Remove unicode characters
This commit is contained in:
parent
aff89669a4
commit
4a0bce3608
2 changed files with 5 additions and 5 deletions
|
@ -31,12 +31,12 @@
|
|||
\item Keep the whole design secret?
|
||||
\item \textbf{``Advantages''}:
|
||||
\begin{itemize}[<+->]
|
||||
\item Attacker doesn’t know how our cipher (or system, more generally,) works.
|
||||
\item Attacker doesn't know how our cipher (or system, more generally,) works.
|
||||
\end{itemize}
|
||||
\item \textbf{Disadvantages}:
|
||||
\begin{itemize}[<+->]
|
||||
\item Figuring out how the thing works might mean a break.
|
||||
\item Can’t expose cipher to scrutiny.
|
||||
\item Can't expose cipher to scrutiny.
|
||||
\item Everyone needs to invent a cipher.
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
|
@ -156,7 +156,7 @@
|
|||
\begin{itemize}[<+->]
|
||||
\item How to derive $K$?
|
||||
\item $K$ is ideally random.
|
||||
\item True randomness isn’t practical, so $K$ is in practice pseudo-random.
|
||||
\item True randomness isn't practical, so $K$ is in practice pseudo-random.
|
||||
\item We need a pseudo-random uniform distribution:
|
||||
\item If $\mathcal{S}$ is a set of $m$ items, then the uniform distribution over $\mathcal{S}$ assigns probability $\frac{1}{m}$ to each item $x \in \mathcal{S}$
|
||||
\item In practice, this just means we need the bits to be random, unpredictable, uniformly distributed in terms of probability
|
||||
|
@ -220,7 +220,7 @@
|
|||
\begin{columns}[c]
|
||||
\begin{column}{0.5\textwidth}
|
||||
\begin{itemize}
|
||||
\item When we prove security, we prove what is or isn’t possible by the attacker calling \textsc{Attack}$(M)$.
|
||||
\item When we prove security, we prove what is or isn't possible by the attacker calling \textsc{Attack}$(M)$.
|
||||
\end{itemize}
|
||||
\end{column}
|
||||
\begin{column}{0.5\textwidth}
|
||||
|
|
|
@ -581,7 +581,7 @@
|
|||
\end{itemize}
|
||||
\item For a 16-byte message:
|
||||
\begin{itemize}
|
||||
\item Null-oracle attack: ~4,080 queries (16 × 255)
|
||||
\item Null-oracle attack: ~4,080 queries (16 \times 255)
|
||||
\item True brute-force: ~$10^{38}$ queries ($255^{16}$)
|
||||
\end{itemize}
|
||||
\item This attack is exponentially more efficient than traditional brute-force.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue