 151

the initialization key, except this time the committer authenticates every
subtree rooted at nodes they have modified (from their leaf up to the
root), using TreeSync to do it efficiently with one signature in their leaf
node.

The authentication covers the entire subtree, that is, the new node public
keys, and all of their intended recipients, as they appear in the tree
invariant. Using the semantics of DY∗, we know that if the participant is
honest, then the tree invariant is guaranteed by the signature (there was
no compromise). If there is a compromise, it must be the case that the
signature key was compromised before we checked the signature. This
is one of the cases accounted for by the tree invariant, meaning that the
invariant is re-established.

6.6 Discussion

We have presented a machine-checked security proof for a bit-level precise,
executable, interoperable specification of TreeKEM. The specification is
written in 1.3k lines of F∗ code, and our security proofs are in 11k lines
of F∗, relying on the DY∗ framework. The full development is available
online at the URL below, along with instructions for running the code
and verifying the proofs as well as pointers to these:

https://github.com/Inria-Prosecco/treekem-artifact

Anyone can download, run and test the code. Reading the proof state-
ments requires some knowledge of functional programming and formal
logic, extending the proofs requires knowledge of the F∗ proof assistant.

Benefits of Machine-Checked Proofs. MLS is a large protocol and
even its TreeKEM component is quite complex. It maintains a dynamic
tree data structure with some unusual features such as unoccupied
leaves, blank nodes, filtered nodes, unmerged leaves, etc. It defines novel
cryptographic mechanisms for encapsulating secrets to trees of public
keys. It defines new serialization formats for trees, paths, and various
messages and cryptographic inputs.

Ensuring that a formal specification of TreeKEM captures all these notions
correctly can be hard and is greatly aided by being able to execute and
test the specification. Furthermore, when proving properties about the
protocol, it is easy to forget various corner cases, but a machine-checked
proof keeps us honest and ensures that we account for anything that may
arise in an execution of TreeKEM. Indeed, we believe that a pen-and-
paper proof for the full TreeKEM protocol at this level of detail would be
hard to write and even harder to check for correctness.

Symbolic vs. Computational Proofs. Our proofs in this paper rely on a
symbolic (i.e. Dolev-Yao) model of cryptography, where the public key
encryption is treated as a perfect black-box that can only be broken if the
attacker knows the private key. In contrast, the classic pen-and-paper
proofs of TreeKEM in prior work [51, 114, 115] operate in a computational [51]: Alwen et al. (2022), On The Insider

Security of MLS
[114]: Alwen et al. (2020), Security Anal-
ysis and Improvements for the IETF MLS
Standard for Group Messaging
[115]: Alwen et al. (2021), Modular Design
of Secure Group Messaging Protocols and
the Security of MLS

model of cryptography, where public key encryption is modeled in
terms of a probabilistic polynomial-time adversary. Both symbolic and
computational models have their strengths and weaknesses [36]. Com-

[36]: Barbosa et al. (2021), SoK: Computer-
Aided Cryptography

putational cryptographic assumptions are more precise, but symbolic
models yield better proof tools and hence can handle more protocol
details and finer-grained key compromise.

https://github.com/Inria-Prosecco/treekem-artifact

6 TreeKEM: Efficient continuous group key establishment 152

For example, let us compare our work to the most recent pen-and-paper
proof for TreeKEM [51]. This paper proves a computational security [51]: Alwen et al. (2022), On The Insider

Security of MLStheorem for an abstract model of TreeKEM draft 12, expressed as pseu-
docode. Like us, they consider an active attacker that can dynamically
compromise participants, and consider malicious participants. How-
ever, they only allow coarse-grained compromise: the attacker can only
compromise all keys held by a participant, unlike our work where the
attacker can compromise the node secret keys stored by a participant
without compromising their signature keys. Another difference is that
they consider bad randomness as part of the threat model, which we do
not.

We also note that in MLS draft 12, there is no distinction between the
initialization key and the leaf node key. This hurts forward-secrecy in
their theorem since new participants need to hold on to this medium-term
key even after joining a group. The TreeKEM design in the published
MLS standard was updated to separate the initialization key and leaf
node key, which yields a stronger theorem in our case.

The main proof in [51] shows that the attacker cannot distinguish the [51]: Alwen et al. (2022), On The Insider
Security of MLSepoch secret from fresh randomness when a safety predicate (i.e. a trace

invariant) holds. Much of the high-level logic in their proof and ours is the
same; the main differences arise in the different treatment of public-key
encryption, in our handling of low-level cryptographic formats (ignored
in their proofs), and in our proofs being oriented towards being machine
checkable.

Guidance for Erasing Keys, Removing Members. Our security theorem
clearly specifies which key compromises could affect the confidentiality
guarantees of TreeKEM. This provides useful guidance for MLS imple-
mentations and deployments. For example, initialization keys must be
deleted after a Welcome message is decrypted or when they expire, and
this is important for both forward and post-compromise security. Our
theorem also includes cases for participants that have joined the group
but not yet updated their encryption keys. Such stale participants affect
the security of the whole group. They could be identified and potentially
removed from the group after a period of inactivity. We have proposed
to add these recommendations to the MLS architecture document, and
checked that the main MLS implementations (mlspp, OpenMLS and
mls-rs) properly erase initialization keys upon Welcome decryption.

Experimenting with Protocol Improvements. TreeKEM is designed
with many defense-in-depth mechanisms; some were needed for our
proofs (e.g. the use of group context), and some made our proofs simpler
(e.g. the authentication of subtrees in TreeSync). Others we did not need
(e.g. the use of group context in HPKE encryption), and this may indicate
potential future optimizations in the protocol.

Some changes to the protocol would have simplified our proofs. For
example, the transcript hash input format is defined as a concatenation,
which makes it harder to prove that it is unambiguous. Using a length-
prefixed format would have simplified this proof. As another example,
our proofs for path secret derivation would have been much simpler if
the sibling tree hash were used in the key derivation.

Our executable specification and machine-checked proofs provide a good
basis for experimenting with different optimizations and variations of
MLS. Running the specification makes it easy to compare the impact of
optimizations on message size and computation time. Rerunning the

6 TreeKEM: Efficient continuous group key establishment 153

proofs ensures that the new protocol satisfies the same properties as
MLS, and maybe provides new security guarantees.

Future Work. Two natural directions for future work would be to
develop a machine-checked proof of TreeDEM (and hence complete
the verification effort for the MLS standard) and to investigate the post-
quantum security of TreeKEM.

Acknowledgments

We are indebted to Franziskus Kiefer and Raphael Robert for proofreading
a draft of this paper and providing precious feedback.

This work received funding from the French Government, managed by
the ANR under grant agreements ANR-22-PECY-0006 and ANR-19-P3IA-
0001.

6.A Lack of epoch authentication in Welcome

In TreeKEM (hence MLS), when an invitee joins a group through the
Welcome procedure (§6.2.4), they do not have the guarantee that they
were invited at this epoch: they may have been invited in a previous
epoch. Indeed, an attacker can exploit the fact that during the Welcome
process, only the GroupInfo is signed, but the encrypted group secrets
are not signed, hence not bound to any epoch.

The attacker must be active, hence we suppose they control the network.
The group is at epoch 𝑛, with a tree similar to Figure 6.2a, with E and F
blanked. The attacker proceeds as follows:

▶ A invites E in the group and commits to epoch 𝑛 + 1. The attacker
do not transmit the Welcome message to E.

▶ A invites F in the group and commits to epoch 𝑛 + 2.
▶ The attacker compromises the initialization key of F, and use it

to decrypt the encrypted group secrets (i.e. joiner secret of epoch
𝑛 + 2 and path secret of node X).

▶ The attacker re-encrypts the group secrets with the initialization
key of E.

▶ The attacker sends a Welcome message to E, containing this re-
encrypted group secrets and signed GroupInfo for epoch 𝑛 + 2
(obtained when inviting F).

▶ E successfully joins at epoch 𝑛 + 2 although it was invited at epoch
𝑛 + 1.

This works by compromising an initialization key, but it works the same
if F is a malicious participant (recall that we model malicious participants
as participants whose state is fully compromised, see last paragraph of
§6.4.3).

As explained in §6.4.4, this cannot be used to attack confidentiality
guarantees of TreeKEM.

Final words

Related work 7

7.1 Analysis of MLS 155

7.2 Computer-aided analysis

of messaging protocols . 157

7.3 Analysis of executable

specifications 157

7.4 Tools for analyzing crypto-

graphic protocols 158

In this section, we give a broad overview of the work related to this thesis:
we analyzed MLS (§7.1), by performing a computer-aided analysis of a
secure messaging protocol (§7.2) on an executable specification (§7.3). To
do so, we developed tools to analyze cryptographic protocols (§7.4).

7.1 Analysis of MLS

To recall, we analyze TreeSync (Chapter 5) and TreeKEM (Chapter 6) in
the final version of MLS (RFC 9420 [21]) in the symbolic model against an [21]: Barnes et al. (2023), The Messaging

Layer Security (MLS) Protocolinsider attacker, meaning that the attacker may be a participant within
messaging groups. MLS was standardized throughout 20 drafts, many
of the related work analyze intermediate drafts.

Many works study variations of MLS with different trade-offs, in here we
choose to focus on the works that participated in the proactive analysis of
MLS.

7.1.1 Pen & paper analysis

Alwen et al. [114] analyze draft 6 on pen & paper in a game-based [114]: Alwen et al. (2020), Security Anal-
ysis and Improvements for the IETF MLS
Standard for Group Messaging

framework, against a passive attacker. They only consider TreeKEM’s tree
(see §6.2.2) without its key schedule (see §6.2.3), and notice that in itself,
the tree only provides weak forward secrecy, as we previously explained
in §6.2.3. Whereas to provide strong forward secrecy, we consider that the
key schedule is an essential part of TreeKEM, they propose an alternative
solution to provide strong forward secrecy within the tree, by using
Updatable Public-Key Encryption (UPKE), however this proposition did
not make it into the final version of MLS.

Alwen et al. [115] analyze draft 11 on pen & paper in a game-based [115]: Alwen et al. (2021), Modular Design
of Secure Group Messaging Protocols and
the Security of MLS

framework, against a passive attacker (that can tamper with messages,
but only if they end up being rejected by recipients, hence this is slightly
more expressive that [114]). They analyze the Secure Group Messaging
(SGM) properties of MLS, which correspond to confidentiality properties
(forward secrecy, post-compromise security) and authenticity proper-
ties. They also modularize MLS into three components: Continuous
Group Key Agreement (CGKA), Pseudo-Random Function / Pseudo-
Random Number Generator (PRF-PRNG) and Forward-Secure Group
Authenticated Encryption with Additional Data (FS-GAEAD). This mod-
ularization compares to ours as follows: FS-GAEAD corresponds to
TreeDEM, PRF-PRNG corresponds to the key schedule of TreeKEM (see
§6.2.3), CGKA corresponds to the tree of TreeKEM (see §6.2.2). The
welcome subcomponent of TreeKEM (see §6.2.4) is baked-in the assembly
of the three above components to form a Secure Group Messaging (SGM)
protocol. They do not consider TreeSync, because it is only useful against
insider attackers. This is the first work to analyze MLS the actual secure
messaging guarantees of MLS, instead of focusing on its continuous group
key agreement sub-protocol, and obtained a positive result.

Cremers et al. [130] look at the healing post-compromise across groups [130]: Cremers et al. (2021), The Complexi-
ties of Healing in Secure Group Messaging:
Why Cross-Group Effects Matter

7 Related work 156

in abstract secure group messaging systems, and on MLS draft 11. They
notice that messaging groups as in MLS perform worse than implement-
ing groups using pairwise Signal channels, because with pairwise Signal
channels, the healing of a larger group implies the healing of every
subgroup it contains. They further notice it is difficult to heal from the
compromise of a signature key, to solve this problem they investigated
the design space of signature key rotation policies and reported their
finding in the MLS architecture document.

Brzuska et al. [52] analyze draft 11 on pen & paper in a game-based frame- [52]: Brzuska et al. (2022), Security Anal-
ysis of the MLS Key Derivationwork, against an active attacker. They only consider the key distribution

mechanism of MLS, which is composed of TreeKEM’s tree (see §6.2.2) in
combination of its key schedule (see §6.2.3). In doing so, they abstract
away how participants join a group or process commits, as well as the
overall authentication guarantees provided by other MLS components.
They proposed an improvement to the key schedule that was integrated
in the final version of MLS. This change was crucial to our proof of
TreeKEM, we discussed it at length in §6.5.3.

Alwen et al. [51] analyze draft 12 on pen & paper in the Universal Compos- [51]: Alwen et al. (2022), On The Insider
Security of MLSability framework, against an insider attacker, meaning that the attacker

is a participant within a messaging group. Their analysis covers both
TreeSync and TreeKEM, but they conduct their analysis monolithically.
They found several attacks that were fixed in the final version of MLS.
They propose several variants of the parent hash mechanism of TreeSync,
including the one we study in Chapter 5 (named “tree parent hash”). They
discarded this variant as being “not workable due to other mechanisms of
MLS”, although the working group eventually chose this option (notably
after the work we did in Chapter 5).

Cremers et al. [139] analyze the final version of MLS (namely, RFC [139]: Cremers et al. (2025), ETK: External-
Operations TreeKEM and the Security of
MLS in RFC 9420

9420 [21]) on pen & paper in the Universal Composability framework,
against an insider attacker. Their analysis cover both TreeSync and
TreeKEM (in our modularization), and also “external operations” such
as external proposals or external commits that we do not cover in
Chapter 6.

Other works have studied group key establishment, but none of them
supports both asynchronous messaging and dynamic groups, which
is a prerequisite for MLS. Nevertheless, We refer to [128] and [129] for [128]: Manulis (2006), Security-Focused

Survey on Group Key Exchange Protocols
[129]: Poettering et al. (2021), SoK: Game-
Based Security Models for Group Key Ex-
change

surveys.

7.1.2 Computer-aided analysis

A few works try to use (semi-)automated tools to obtain machine-checked
symbolic security proofs for abstract models of TreeKEM.

Bhargavan et al. [116] analyze simplified models of early designs of [116]: Bhargavan et al. (2019), Formal Mod-
els and Verified Protocols for Group Messag-
ing: Attacks and Proofs for IETF MLS

TreeKEM in the draft 7 of MLS using a symbolic model in F∗ and compare
its security and performance with alternative designs. In the process, they
found a “Double Join Attack”, and proposed a fix which corresponds
to the creation of TreeSync, although they do not consider it as an
independent protocol. This work served as inspiration for DY∗ [43], and
ultimately this thesis, in which we analyzed a later (hence more complex)
design of TreeKEM in all its details.

Cremers et al. [131] analyze in Tamarin (symbolic model) a simplified [131]: Cremers et al. (2023), Subterm-
Based Proof Techniques for Improving the
Automation and Scope of Security Protocol
Analysis

version of TreeKEM in the draft 10 of MLS and prove forward secrecy
(but not post-compromise or remove security). Note that we can prove

7 Related work 157

this property without TreeKEM’s tree (see §6.2.2), indeed it is achieved
by TreeKEM’s key schedule (see §6.2.3) regardless of the actual secrecy
of the “commit secret” (which is what allows add-only commits).

7.2 Computer-aided analysis of messaging

protocols

Several works use computed-aided techniques to analyze messaging
protocols other than MLS.

Kobeissi et al. [54] analyze the Signal Protocol using both ProVerif and [54]: Kobeissi et al. (2017), Automated ver-
ification for secure messaging protocols and
their implementations: A symbolic and com-
putational approach

CryptoVerif. They only manage to analyze a small number of messages
with this method: two messages using ProVerif (symbolic guarantees)
and one message using CryptoVerif (computational guarantees). This
analysis shows the limitations of fully automatic verification.

Bhargavan et al. [43] analyze the Signal Protocol as a case-study of DY∗. [43]: Bhargavan et al. (2021), DY*: A Mod-
ular Symbolic Verification Framework for
Executable Cryptographic Protocol Code

They provide symbolic guarantees for an unbounded number of messages.
They manage to perform this proof by writing protocol invariants by
hand, as we described in Chapter 2.

Linker et al. [140] analyze PQ3 [141], a modification on the Signal Pro- [140]: Linker et al. (2024), A Formal Anal-
ysis of Apple’s iMessage PQ3 Protocoltocol [53] to have post-quantum post-compromise security in Apple’s

iMessage. They use Tamarin (symbolic guarantees) to prove forward
secrecy, post-compromise security, and resistance against harvest-now-
decrypt-later attacks, for an unbounded number of messages. They
manage to perform this proof by writing by hand invariants and lemmas
in Tamarin.

Bhargavan et al. [142] analyze PQXDH [143], a recent post-quantum initial [142]: Bhargavan et al. (2024), Formal ver-
ification of the PQXDH Post-Quantum key
agreement protocol for end-to-end secure mes-
saging

key agreement for Signal, using both ProVerif (symbolic guarantees) and
CryptoVerif and (computational guarantees).

Cremers et al. [144] analyze Sesame [145] using Tamarin and notice that [144]: Cremers et al. (2023), Formal Analy-
sis of Session-Handling in Secure Messaging:
Lifting Security from Sessions to Conversa-
tions

although Signal’s Double Ratchet [53] does provide post-compromise
security, this strong guarantee is not lifted to Sesame [145] because of
how it merges multiple Double Ratchet sessions to encrypt messages
in a conversation. They managed to attack post-compromise security in
practice with a clone attacker.

Cremers et al. [146] then establish an impossibility result, and show [146]: Cremers et al. (2024), Impossibil-
ity Results for Post-Compromise Security in
Real-World Communication Systems

using Tamarin that a messaging system fundamentally cannot provide
post-compromise security if it also needs to be resilient again some type
of state loss (that may happen in practice).

7.3 Analysis of executable specifications

Several works analyze executable specifications of protocols, as we did
with TreeSync (Chapter 5) and TreeKEM (Chapter 6).

Bhargavan et al. [134] analyze using F∗ a reference implementation of [134]: Bhargavan et al. (2013), Implement-
ing TLS with Verified Cryptographic Secu-
rity

TLS 1.2, and provide computational guarantees.

Ho et al. [100] analyze Noise [147], a family of 59 secure channel protocols [100]: Ho et al. (2022), Noise*: A Library of
Verified High-Performance Secure Channel
Protocol Implementations

specified using a custom protocol description language. They do so by
writing a generic interpreter for Noise protocols, proving the security
of the interpreter once and for all using DY∗ [43], and finally derive

7 Related work 158

efficient C implementations from the interpreter, hence for all 59 protocol
instantiations.

Arquint et al. [63] analyze a reference implementation of Wireguard [148] [63]: Arquint et al. (2023), A Generic
Methodology for the Modular Verification
of Security Protocol Implementations

using a new technique they developed to do symbolic analysis in the
Gobra program verifier [64]. We already discussed their approach toward
protocol verification in §2.2.11.

7.4 Tools for analyzing cryptographic protocols

There exists a variety of tools to analyze cryptographic protocols; we
refer the reader to [36] for a thorough survey. [36]: Barbosa et al. (2021), SoK: Computer-

Aided Cryptography

Computational tools. Several tools give computational guarantees (as
do traditional pen & paper proofs), they rely on various techniques with
different trade-offs.

EasyCrypt [37] allows defining cryptographic systems and security [37]: Barthe et al. (2011), Computer-Aided
Security Proofs for the Working Cryptogra-
pher

statements in a game-based style similar to the pen & paper proofs
ones, and proving them using tactics that operates on a logic called
“probabilistic Relational Hoare Logic” (or “pRHL”), or using an SMT
solver.

CryptoVerif [38] allows defining cryptographic protocols as processes, [38]: Blanchet (2007), CryptoVerif: Com-
putationally sound mechanized prover for
cryptographic protocols

and proving their security in an automated fashion: CryptoVerif will try
to find the game-hops automatically, and when it fails, a custom tactic
language allows the user to specify which game-hops to perform.

Noticing that CryptoVerif is particularly geared toward proving the
security of protocols, and that EasyCrypt is more geared toward proving
security of cryptographic primitives, authors of both tools collaborated
on a translation from CryptoVerif to EasyCrypt [149], so that security [149]: Blanchet et al. (2024), CV2EC: Get-

ting the Best of Both Worldsassumptions on cryptographic primitives that cannot easily be proved in
CryptoVerif can be translated to and proved using EasyCrypt.

Squirrel [39] allows defining cryptographic protocols as processes, and [39]: Baelde et al. (2021), An interactive
prover for protocol verification in the compu-
tational model

proving their security using tactics that operate on the Bana-Comon
logic [40], which proves security against a “Computationally Complete
Symbolic Attacker”: the goal is to obtain computational guarantees while
doing proofs that look as symbolic as possible.

Symbolic tools. Several tools give symbolic guarantees.

ProVerif [41] allows specifying protocols as processes that run in parallel, [41]: Blanchet et al. (2016), Modeling and
verifying security protocols with the applied
pi calculus and ProVerif

and proving security properties automatically, which can be either
reachability properties or equivalence properties. ProVerif users can
write lemmas or inductions to help the proof search.

Tamarin [42] allows specifying protocols as state machines using multiset [42]: Meier et al. (2013), The TAMARIN
prover for the symbolic analysis of security
protocols

rewriting rules, and proving security properties automatically, which
can be either reachability properties or equivalence properties. Tamarin
users can write lemmas or inductions to help the proof search, and use a
Graphical User Interface (GUI) to do the proofs by hand if needed.

Conclusion 8

8.1 Impact on MLS 159

8.2 Insights for Protocol

Design and Analysis . . . 160

8.3 Limitations and Future

Work 161

Un bon repas ne se termine que lorsque l’on est écœuré.

Luc Chabassier, after a raclette party

The initial goal of this thesis was to develop tools to analyze secure group
messaging protocols, and use them to proactively analyze MLS [21] during [21]: Barnes et al. (2023), The Messaging

Layer Security (MLS) Protocolits standardization; furthermore, we set out to do so on a bit-precise,
executable, interoperable specification.

8.1 Impact on MLS

Although we did not manage to analyze MLS in its entirety, we suc-
cessfully analyzed a significant part of it, namely its sub-protocol in
charge of authenticating the group state (TreeSync [68], Chapter 5) and [68]: Wallez et al. (2023), TreeSync: Authen-

ticated Group Management for Messaging
Layer Security

its sub-protocol in charge of continuously establishing a secret group
key (TreeKEM [135], Chapter 6), thereby paving the way to a complete

[135]: Wallez et al. (2025), TreeKEM: A
Modular Machine-Checked Symbolic Secu-
rity Analysis of Group Key Agreement in
Messaging Layer Security

analysis. The additional challenge of performing our analysis on a bit-
precise, executable, interoperable specification was fruitful: this led to a
more precise analysis which allowed us to catch subtle attacks that were
missed in previous analysis, namely the signature ambiguity attack we
discussed in Chapter 5, and propose fixes to the working group.1 1:

https://github.com/mlswg/
mls-protocol/pull/526

Interactions with the MLS working group. We had an excellent synergy
with the MLS working group which was highly reactive and appreciative
of any design flaws found by various teams, and gladly accepted vari-
ous design improvements. Not all design improvements we proposed
stemmed from our analysis of MLS, they sometimes stemmed from our
specification of MLS. Indeed, in the perspective to analyze our specification,
we set out to find the most elegant way to specify MLS, we then reported
our findings to the MLS working group that sometimes enjoyed our way
to specify MLS, and updated the MLS RFC to match our specification:
this happened for example with the message framing part of MLS,2 that 2:

https://github.com/mlswg/
mls-protocol/pull/523

belongs to TreeDEM sub-protocol which we did not analyze yet.

Modularization of MLS. One of the ways we elegantly specify MLS is by
specifying it modularly into three sub-protocols named TreeSync, TreeKEM
and TreeDEM (see Chapter 5). This modularization was key to our success
in analyzing MLS, because this allows us to perform bite-sized analysis.
We proposed to the MLS working group to refactor the MLS protocol
document around this modularization, however, although the MLS
working group enjoyed our modularization and the change would only be
editorial, they unfortunately declined our suggestion because the change
was deemed to be too big, and too close from the final standardization
of MLS (although history has shown the MLS standardization would
happen two years after we proposed this change). Nevertheless, the
modularization exists and can be relied on to better understand MLS:
this is possible thanks to the working group accepting a small change
(roughly 30 lines) to strengthen the parent-hash mechanism3

3:
https://github.com/mlswg/
mls-protocol/pull/527
https://github.com/mlswg/
mls-protocol/pull/713
https://github.com/mlswg/
mls-protocol/pull/731

that in
turn allowed us to extract TreeSync as an independent, self-contained
sub-protocol of MLS.

https://github.com/mlswg/mls-protocol/pull/526
https://github.com/mlswg/mls-protocol/pull/526
https://github.com/mlswg/mls-protocol/pull/523
https://github.com/mlswg/mls-protocol/pull/523
https://github.com/mlswg/mls-protocol/pull/527
https://github.com/mlswg/mls-protocol/pull/527
https://github.com/mlswg/mls-protocol/pull/713
https://github.com/mlswg/mls-protocol/pull/713
https://github.com/mlswg/mls-protocol/pull/731
https://github.com/mlswg/mls-protocol/pull/731

8 Conclusion 160

8.2 Insights for Protocol Design and Analysis

Testing protocol changes. We believe that machine-checked analysis is
useful to test protocol modifications: with pen & paper proofs, testing
where the proof breaks when the protocol is modified requires a human to
tediously re-check the proof, whereas in our case, we delegate this job to a
computer which precisely points if and where the proof breaks, only then
a human must take over to repair the proof. This is not just some wishful
thinking, we were able in practice to test changes to MLS and repair proofs
after such changes: for example, we proposed to the working group an
overhaul of the unmerged leaves mechanism of TreeSync4 in order to 4:

https://github.com/mlswg/
mls-protocol/pull/752

reduce the amount of data stored inside the tree and make unmerged
leaves simpler to understand, we updated our proofs to account for this
change and it required only a day of work. Unfortunately this change
did not make it into MLS, because it introduced extra metadata into the
public tree, that is, the epoch at which participants last issued a path
update.

Executable specifications. Doing our analysis on a bit-precise, executable,
interoperable specification had several benefits. First, we have been able
to find subtle attacks in MLS, such as the signature ambiguity attack (see
Chapter 5) that previous analysis did not catch because they were not
accounting for the precise message formats used by MLS. Second, we
have been able to do interoperability testing with other implementations,
and found bugs in three implementations (including ours): we found
that OpenMLS was switching the info and ad fields of HPKE; that mlspp
extracted joiner_secret twice in the key schedule instead of extracting it
with psk_secret; and that we were serializing the Proposal tag on 8 bits
instead of 16 bits (after failing to account for this change when updating
our specification from draft 11 to draft 12).

Improving DY
∗
. The complete analysis of TreeKEM (Chapter 6) was

beyond the capabilities of DY∗, this led us to do multiple improvements
to DY∗ (Chapter 3), which quickly became pervasive: for example, the
modular invariant technique (§3.1) is now the way to write invariants in
DY∗, and the revamp of the label framework (§3.2) ultimately changed
our way to understand what truly is a label.

Toward better message formats in cryptographic standards. After
finding the signature ambiguity attack in MLS (see Chapter 5), we spent
some time to think about this general class of message formatting attacks
and cross-protocol attacks, in particular how it could have been easily
avoided through a better discipline in the design of message formats.
This ultimately led to the work of Comparse [67] (Chapter 4), where we [67]: Wallez et al. (2023), Comparse: Prov-

ably Secure Formats for Cryptographic Pro-
tocols

give conditions on message formats that are sufficient to avoid these type
of attacks, and necessary to soundly abstract message formats away in
security proofs. Furthermore, our message format conditions shed light
on the importance to design future-proof message formats: indeed, for
example, a signature key in version 1 of a protocol may end up being also
used in version 2 of the protocol in the future; we can avoid cross-protocol
attacks by designing a message format that can be extended through
protocol versions. We have done so for MLS, but in the end, we firmly
believe all protocol designers should have these conditions in mind when
creating new protocols to systematically avoid these problems.

https://github.com/mlswg/mls-protocol/pull/752
https://github.com/mlswg/mls-protocol/pull/752

8 Conclusion 161

8.3 Limitations and Future Work

There are still parts of MLS we didn’t analyze yet, such as TreeDEM, and
also more arcane features of MLS such as external commits, external
proposals, group reinitialization, and subgroup branching. Extensions
of MLS are being standardized, they could also benefit analysis.

Although our specification is executable and has been successfully in-
tegrated in a prototype version of Skype (see Chapter 5), it is certainly
slower than other MLS implementations which were designed with
efficiency in mind (whereas we had provability in mind). To bridge this
gap, we could use program verification techniques to prove that an efficient
implementation adheres to our specification, thereby lifting the security
guarantees we proved on our specification to guarantees on this efficient
implementation.

The conditions on message formats we designed in Comparse (Chapter 4)
are intended for protocol analysts, but are currently not well-suited for
an audience of protocol designers. Therefore, it would be useful to create
a document that would provide actionable guidelines on the design of
message formats in cryptographic standards; although we could argue
that every standard should use Comparse to obtain machine-checked
proofs that their message formats are secure, we recognize that this is a
researcher fantasy, and that we could better reach the audience of protocol
designers by writing a document tailored for them, with guidelines that
are easy to apply.

It has been mostly enjoyable to use DY∗ to analyze TreeKEM (Chapter 6),
especially to analyze its cryptographic core. However, this cryptographic
core must in the end be connected to “outside world”, for example to
send and receive messages, retrieve and store state, etc. This takes the
form of effectful functions which we then expose to the attacker, meaning
that these effectful functions must also be analyzed. The analysis of such
effectful functions currently feels less enjoyable, because the proof is
relatively straightforward but nevertheless require non-trivial amount of
work. We envision writing tactics to ease these proofs and allow users to
focus only on its non-straightforward parts.

Symbolic analysis tools such as ProVerif [41] or Tamarin [42] allow
users to define new symbols and equational theories, thereby allowing
them to support new kind of cryptographic functions. In DY∗, the set
of supported cryptographic functions is fixed, baked-in the core of DY∗,
therefore extending this set would require to fork DY∗, and potentially
issue a pull-request to DY∗. We envision it should be possible to use
F∗’s dependent types to create a modular type for bytes, so that users
can extend it with custom cryptographic functions. We have a proof-of-
concept supporting the fact that doing so is possible, but the resulting
bytes type is cumbersome to use: more work would be needed to benefit
this modularity without significant drawbacks.

Bibliography

Here are the references in citation order.

[1] A. Kerckhoffs. ‘La cryptographie militaire’. In: Journal des Sciences Militaires (1883), pp. 5–38, 161–191
(cited on page 2).

[2] The US 6812 Division Bombe Report Eastcote 1944. https://www.codesandciphers.org.uk/documents/
bmbrpt/bmbpg006.htm. 1944 (cited on page 2).

[3] W. Diffie and M. Hellman. ‘New directions in cryptography’. In: IEEE Transactions on Information
Theory 22.6 (1976), pp. 644–654. doi: 10.1109/TIT.1976.1055638 (cited on page 3).

[4] R. L. Rivest, A. Shamir, and L. Adleman. ‘A method for obtaining digital signatures and public-key
cryptosystems’. In: Commun. ACM 21.2 (Feb. 1978), pp. 120–126. doi: 10.1145/359340.359342 (cited
on page 4).

[5] Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian Goldberg, and Matthew
Smith. ‘SoK: Secure Messaging’. In: IEEE Symposium on Security and Privacy (S&P). 2015, pp. 232–249
(cited on pages 5, 103, 126).

[6] Philip Zimmermann. PGP Marks 10th Anniversary. https://www.philzimmermann.com/EN/essays/
PGP_10thAnniversary.html. 2001 (cited on page 5).

[7] Philip Zimmermann. Author’s preface to the book: "PGP Source Code and Internals". https://www.
philzimmermann.com/EN/essays/BookPreface.html. 1995 (cited on page 5).

[8] Philip Zimmermann. PGP source code and internals. Cambridge, MA, USA: MIT Press, 1995 (cited on
page 5).

[9] Philip Zimmermann. Significant Moments in PGP’s History: Zimmermann Case Dropped. https://
philzimmermann.com/EN/news/PRZ_case_dropped.html. 1996 (cited on page 5).

[10] Alison Dame-Boyle. EFF at 25: Remembering the Case that Established Code as Speech. https://www.eff.
org/deeplinks/2015/04/remembering-case-established-code-speech. 2015 (cited on page 5).

[11] U.S. Court of Appeals for the Ninth Circuit: Bernstein v. USDOJ. https://archive.epic.org/crypto/
export_controls/bernstein_decision_9_cir.html. 1999 (cited on page 5).

[12] Narcotrafic : le Sénat autorise les services de renseignement à accéder aux messageries cryptées. https:
//www.publicsenat.fr/actualites/parlementaire/narcotrafic-le-senat-autorise-les-
services-de-renseignement-a-acceder-aux-messageries-cryptees. 2025 (cited on page 5).

[13] Alma Whitten and J. D. Tygar. ‘Why Johnny can’t encrypt: a usability evaluation of PGP 5.0’. In:
Proceedings of the 8th Conference on USENIX Security Symposium - Volume 8. SSYM’99. Washington, D.C.:
USENIX Association, 1999, p. 14 (cited on page 5).

[14] Nikita Borisov, Ian Goldberg, and Eric Brewer. ‘Off-the-record communication, or, why not to use PGP’.
In: Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society. WPES ’04. Washington DC,
USA: Association for Computing Machinery, 2004, pp. 77–84. doi: 10.1145/1029179.1029200 (cited
on page 6).

[15] Tarun Kumar Yadav, Devashish Gosain, and Kent Seamons. ‘Cryptographic Deniability: A Multi-
perspective Study of User Perceptions and Expectations’. In: 32nd USENIX Security Symposium
(USENIX Security 23). Anaheim, CA: USENIX Association, Aug. 2023, pp. 3637–3654 (cited on page 6).

[16] Moxie Marlinspike. Forward Secrecy for Asynchronous Messages. https : / / signal . org / blog /
asynchronous-security/. 2013 (cited on page 7).

[17] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas Stebila. ‘A Formal
Security Analysis of the Signal Messaging Protocol’. In: 2017 IEEE European Symposium on Security and
Privacy (EuroS&P). 2017, pp. 451–466. doi: 10.1109/EuroSP.2017.27 (cited on page 7).

https://www.codesandciphers.org.uk/documents/bmbrpt/bmbpg006.htm
https://www.codesandciphers.org.uk/documents/bmbrpt/bmbpg006.htm
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1145/359340.359342
https://www.philzimmermann.com/EN/essays/PGP_10thAnniversary.html
https://www.philzimmermann.com/EN/essays/PGP_10thAnniversary.html
https://www.philzimmermann.com/EN/essays/BookPreface.html
https://www.philzimmermann.com/EN/essays/BookPreface.html
https://philzimmermann.com/EN/news/PRZ_case_dropped.html
https://philzimmermann.com/EN/news/PRZ_case_dropped.html
https://www.eff.org/deeplinks/2015/04/remembering-case-established-code-speech
https://www.eff.org/deeplinks/2015/04/remembering-case-established-code-speech
https://archive.epic.org/crypto/export_controls/bernstein_decision_9_cir.html
https://archive.epic.org/crypto/export_controls/bernstein_decision_9_cir.html
https://www.publicsenat.fr/actualites/parlementaire/narcotrafic-le-senat-autorise-les-services-de-renseignement-a-acceder-aux-messageries-cryptees
https://www.publicsenat.fr/actualites/parlementaire/narcotrafic-le-senat-autorise-les-services-de-renseignement-a-acceder-aux-messageries-cryptees
https://www.publicsenat.fr/actualites/parlementaire/narcotrafic-le-senat-autorise-les-services-de-renseignement-a-acceder-aux-messageries-cryptees
https://doi.org/10.1145/1029179.1029200
https://signal.org/blog/asynchronous-security/
https://signal.org/blog/asynchronous-security/
https://doi.org/10.1109/EuroSP.2017.27

[18] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. ‘The Double Ratchet: Security Notions, Proofs,
and Modularization for the Signal Protocol’. In: Advances in Cryptology – EUROCRYPT 2019. Ed. by
Yuval Ishai and Vincent Rĳmen. Cham: Springer International Publishing, 2019, pp. 129–158 (cited on
page 7).

[19] Alexander Bienstock, Jaiden Fairoze, Sanjam Garg, Pratyay Mukherjee, and Srinivasan Raghuraman.
‘A More Complete Analysis of the Signal Double Ratchet Algorithm’. In: Advances in Cryptology –
CRYPTO 2022. Ed. by Yevgeniy Dodis and Thomas Shrimpton. Cham: Springer Nature Switzerland,
2022, pp. 784–813 (cited on page 7).

[20] Moxie Marlinspike. Private Group Messaging. https://signal.org/blog/private-groups/. 2014
(cited on pages 7, 104).

[21] Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican, Emad Omara, and Katriel Cohn-
Gordon. The Messaging Layer Security (MLS) Protocol. RFC 9420. July 2023. doi: 10.17487/RFC9420.
url: https://www.rfc-editor.org/info/rfc9420 (cited on pages 7, 20, 52, 74, 76, 98, 103, 104, 106,
109, 129, 132, 135, 155, 156, 159).

[22] C. E. Shannon. ‘Communication theory of secrecy systems’. In: The Bell System Technical Journal 28.4
(1949), pp. 656–715. doi: 10.1002/j.1538-7305.1949.tb00928.x (cited on page 8).

[23] Eli Biham and Adi Shamir. Differential cryptanalysis of the data encryption standard. Berlin, Heidelberg:
Springer-Verlag, 1993 (cited on page 8).

[24] Mihir Bellare and Phillip Rogaway. ‘Random oracles are practical: a paradigm for designing efficient
protocols’. In: Proceedings of the 1st ACM Conference on Computer and Communications Security. CCS ’93.
Fairfax, Virginia, USA: Association for Computing Machinery, 1993, pp. 62–73. doi: 10.1145/168588.
168596 (cited on page 8).

[25] Bertrand Russell and Alfred North Whitehead. Principia Mathematica Vol. I. Cambridge University
Press, 1910 (cited on page 10).

[26] Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis. ‘Social processes and proofs of theorems
and programs’. In: Commun. ACM 22.5 (May 1979), pp. 271–280. doi: 10.1145/359104.359106 (cited
on page 10).

[27] Kevin Buzzard. Formalizing 21st century mathematics in Lean. https://68nqrt.inria.fr/Slides/
2021/KevinBuzzard.pdf. 2021 (cited on page 11).

[28] Leonardo de Moura and Sebastian Ullrich. ‘The Lean 4 Theorem Prover and Programming Language’.
In: Automated Deduction – CADE 28. Ed. by André Platzer and Geoff Sutcliffe. Cham: Springer
International Publishing, 2021, pp. 625–635 (cited on page 11).

[29] The mathlib Community. ‘The lean mathematical library’. In: Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs. CPP 2020. New Orleans, LA, USA: Association
for Computing Machinery, 2020, pp. 367–381. doi: 10.1145/3372885.3373824 (cited on page 11).

[30] Terence Tao. A Maclaurin type inequality. 2023. url: https://arxiv.org/abs/2310.05328 (cited on
page 11).

[31] Terence Tao. https://mathstodon.xyz/@tao/111287749336059662. 2023 (cited on page 11).
[32] Kevin Buzzard. Fermat’s Last Theorem — how it’s going. https://xenaproject.wordpress.com/2024/

12/11/fermats-last-theorem-how-its-going/. 2024 (cited on page 11).
[33] Mihir Bellare and Phillip Rogaway. Code-Based Game-Playing Proofs and the Security of Triple Encryption.

Cryptology ePrint Archive, Paper 2004/331. 2004. url: https://eprint.iacr.org/2004/331 (cited
on page 11).

[34] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive,
Paper 2004/332. 2004. url: https://eprint.iacr.org/2004/332 (cited on page 11).

[35] Shai Halevi. A plausible approach to computer-aided cryptographic proofs. Cryptology ePrint Archive, Paper
2005/181. 2005. url: https://eprint.iacr.org/2005/181 (cited on page 11).

[36] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers, Kevin Liao, and
Bryan Parno. ‘SoK: Computer-Aided Cryptography’. In: IEEE Symposium on Security and Privacy (S&P).
2021, pp. 777–795 (cited on pages 12, 77, 127, 151, 158).

https://signal.org/blog/private-groups/
https://doi.org/10.17487/RFC9420
https://www.rfc-editor.org/info/rfc9420
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/359104.359106
https://68nqrt.inria.fr/Slides/2021/KevinBuzzard.pdf
https://68nqrt.inria.fr/Slides/2021/KevinBuzzard.pdf
https://doi.org/10.1145/3372885.3373824
https://arxiv.org/abs/2310.05328
https://mathstodon.xyz/@tao/111287749336059662
https://xenaproject.wordpress.com/2024/12/11/fermats-last-theorem-how-its-going/
https://xenaproject.wordpress.com/2024/12/11/fermats-last-theorem-how-its-going/
https://eprint.iacr.org/2004/331
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2005/181

[37] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin. ‘Computer-Aided
Security Proofs for the Working Cryptographer’. In: Advances in Cryptology – CRYPTO. Ed. by Phillip
Rogaway. 2011, pp. 71–90 (cited on pages 12, 77, 127, 158).

[38] Bruno Blanchet. ‘CryptoVerif: Computationally sound mechanized prover for cryptographic protocols’.
In: Dagstuhl seminar “Formal Protocol Verification Applied. Vol. 117. 2007, p. 156 (cited on pages 12, 77,
127, 158).

[39] David Baelde, Stéphanie Delaune, Charlie Jacomme, Adrien Koutsos, and Solène Moreau. ‘An
interactive prover for protocol verification in the computational model’. In: IEEE Symposium on Security
and Privacy (S&P). IEEE. 2021, pp. 537–554 (cited on pages 12, 127, 158).

[40] Gergei Bana and Hubert Comon-Lundh. ‘Towards Unconditional Soundness: Computationally
Complete Symbolic Attacker’. In: Principles of Security and Trust. Ed. by Pierpaolo Degano and Joshua D.
Guttman. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 189–208 (cited on pages 12, 158).

[41] Bruno Blanchet et al. ‘Modeling and verifying security protocols with the applied pi calculus and
ProVerif’. In: Foundations and Trends® in Privacy and Security 1.1-2 (2016), pp. 1–135 (cited on pages 12,
18, 19, 33, 39, 40, 44, 47, 77, 120, 127, 158, 161).

[42] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. ‘The TAMARIN prover for the
symbolic analysis of security protocols’. In: International conference on computer aided verification.
Springer. 2013, pp. 696–701 (cited on pages 12, 18, 19, 33, 39, 40, 44, 47, 77, 120, 127, 158, 161).

[43] Karthikeyan Bhargavan, Abhishek Bichhawat, Quoc Huy Do, Pedram Hosseyni, Ralf Küsters, Guido
Schmitz, and Tim Würtele. ‘DY*: A Modular Symbolic Verification Framework for Executable
Cryptographic Protocol Code’. In: IEEE European Symposium on Security and Privacy (EuroS&P). IEEE.
2021, pp. 523–542 (cited on pages 12, 15, 18, 20, 40, 56–58, 61, 68–70, 77, 96, 105, 120, 121, 127, 142, 156,
157).

[44] Yaron Sheffer, Ralph Holz, and Peter Saint-Andre. Summarizing Known Attacks on Transport Layer
Security (TLS) and Datagram TLS (DTLS). RFC 7457. Feb. 2015. doi: 10.17487/RFC7457. url: https:
//www.rfc-editor.org/info/rfc7457 (cited on page 13).

[45] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. ‘On the Security of the TLS Protocol: A
Systematic Analysis’. In: Advances in Cryptology – CRYPTO 2013. Ed. by Ran Canetti and Juan A. Garay.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 429–448 (cited on page 13).

[46] Karthikeyan Bhargavan, Antoine Delignat Lavaud, Cédric Fournet, Alfredo Pironti, and Pierre Yves
Strub. ‘Triple Handshakes and Cookie Cutters: Breaking and Fixing Authentication over TLS’. In: 2014
IEEE Symposium on Security and Privacy. 2014, pp. 98–113. doi: 10.1109/SP.2014.14 (cited on page 13).

[47] Kenneth G. Paterson and Thyla van der Merwe. ‘Reactive and Proactive Standardisation of TLS’. In:
Security Standardisation Research. Ed. by Lidong Chen, David McGrew, and Chris Mitchell. Cham:
Springer International Publishing, 2016, pp. 160–186 (cited on page 13).

[48] Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. ‘Automated Analysis and
Verification of TLS 1.3: 0-RTT, Resumption and Delayed Authentication’. In: 2016 IEEE Symposium on
Security and Privacy (SP). 2016, pp. 470–485. doi: 10.1109/SP.2016.35 (cited on page 13).

[49] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. ‘Verified Models and Reference
Implementations for the TLS 1.3 Standard Candidate’. In: 2017 IEEE Symposium on Security and Privacy
(SP). 2017, pp. 483–502 (cited on pages 13, 93, 127).

[50] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der Merwe. ‘A Comprehen-
sive Symbolic Analysis of TLS 1.3’. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 2017, pp. 1773–1788 (cited on pages 13, 93, 127).

[51] Joël Alwen, Daniel Jost, and Marta Mularczyk. ‘On The Insider Security of MLS’. In: Advances in
Cryptology – CRYPTO 2022: 42nd Annual International Cryptology Conference, CRYPTO 2022, Santa
Barbara, CA, USA, August 15–18, 2022, Proceedings, Part II. Santa Barbara, CA, USA: Springer-Verlag,
2022, pp. 34–68. doi: 10.1007/978-3-031-15979-4_2 (cited on pages 14, 104, 109, 113, 119, 122, 126,
129, 131, 146, 151, 152, 156).

[52] Chris Brzuska, Eric Cornelissen, and Konrad Kohbrok. ‘Security Analysis of the MLS Key Derivation’.
In: IEEE Symposium on Security and Privacy (S&P). IEEE, 2022, pp. 2535–2553 (cited on pages 14, 104,
108, 109, 126, 129, 131, 156).

https://doi.org/10.17487/RFC7457
https://www.rfc-editor.org/info/rfc7457
https://www.rfc-editor.org/info/rfc7457
https://doi.org/10.1109/SP.2014.14
https://doi.org/10.1109/SP.2016.35
https://doi.org/10.1007/978-3-031-15979-4_2

[53] Trevor Perrin and Moxie Marlinspike. The Double Ratchet Algorithm. https://signal.org/docs/
specifications/doubleratchet/. 2016 (cited on pages 14, 103, 157).

[54] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. ‘Automated verification for secure
messaging protocols and their implementations: A symbolic and computational approach’. In: IEEE
European symposium on security and privacy (EuroS&P). IEEE. 2017, pp. 435–450 (cited on pages 14, 127,
157).

[55] Benjamin Beurdouche, Eric Rescorla, Emad Omara, Srinivas Inguva, and Alan Duric. The Messaging
Layer Security (MLS) Architecture. RFC 9750. Apr. 2025. doi: 10.17487/RFC9750. url: https://www.rfc-
editor.org/info/rfc9750 (cited on pages 15, 104, 132).

[56] Danny Dolev and Andrew Chi-Chih Yao. ‘On the security of public key protocols’. In: IEEE Trans. Inf.
Theory 29.2 (1983), pp. 198–207 (cited on pages 17, 18, 96, 143).

[57] Roger M. Needham and Michael D. Schroeder. ‘Using Encryption for Authentication in Large Networks
of Computers’. In: Communications of the ACM 21.12 (1978), pp. 993–999 (cited on pages 17, 75).

[58] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis.
‘Refinement Types for Secure Implementations’. In: 2008 21st IEEE Computer Security Foundations
Symposium. 2008, pp. 17–32. doi: 10.1109/CSF.2008.27 (cited on page 19).

[59] Karthikeyan Bhargavan, Cédric Fournet, and Andrew D. Gordon. ‘Modular verification of security
protocol code by typing’. In: SIGPLAN Not. 45.1 (Jan. 2010), pp. 445–456. doi: 10.1145/1707801.
1706350 (cited on page 19).

[60] Stephen C. Kleene. Introduction to Metamathematics. Princeton, New Jersey: D. van Nostrand, 1952
(cited on page 27).

[61] Mike Rosulek. The Joy of Cryptography. https://joyofcryptography.com. 2021 (cited on page 33).
[62] Véronique Cortier, Steve Kremer, and Bogdan Warinschi. ‘A Survey of Symbolic Methods in Compu-

tational Analysis of Cryptographic Systems’. In: J. Autom. Reason. 46.3–4 (Apr. 2011), pp. 225–259. doi:
10.1007/s10817-010-9187-9 (cited on page 40).

[63] Linard Arquint, Malte Schwerhoff, Vaibhav Mehta, and Peter Müller. ‘A Generic Methodology for the
Modular Verification of Security Protocol Implementations’. In: Computer and Communications Security
(CCS). CCS ’23. Copenhagen, Denmark: Association for Computing Machinery, 2023, pp. 1377–1391.
doi: 10.1145/3576915.3623105 (cited on pages 41, 158).

[64] F. A. Wolf, L. Arquint, M. Clochard, W. Oortwĳn, J. C. Pereira, and P. Müller. ‘Gobra: Modular
Specification and Verification of Go Programs’. In: Computer Aided Verification (CAV). Ed. by Alexandra
Silva and K. Rustan M. Leino. Vol. 12759. LNCS. Springer International Publishing, 2021, pp. 367–379
(cited on pages 41, 158).

[65] Protocol Proof Ladder. https://github.com/proof-ladders/protocol- ladder. 2025 (cited on
pages 41, 42).

[66] Karthikeyan Bhargavan, Abhishek Bichhawat, Pedram Hosseyni, Ralf Küsters, Klaas Pruiksma, Guido
Schmitz, Clara Waldmann, and Tim Würtele. ‘Layered Symbolic Security Analysis in DY*’. In: Computer
Security – ESORICS 2023. Ed. by Gene Tsudik, Mauro Conti, Kaitai Liang, and Georgios Smaragdakis.
Cham: Springer Nature Switzerland, 2024, pp. 3–21 (cited on page 49).

[67] Théophile Wallez, Jonathan Protzenko, and Karthikeyan Bhargavan. ‘Comparse: Provably Secure
Formats for Cryptographic Protocols’. In: Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’23. Copenhagen, Denmark: Association for Computing Machinery,
2023, pp. 564–578. doi: 10.1145/3576915.3623201 (cited on pages 50, 75, 160).

[68] Théophile Wallez, Jonathan Protzenko, Benjamin Beurdouche, and Karthikeyan Bhargavan. ‘TreeSync:
Authenticated Group Management for Messaging Layer Security’. In: 32nd USENIX Security Symposium
(USENIX Security 23). Aug. 2023, pp. 1217–1233 (cited on pages 50, 76, 96, 98, 101, 103, 129, 131, 139,
143, 146, 150, 159).

[69] Richard Barnes, Karthikeyan Bhargavan, Benjamin Lipp, and Christopher A Wood. RFC 9180: Hybrid
public key encryption. Tech. rep. Internet Research Task Force, 2022 (cited on pages 52, 104, 135).

[70] Thierry Coquand and Christine Paulin. ‘Inductively defined types’. In: COLOG-88. Ed. by Per Martin-
Löf and Grigori Mints. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990, pp. 50–66 (cited on
page 59).

https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://doi.org/10.17487/RFC9750
https://www.rfc-editor.org/info/rfc9750
https://www.rfc-editor.org/info/rfc9750
https://doi.org/10.1109/CSF.2008.27
https://doi.org/10.1145/1707801.1706350
https://doi.org/10.1145/1707801.1706350
https://joyofcryptography.com
https://doi.org/10.1007/s10817-010-9187-9
https://doi.org/10.1145/3576915.3623105
https://github.com/proof-ladders/protocol-ladder
https://doi.org/10.1145/3576915.3623201

[71] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Benjamin Beurdouche.
‘HACL*: A verified modern cryptographic library’. In: ACM SIGSAC Conference on Computer and
Communications Security (CCS). 2017, pp. 1789–1806 (cited on pages 69, 123).

[72] Gavin Lowe. ‘Breaking and fixing the Needham-Schroeder Public-Key Protocol using FDR’. In: Tools
and Algorithms for the Construction and Analysis of Systems. Springer Berlin Heidelberg, 1996, pp. 147–166
(cited on page 76).

[73] Catherine A. Meadows. ‘Analyzing the Needham-Schroeder public key protocol: A comparison of
two approaches’. In: Computer Security — ESORICS. Springer Berlin Heidelberg, 1996, pp. 351–364
(cited on page 76).

[74] James Heather, Gavin Lowe, and Steve A. Schneider. ‘How to Prevent Type Flaw Attacks on Security
Protocols’. In: Journal of Computer Security 11.2 (2003), pp. 217–244 (cited on page 76).

[75] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446. Aug. 2018. doi:
10.17487/RFC8446. url: https://www.rfc-editor.org/info/rfc8446 (cited on pages 76, 84, 87,
89–91).

[76] S. Cantor, J. Kemp, R. Philpott, and E. Maler. Assertions and Protocols for the OASIS Security Assertion
Markup Language (SAML) V2.0. 2005 (cited on page 76).

[77] XML Signature Syntax and Processing Version 2.0. W3C Recommendation. July 2015 (cited on page 76).
[78] XML Encryption Syntax and Processing Version 1.1. W3C Recommendation. Apr. 2013 (cited on page 76).
[79] Michael B. Jones, John Bradley, and Nat Sakimura. JSON Web Signature (JWS). IETF RFC 7515. May

2015 (cited on page 76).
[80] Michael B. Jones and Joe Hildebrand. JSON Web Encryption (JWE). IETF RFC 7516. May 2015 (cited on

page 76).
[81] J. Schaad and August Cellars. CBOR Object Signing and Encryption (COSE). IETF RFC 8152. July 2017

(cited on page 76).
[82] J. Schaad and August Cellars. Protocol Buffers (proto 3). https://protobuf.dev. July 2008 (cited on

page 76).
[83] ITU-T. Information technology – Open Systems Interconnection – The Directory: Public-key and attribute

certificate frameworks. Recommendation ITU-T X.509. Oct. 2019 (cited on page 76).
[84] Nikos Mavrogiannopoulos, Frederik Vercauteren, Vesselin Velichkov, and Bart Preneel. ‘A Cross-

Protocol Attack on the TLS Protocol’. In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security. CCS ’12. Raleigh, North Carolina, USA: Association for Computing Machinery,
2012, pp. 62–72. doi: 10.1145/2382196.2382206 (cited on pages 76, 81, 82, 92).

[85] Kenneth G. Paterson, Matteo Scarlata, and Kien Tuong Truong. ‘Three Lessons From Threema: Analysis
of a Secure Messenger’. In: Proceedings of the 32th USENIX Conference on Security Symposium. SEC’23.
USA: USENIX Association, 2023 (cited on pages 76, 83).

[86] Martin R. Albrecht, Sofia Celi, Benjamin Dowling, and Daniel Jones. Practically-exploitable Cryptographic
Vulnerabilities in Matrix. Cryptology ePrint Archive, Paper 2023/485. https://eprint.iacr.org/
2023/485. 2023. url: https://eprint.iacr.org/2023/485 (cited on page 76).

[87] Tahina Ramananandro, Antoine Delignat-Lavaud, Cédric Fournet, Nikhil Swamy, Tej Chajed, Nadim
Kobeissi, and Jonathan Protzenko. ‘Everparse: Verified Secure Zero-Copy Parsers for Authenticated
Message Formats’. In: Proceedings of the 28th USENIX Conference on Security Symposium. SEC’19. Santa
Clara, CA, USA: USENIX Association, 2019, pp. 1465–1482 (cited on pages 80, 93, 97, 99, 100).

[88] Wikipedia contributors. Malleability (cryptography) — Wikipedia, The Free Encyclopedia. [Online; accessed
4-May-2023]. 2022. url: https://en.wikipedia.org/w/index.php?title=Malleability_
(cryptography)&oldid=1083763968 (cited on page 80).

[89] Pieter Wuille. Dealing with malleability. BIP 62. 2014 (cited on page 80).
[90] Guido Martínez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis, Chris Hawblitzel, Catalin Hritcu,

Monal Narasimhamurthy, Zoe Paraskevopoulou, Clément Pit-Claudel, Jonathan Protzenko, Tahina
Ramananandro, Aseem Rastogi, and Nikhil Swamy. ‘Meta-F* : Proof Automation with SMT, Tactics,
and Metaprograms’. In: Programming Languages and Systems - European Symposium on Programming,
ESOP. Ed. by Luís Caires. Vol. 11423. Lecture Notes in Computer Science. Springer, 2019, pp. 30–59.
doi: 10.1007/978-3-030-17184-1_2 (cited on page 90).

https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/info/rfc8446
https://protobuf.dev
https://doi.org/10.1145/2382196.2382206
https://eprint.iacr.org/2023/485
https://eprint.iacr.org/2023/485
https://eprint.iacr.org/2023/485
https://en.wikipedia.org/w/index.php?title=Malleability_(cryptography)&oldid=1083763968
https://en.wikipedia.org/w/index.php?title=Malleability_(cryptography)&oldid=1083763968
https://doi.org/10.1007/978-3-030-17184-1_2

[91] Eric Rescorla and Tim Dierks. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246. Aug.
2008. doi: 10.17487/RFC5246. url: https://www.rfc-editor.org/info/rfc5246 (cited on pages 91,
92).

[92] E. Rescorla, R. Barnes, H. Tschofenig, and B. Schwartz. Compact TLS 1.3. IETF Internet Draft version
8. Mar. 2023. url: %5Curl%7Bhttps://www.ietf.org/archive/id/draft- ietf- tls- ctls-
08.html%7D (cited on page 91).

[93] Yoav Nir, Simon Josefsson, and Manuel Pégourié-Gonnard. Elliptic Curve Cryptography (ECC) Cipher
Suites for Transport Layer Security (TLS) Versions 1.2 and Earlier. RFC 8422. Aug. 2018. doi: 10.17487/
RFC8422. url: https://www.rfc-editor.org/info/rfc8422 (cited on page 92).

[94] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green, J Alex
Halderman, Nadia Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta, et al. ‘Imperfect
forward secrecy: How Diffie-Hellman fails in practice’. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. 2015, pp. 5–17 (cited on page 92).

[95] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. ‘A Cryptographic Analysis of
the TLS 1.3 Handshake Protocol’. In: J. Cryptol. 34.4 (2021), p. 37 (cited on page 93).

[96] Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Björn Tackmann, and Daniele Venturi. ‘(De-
)Constructing TLS 1.3’. In: Progress in Cryptology – INDOCRYPT 2015. 2015, pp. 85–102 (cited on
page 93).

[97] Xinyu Li, Jing Xu, Zhenfeng Zhang, Dengguo Feng, and Honggang Hu. ‘Multiple Handshakes Security
of TLS 1.3 Candidates’. In: IEEE Symposium on Security and Privacy (SP). 2016, pp. 486–505 (cited on
page 93).

[98] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon
Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim
Zinzindohoue, and Santiago Zanella-Béguelin. ‘Dependent Types and Multi-Monadic Effects in F*’. In:
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). 2016, pp. 256–270
(cited on pages 93, 96, 105, 109, 131, 139, 142).

[99] Karthikeyan Bhargavan, Abhishek Bichhawat, Quoc Huy Do, Pedram Hosseyni, Ralf Küsters, Guido
Schmitz, and Tim Würtele. ‘An In-Depth Symbolic Security Analysis of the ACME Standard’. In:
ACM SIGSAC Conference on Computer and Communications (CCS). ACM, 2021, pp. 2601–2617 (cited on
pages 96, 121).

[100] Son Ho, Jonathan Protzenko, Abhishek Bichhawat, and Karthikeyan Bhargavan. ‘Noise*: A Library of
Verified High-Performance Secure Channel Protocol Implementations’. In: IEEE Symposium on Security
and Privacy (S&P). IEEE, 2022, pp. 107–124 (cited on pages 96, 121, 127, 157).

[101] Comparse: Supplementary Material. https://github.com/Inria-Prosecco/comparse-artifact.
2023 (cited on page 97).

[102] Kenton Varda. ‘Protocol buffers: Google’s data interchange format’. In: Google Open Source Blog,
Available at least as early as Jul 72 (2008), p. 23 (cited on page 99).

[103] Nikhil Swamy, Tahina Ramananandro, Aseem Rastogi, Irina Spiridonova, Haobin Ni, Dmitry Malloy,
Juan Vazquez, Michael Tang, Omar Cardona, and Arti Gupta. ‘Hardening Attack Surfaces with
Formally Proven Binary Format Parsers’. In: Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation. PLDI 2022. San Diego, CA, USA:
Association for Computing Machinery, 2022, pp. 31–45. doi: 10.1145/3519939.3523708 (cited on
pages 99, 100).

[104] Benjamin Delaware, Sorawit Suriyakarn, Clément Pit-Claudel, Qianchuan Ye, and Adam Chlipala.
‘Narcissus: Correct-by-Construction Derivation of Decoders and Encoders from Binary Formats’. In:
Proc. ACM Program. Lang. 3.ICFP (2019). doi: 10.1145/3341686 (cited on pages 99, 100).

[105] Marcell van Geest and Wouter Swierstra. ‘Generic Packet Descriptions: Verified Parsing and Pretty
Printing of Low-Level Data’. In: Proceedings of the 2nd ACM SIGPLAN International Workshop on Type-
Driven Development. TyDe 2017. Oxford, UK: Association for Computing Machinery, 2017, pp. 30–40.
doi: 10.1145/3122975.3122979 (cited on pages 99, 100).

[106] Sebastian Mödersheim and Georgios Katsoris. ‘A Sound Abstraction of the Parsing Problem’. In: 2014
IEEE 27th Computer Security Foundations Symposium. 2014, pp. 259–273. doi: 10.1109/CSF.2014.26
(cited on pages 99, 100).

https://doi.org/10.17487/RFC5246
https://www.rfc-editor.org/info/rfc5246
%5Curl%7Bhttps://www.ietf.org/archive/id/draft-ietf-tls-ctls-08.html%7D
%5Curl%7Bhttps://www.ietf.org/archive/id/draft-ietf-tls-ctls-08.html%7D
https://doi.org/10.17487/RFC8422
https://doi.org/10.17487/RFC8422
https://www.rfc-editor.org/info/rfc8422
https://github.com/Inria-Prosecco/comparse-artifact
https://doi.org/10.1145/3519939.3523708
https://doi.org/10.1145/3341686
https://doi.org/10.1145/3122975.3122979
https://doi.org/10.1109/CSF.2014.26

[107] Cheerios. https://github.com/uwplse/cheerios. 2016 (cited on pages 99, 100).
[108] Mark Tullsen, Lee Pike, Nathan Collins, and Aaron Tomb. ‘Formal Verification of a Vehicle-to-

Vehicle (V2V) Messaging System’. In: Computer Aided Verification. Ed. by Hana Chockler and Georg
Weissenbacher. Cham: Springer International Publishing, 2018, pp. 413–429 (cited on pages 99, 100).

[109] Qianchuan Ye and Benjamin Delaware. ‘A Verified Protocol Buffer Compiler’. In: Proceedings of the 8th
ACM SIGPLAN International Conference on Certified Programs and Proofs. CPP 2019. Cascais, Portugal:
Association for Computing Machinery, 2019, pp. 222–233. doi: 10.1145/3293880.3294105 (cited on
pages 99, 100).

[110] Moxie Marlinspike and Trevor Perrin. Signal Specifications. https://signal.org/docs. 2016 (cited on
pages 103, 129).

[111] Melissa Chase, Trevor Perrin, and Greg Zaverucha. ‘The Signal Private Group System and Anonymous
Credentials Supporting Efficient Verifiable Encryption’. In: ACM SIGSAC Conference on Computer and
Communications Security (CCS). 2020, pp. 1445–1459 (cited on pages 104, 126).

[112] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Milner. ‘On ends-to-ends
encryption: Asynchronous group messaging with strong security guarantees’. In: ACM SIGSAC
Conference on Computer and Communications Security (CCS). 2018, pp. 1802–1819 (cited on pages 104, 126,
132).

[113] Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla. TreeKEM: Asynchronous Decentralized Key
Management for Large Dynamic Groups A protocol proposal for Messaging Layer Security (MLS). Research
Report. Inria Paris, May 2018 (cited on pages 104, 126, 131, 132).

[114] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. ‘Security Analysis and Improve-
ments for the IETF MLS Standard for Group Messaging’. In: CRYPTO. Vol. 12170. Lecture Notes in
Computer Science. Springer, 2020, pp. 248–277 (cited on pages 104, 108, 109, 126, 129, 131, 151, 155).

[115] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. ‘Modular Design of Secure
Group Messaging Protocols and the Security of MLS’. In: ACM SIGSAC Conference on Computer and
Communications Security (CCS). 2021, pp. 1463–1483 (cited on pages 104, 108, 109, 126, 129, 131, 151, 155).

[116] Karthikeyan Bhargavan, Benjamin Beurdouche, and Prasad Naldurg. Formal Models and Verified
Protocols for Group Messaging: Attacks and Proofs for IETF MLS. Research Report. Inria Paris, Dec. 2019
(cited on pages 104, 109, 113, 122, 127, 129, 131, 146, 156).

[117] TreeSync: Supplementary Material. https://github.com/Inria-Prosecco/treesync. 2022 (cited on
pages 105, 110, 112, 115).

[118] Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen, and Lenka Mareková. ‘Collective Information
Security in Large-Scale Urban Protests: the Case of Hong Kong’. In: USENIX Security Symposium.
USENIX Association, Aug. 2021, pp. 3363–3380 (cited on page 106).

[119] Moxie Marlinspike. Disappearing messages for Signal. https://signal.org/blog/disappearing-
messages/. 2016 (cited on page 106).

[120] Richard Barnes. Remove without double-join (in TreeKEM). https://mailarchive.ietf.org/arch/
msg/mls/Zzw2tqZC1FCbVZA9LKERsMIQXik. 2018 (cited on page 109).

[121] Jana Iyengar and Martin Thomson. QUIC: A UDP-Based Multiplexed and Secure Transport. RFC 9000.
May 2021. doi: 10.17487/RFC9000. url: https://www.rfc-editor.org/info/rfc9000 (cited on
page 111).

[122] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Hawblitzel, Marina Polubelova, Karthikeyan
Bhargavan, Benjamin Beurdouche, Joonwon Choi, Antoine Delignat-Lavaud, Cédric Fournet, et al.
‘Evercrypt: A fast, verified, cross-platform cryptographic provider’. In: IEEE Symposium on Security
and Privacy (S&P). IEEE. 2020, pp. 983–1002 (cited on pages 118, 123).

[123] Forrest Voight. CVE-2012-2459 (block merkle calculation exploit). https://bitcointalk.org/?topic=
102395. Aug. 2012 (cited on page 118).

[124] Marina Polubelova, Karthikeyan Bhargavan, Jonathan Protzenko, Benjamin Beurdouche, Aymeric
Fromherz, Natalia Kulatova, and Santiago Zanella-Béguelin. ‘Haclxn: Verified generic SIMD crypto
(for all your favourite platforms)’. In: ACM SIGSAC Conference on Computer and Communications Security
(CCS). 2020, pp. 899–918 (cited on page 123).

https://github.com/uwplse/cheerios
https://doi.org/10.1145/3293880.3294105
https://signal.org/docs
https://github.com/Inria-Prosecco/treesync
https://signal.org/blog/disappearing-messages/
https://signal.org/blog/disappearing-messages/
https://mailarchive.ietf.org/arch/msg/mls/Zzw2tqZC1FCbVZA9LKERsMIQXik
https://mailarchive.ietf.org/arch/msg/mls/Zzw2tqZC1FCbVZA9LKERsMIQXik
https://doi.org/10.17487/RFC9000
https://www.rfc-editor.org/info/rfc9000
https://bitcointalk.org/?topic=102395
https://bitcointalk.org/?topic=102395

[125] Jérôme Vouillon and Vincent Balat. ‘From bytecode to JavaScript: the Js_of_ocaml compiler’. In:
Software: Practice and Experience 44.8 (2014), pp. 951–972 (cited on page 124).

[126] Jonathan Protzenko, Benjamin Beurdouche, Denis Merigoux, and Karthikeyan Bhargavan. ‘Formally
verified cryptographic web applications in webassembly’. In: IEEE Symposium on Security and Privacy
(S&P). IEEE. 2019, pp. 1256–1274 (cited on page 124).

[127] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman, Dan Gohman,
Luke Wagner, Alon Zakai, and JF Bastien. ‘Bringing the web up to speed with WebAssembly’. In: ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI). 2017, pp. 185–200
(cited on page 124).

[128] Mark Manulis. Security-Focused Survey on Group Key Exchange Protocols. Cryptology ePrint Archive,
Paper 2006/395. https://eprint.iacr.org/2006/395. 2006. url: https://eprint.iacr.org/
2006/395 (cited on pages 126, 156).

[129] Bertram Poettering, Paul Rösler, Jörg Schwenk, and Douglas Stebila. ‘SoK: Game-Based Security
Models for Group Key Exchange’. In: Topics in Cryptology – CT-RSA. Ed. by Kenneth G. Paterson.
Springer International Publishing, 2021, pp. 148–176 (cited on pages 126, 156).

[130] Cas Cremers, Britta Hale, and Konrad Kohbrok. ‘The Complexities of Healing in Secure Group
Messaging: Why Cross-Group Effects Matter’. In: USENIX Security Symposium. USENIX Association,
2021, pp. 1847–1864 (cited on pages 126, 131, 155).

[131] Cas Cremers, Charlie Jacomme, and Philip Lukert. ‘ Subterm-Based Proof Techniques for Improving
the Automation and Scope of Security Protocol Analysis ’. In: 2023 IEEE 36th Computer Security
Foundations Symposium (CSF). IEEE Computer Society, July 2023, pp. 200–213 (cited on pages 127, 129,
131, 156).

[132] Benedikt Schmidt, Ralf Sasse, Cas Cremers, and David Basin. ‘Automated Verification of Group Key
Agreement Protocols’. In: 2014 IEEE Symposium on Security and Privacy (S&P). 2014, pp. 179–194. doi:
10.1109/SP.2014.19 (cited on page 127).

[133] Jonathan Protzenko, Benjamin Beurdouche, Denis Merigoux, and Karthikeyan Bhargavan. ‘Formally
verified cryptographic web applications in webassembly’. In: IEEE Symposium on Security and Privacy
(S&P). IEEE. 2019, pp. 1256–1274 (cited on page 127).

[134] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, and Pierre-Yves Strub.
‘Implementing TLS with Verified Cryptographic Security’. In: IEEE Symposium on Security and Privacy,
(S&P). 2013, pp. 445–459 (cited on pages 127, 157).

[135] Théophile Wallez, Jonathan Protzenko, and Karthikeyan Bhargavan. ‘TreeKEM: A Modular Machine-
Checked Symbolic Security Analysis of Group Key Agreement in Messaging Layer Security’. In: 2025
IEEE Symposium on Security and Privacy (SP). 2025, pp. 4375–4390. doi: 10.1109/SP61157.2025.00228
(cited on pages 129, 159).

[136] David Balbás, Daniel Collins, and Phillip Gajland. ‘WhatsUpp with Sender Keys? Analysis, Improve-
ments and Security Proofs’. In: Advances in Cryptology – ASIACRYPT 2023: 29th International Conference
on the Theory and Application of Cryptology and Information Security, Guangzhou, China, December 4–8,
2023, Proceedings, Part V. Springer-Verlag, 2023, pp. 307–341 (cited on page 129).

[137] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk. ‘Continuous group key agreement
with active security’. In: Theory of Cryptography: 18th International Conference, TCC 2020, Durham, NC,
USA, November 16–19, 2020, Proceedings, Part II 18. Springer. 2020, pp. 261–290 (cited on pages 131, 132).

[138] MLS test vectors. https://github.com/mlswg/mls-implementations/blob/main/test-vectors.md
(cited on page 139).

[139] Cas Cremers, Esra Günsay, Vera Wesselkamp, and Mang Zhao. ETK: External-Operations TreeKEM
and the Security of MLS in RFC 9420. Cryptology ePrint Archive, Paper 2025/229. 2025. url: https:
//eprint.iacr.org/2025/229 (cited on page 156).

[140] Felix Linker, Ralf Sasse, and David Basin. A Formal Analysis of Apple’s iMessage PQ3 Protocol. Cryptology
ePrint Archive, Paper 2024/1395. 2024. url: https://eprint.iacr.org/2024/1395 (cited on
page 157).

[141] Apple Security Engineering and Architecture. iMessage with PQ3: The new state of the art in quantum-
secure messaging at scale. https://security.apple.com/blog/imessage- pq3/. 2024 (cited on
page 157).

https://eprint.iacr.org/2006/395
https://eprint.iacr.org/2006/395
https://eprint.iacr.org/2006/395
https://doi.org/10.1109/SP.2014.19
https://doi.org/10.1109/SP61157.2025.00228
https://github.com/mlswg/mls-implementations/blob/main/test-vectors.md
https://eprint.iacr.org/2025/229
https://eprint.iacr.org/2025/229
https://eprint.iacr.org/2024/1395
https://security.apple.com/blog/imessage-pq3/

[142] Karthikeyan Bhargavan, Charlie Jacomme, Franziskus Kiefer, and Rolfe Schmidt. ‘Formal verification
of the PQXDH Post-Quantum key agreement protocol for end-to-end secure messaging’. In: 33rd
USENIX Security Symposium (USENIX Security 24). Philadelphia, PA: USENIX Association, Aug. 2024,
pp. 469–486 (cited on page 157).

[143] Ehren Kret and Rolfe Schmidt. The PQXDH Key Agreement Protocol. https://signal.org/docs/
specifications/pqxdh/. 2023 (cited on page 157).

[144] Cas Cremers, Charlie Jacomme, and Aurora Naska. ‘Formal Analysis of Session-Handling in Secure
Messaging: Lifting Security from Sessions to Conversations’. In: 32nd USENIX Security Symposium
(USENIX Security 23). Anaheim, CA: USENIX Association, Aug. 2023, pp. 1235–1252 (cited on
page 157).

[145] Moxie Marlinspike and Trevor Perrin. The Sesame Algorithm: Session Management for Asynchronous
Message Encryption. https://signal.org/docs/specifications/sesame/. 2017 (cited on page 157).

[146] Cas Cremers, Niklas Medinger, and Aurora Naska. Impossibility Results for Post-Compromise Security in
Real-World Communication Systems. Cryptology ePrint Archive, Paper 2024/1886. 2024. url: https:
//eprint.iacr.org/2024/1886 (cited on page 157).

[147] Trevor Perrin. The Noise Protocol Framework. https://noiseprotocol.org/noise.html. 2018 (cited
on page 157).

[148] Jason Donenfeld. ‘WireGuard: Next Generation Kernel Network Tunnel’. In: Jan. 2017. doi: 10.14722/
ndss.2017.23160 (cited on page 158).

[149] Bruno Blanchet, Pierre Boutry, Christian Doczkal, Benjamin Grégoire, and Pierre-Yves Strub. ‘CV2EC:
Getting the Best of Both Worlds’. In: 2024 IEEE 37th Computer Security Foundations Symposium (CSF).
2024, pp. 279–294. doi: 10.1109/CSF61375.2024.00019 (cited on page 158).

https://signal.org/docs/specifications/pqxdh/
https://signal.org/docs/specifications/pqxdh/
https://signal.org/docs/specifications/sesame/
https://eprint.iacr.org/2024/1886
https://eprint.iacr.org/2024/1886
https://noiseprotocol.org/noise.html
https://doi.org/10.14722/ndss.2017.23160
https://doi.org/10.14722/ndss.2017.23160
https://doi.org/10.1109/CSF61375.2024.00019

ABSTRACT

Messaging applications are nowadays pervasively used to communicate with each other, in particular using
group conversations to connect people within a social circle. This is a potential threat for privacy, for example
if the messaging application servers were to have access to the conversation content. To address this issue,
modern messaging applications provide end-to-end encryption, meaning that messages are encrypted by
the sender device and decrypted by the receiver device, so that their content stays hidden from the
messaging application servers. Such end-to-end encryption is a feature of cryptographic protocols, whose
design is notoriously error-prone. This begs the following question: are secure messaging applications
actually secure? In this thesis, we develop a novel methodology to analyze the secure group messaging
protocol Messaging Layer Security (MLS) by using formal methods on bit-precise specifications in the
symbolic model, and ultimately helped to fix design flaws in MLS before its standardization.

MOTS CLÉS

vérification formelle, messagerie sécurisée, cryptographie

RÉSUMÉ

Les applications de messagerie sont de nos jours utilisées de façon généralisée pour communiquer, en
particulier en utilisant les conversations de groupe pour relier les personnes d'un cercle social. C'est une
menace potentielle pour la vie privée, par exemple si les serveurs de l'application de messagerie ont accès
au contenu des conversations. Pour résoudre ce problème, les applications de messagerie modernes
fournissent du chiffrement de bout en bout, ce qui veut dire que les messages sont chiffrés par l'appareil de
l'expéditeur et déchiffrés par l'appareil du destinataire, de manière à ce que les serveurs de messagerie ne
puissent pas connaître le contenu des messages. Un tel chiffrement de bout en bout est de façon plus
générale un protocole cryptographique, dont la conception est notoirement sujette aux erreurs. Cela soulève
la question suivante: les applications de messagerie sécurisée sont-elles réellement sécurisées ? Dans cette
thèse, nous développons une nouvelle méthodologie permettant d'analyser le protocole de messagerie de
groupe Messaging Layer Security (MLS) en utilisant les méthodes formelles sur des spécifications précises
à l'octet près dans le modèle symbolique et, ultimement, nous aidons à corriger des problèmes de conception
dans MLS avant sa standardisation.

KEYWORDS

formal verification, secure messaging, cryptography

	Introduction
	Cryptography and secure messaging
	Rigorous mathematical proofs
	Machine-checked analysis of cryptographic protocols
	This thesis

	Developing tools and proof techniques for symbolic analysis at scale
	DY*: Security proofs in the Dolev-Yao model, using F* (background)
	Background on symbolic analysis
	Symbolic analysis with DY*
	Security proofs with DY*, an example

	DY*: Security proofs in the Dolev-Yao model, using F* (contributions)
	Modular protocol invariants
	Renovating the label construction
	Making labels erasable
	Making key usage an invariant
	Quality of life and proof engineering
	Conclusion

	Comparse: Provably Secure Formats for Cryptographic Protocols
	Introduction
	The Essence of Secure Formats
	Verified Formats in F*
	Verified Formats for TLS and cTLS
	Embedding Comparse in DY*
	Discussion
	Related work
	Conclusion

	The Messaging Layer Security protocol, and its security analysis in the symbolic model
	TreeSync: Authenticated group synchronization
	Introduction
	MLS: TreeKEM, TreeDEM, and TreeSync
	A Formal Specification of TreeSync
	A security proof of TreeSync
	Implementation
	Impact
	Related Work
	Conclusion

	TreeKEM: Efficient continuous group key establishment
	Introduction
	The MLS TreeKEM Protocol
	An executable specification of TreeKEM
	A security theorem for TreeKEM
	Proof methodology
	Discussion
	Lack of epoch authentication in Welcome

	Final words
	Related work
	Analysis of MLS
	Computer-aided analysis of messaging protocols
	Analysis of executable specifications
	Tools for analyzing cryptographic protocols

	Conclusion
	Impact on MLS
	Insights for Protocol Design and Analysis
	Limitations and Future Work

	Bibliography

